30Sep 2017

DETERMINATION OF LACTOSE AND LACTIC ACID USING KEFIR NANOGRAINS AS SELECTIVE ALIVE MICRO-ORGANISM BY UV-VIS. SPECTROMETRY BASED ON CAPPING BEHAVIOR OF LACTIC ACID DURING FORMATION OF FEOOH NANOPARTICLES.

  • Department of Chemistry, College of Sciences, Shiraz University, 71454, Shiraz, Iran.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

A novel UV-Vis. spectrometric technique has been introduced for determination of lactose and lactic acid using kefir nanograins as selective alive microorganism. Microorganisms such as yeast and lactic acid bacteria in the kefir matrix as enzyme during conversion of lactose to lactic acid and then lactic acid are considered as acceptable capping agent during formation of FeOOH species. Formation of FeOOH as considered is responsible active species during lactose/lactic acid determination. These alive reagents in kefir grains are selective for lactose and lactic acid determination via observation of absorption peak at around 380 nm depending on the size of the kefir grains. The introduced method has a linear response from 1.0?10-6 to 1.0?10-2 mol L-1 for lactose and 1.0?10-5 to 1.0?10-3 for lactic acid. Detection limits are also estimated to around 1.0?10-7 mol L-1 and 3.0?10-6 mol L-1 for lactose and lactic acid, respectively. More acceptable response time and detection limit was estimated for each lactose and lactic acid, compared to the general methods such as titrimetry, high-performance liquid chromatography and infrared spectrometry. This study points to the dangerous effect of the formation of FeOOH nanoparticles during the use of Kefir in our nutrient chain based on the catalytic effect of the kefir?s microorganism and ion species and copping behavior of lactic acid.


