08Jun 2017

A REVIEW ARTICLE ON STABILITY OF FERROMAGNETIC FLUIDS.

  • Department of Chemistry, M. B. Govt. P. G. College, Haldwani (Nainital), 263139, India.
  • Department of Mathematics, M. B. Govt. P. G. College, Haldwani (Nainital), 263139, India.
Crossref Cited-by Linking logo
  • Abstract
  • References
  • Cite This Article as
  • Corresponding Author

Magnetic fluids are basically classified into two categories; first one is ferromagnetic fluids (or ferrofluids) and another one is magnetorheological fluids. Ferromagnetic fluids are colloidal suspensions of very fine magnetic particles (~10 nm), whereas magnetorheological fluids are suspensions of larger magnetic particles, which are usually non-stable. In this review article we mainly focused on ferromagnetic fluids. We review the general classification of ferromagnetic fluids, properties of ferromagnetic fluids and applications of ferromagnetic fluids. A large portion of this review included the results of maximum work