  1. Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Zeitschrift f?r Lebensmitteluntersuchung und Forschung. Journal of Biotechnology, 156, 286-301.
  2. Andersson, R., & Hedlund, B. (1983). HPLC analysis of organic acids in lactic acid fermented vegetables. Zeitschrift f?r Lebensmittel-Untersuchung und Forschung, 176, 440-443.
  3. Andrei, S. Veterinary Medicine, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 2008. URL http://journals.usamvcluj.ro/index.php/veterinary
  4. Atasever, A., Ozdemir, H., Gulcin, I., & Irfan Kufrevioglu, O. (2013). One-step purification of lactoperoxidase from bovine milk by affinity chromatography. Food Chemistry, 136(2), 864-870.
  5. Cross, K. J., Huq, N. L., Palamara, J. E., Perich, J. W., & Reynolds, E. C. (2005). Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. Journal of Biological Chemistry, 280, 15362-15369.
  6. Deng, D., Cheng, Y., Jin, Y., Qi, T., & Xiao, F. (2012). Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. Journal of Materials Chemistry, 22, 23989-23995.
  7. Enikeev, R. (2012). Development of a new method for determination of exopolysaccharide quantity in fermented milk products and its application in technology of kefir production. Food Chemistry, 134(4), 2437-2441.
  8. Font?n, M. C. G., Mart?nez, S., Franco, I., & Carballo, J. (2006). Microbiological and chemical changes during the manufacture of Kefir made from cows? milk, using a commercial starter culture. International Dairy Journal, 16(7), 762-767.
  9. Gao, J., Gu, F., Ruan, H., Chen, Q., He, J., & He, G. (2012). Culture conditions optimization of tibetan kefir grains by response surface methodology. Procedia Engineering, 37, 132-136.
  10. Garofalo, C., Osimani, A., Milanović, V., Aquilanti, L., De Filippis, F., Stellato, G., Di Mauro, S., Turchetti, B., Buzzini, P., & Ercolini, D. (2015). Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiology, 49, 123-133.
  11. Genin, E., Toullec, P. Y., Antoniotti, S., Brancour, C., Genet, J. P., & Michelet, V. (2006). Room temperature Au(I)-catalyzed exo-selective cycloisomerization of acetylenic acids: an entry to functionalized gamma-lactones. Journal of the American Chemical Society, 128(10), 3112-3113.
  12. Goncu, A., & Alpkent, Z. (2005). Sensory and chemical properties of white pickled cheese produced using kefir, yoghurt or a commercial cheese culture as a starter. International Dairy Journal, 15, 771-776.
  13. Halliwell, B., & Gutteridge, J. M. (1985). The importance of free radicals and catalytic metal ions in human diseases. Molecular Aspects of Medicine, 8, 89-193.
  14. Heinemann, M., & Hald, P. M. (1940). Factors That Influence the Passage of Ascorbic Acid from Serum to Cells in Human Blood. Journal of Clinical Investigation, 19(3), 469-473.
  15. Hertzler, S. R., & Clancy, S. M. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. Journal of the American Dietetic Association, 103, 582-587.
  16. Horne, D. S. (2006). Casein micelle structure: models and muddles. Current Opinion in Colloid & Interface Science, 11, 148-153.
  17. Ilmen, M., Koivuranta, K., Ruohonen, L., Suominen, P., & Penttila, M. (2007). Efficient production of L-lactic acid from xylose by Pichia stipitis. Applied and Environmental Microbiology, 73(1), 117-123.
  18. Jamshidi, K., Hyon, S.-H., & Ikada, Y. (1988). Thermal characterization of polylactides. Polymer, 29, 2229-2234.
  19. Klopper, W., Angelino, S., Tuning, B., & Vermeire, H. (1986). Organic acids and glycerol in beer. Journal of the Institute of Brewing, 92, 225-228.
  20. Lane, J. H., & Eynon, L. (1934). Determination of reducing sugars by Fehling's solution with methylene blue indicator. London: N. Rodger.
  21. Luinge, H., Hop, E., Lutz, E., Van Hemert, J., & De Jong, E. (1993). Determination of the fat, protein and lactose content of milk using Fourier transform infrared spectrometry. Analytica Chimica Acta, 284, 419-433.
  22. McMahon, D. J., & McManus, W. R. (1998). Rethinking casein micelle structure using electron microscopy. Journal of Dairy Science, 81, 2985-2993.
  23. Ni, Y. N., Wang, Y. R., & Kokot, S. (2008). Osteryoung square wave voltammetric determination of lactose in food samples by a derivative procedure. Chinese Chemical Letters, 19, 1491-1494.
  24. Nickerson, T., Vujicic, I., & Lin, A. (1976). Colorimetric estimation of lactose and its hydrolytic products. Journal of Dairy Science, 59, 386-390.
  25. Pfennig, B. W. (2015). Principles of Inorganic Chemistry. United Kingdom: John Wiley & Sons.
  26. Qiao, R., Yang, C., & Gao, M. (2009). Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. Journal of Materials Chemistry, 19, 6274-6293.
  27. RedCorn, R., & Engelberth, A. S. (2016). Identifying conditions to optimize lactic acid production from food waste co-digested with primary sludge. Biochemical Engineering Journal, 105, 205-213.
  28. Rimstidt, J. D. (2013). Geochemical rate models: an introduction to geochemical kinetics. New York: Cambridge University Press.
  29. Riva, A., & Bisognani, M. (1972). Infrared spectrophotometric determination of small amounts of lactic and pyruvic acids. Analytical chemistry, 44, 2101-2101.
  30. Safina, Z. M., Abizgil'dina, G., Gabdrakhmanova, A. F., & Safina, E. R. (2010). Effectiveness of infrared exposure to periorbital areas in partial optic nerve atrophy of varying degrees. Vestnik Oftalmologii, 126(5), 31-34.
  31. Schlimme, E., Lorenzen, P. C., Martin, D., & Thormahlen, K. (1996). Analytical differentiation of butter types by specific compositional parameters of the aqueous butter phase. Milchwissenschaft, 51, 139-143.
  32. Serafini, F., Turroni, F., Ruas-Madiedo, P., Lugli, G. A., Milani, C., Duranti, S., Zamboni, N., Bottacini, F., van Sinderen, D., & Margolles, A. (2014). Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. International Journal of Food Microbiology, 178, 50-59.
  33. Simova, E., Beshkova, D., Angelov, A., Hristozova, T., Frengova, G., & Spasov, Z. (2002). Lactic acid bacteria and yeasts in kefir grains and kefir made from them. Journal of Industrial Microbiology & Biotechnology, 28(1), 1-6.
  34. Swagerty Jr, D. L., Walling, A. D., & Klein, R. M. (2002). Lactose intolerance. American family physician, 65, 1845-1850.
  35. Tango, T. (1999). Re: Improved confidence intervals for the difference between binomial proportions based on paired data by Robert G. Newcombe. Statistics in Medicine, 17, 2635-2650.
  36. Xinmin, W., Ruili, Z., Zhihua, L., Yuanhong, W., & Tingfu, J. (2008). Determination of glucosamine and lactose in milk-based formulae by high-performance liquid chromatography. Journal of food composition and analysis, 21, 255-258.
  37. Yakovleva, M., Buzas, O., Matsumura, H., Samejima, M., Igarashi, K., Larsson, P.-O., Gorton, L., & Danielsson, B. (2012). A novel combined thermometric and amperometric biosensor for lactose determination based on immobilised cellobiose dehydrogenase. Biosensors and Bioelectronics, 31, 251-256.

[Mohammad Mahdi Doroodm and and Farideh Zare. (2017); DETERMINATION OF LACTOSE AND LACTIC ACID USING KEFIR NANOGRAINS AS SELECTIVE ALIVE MICRO-ORGANISM BY UV-VIS. SPECTROMETRY BASED ON CAPPING BEHAVIOR OF LACTIC ACID DURING FORMATION OF FEOOH NANOPARTICLES. Int. J. of Adv. Res. 5 (Sep). 1448-1461] (ISSN 2320-5407). www.journalijar.com


Mohammad Mahdi
Department of Chemistry, College of Sciences, Shiraz University, 71454, Shiraz, Iran.

DOI:


Article DOI: 10.21474/IJAR01/5467      
DOI URL: http://dx.doi.org/10.21474/IJAR01/5467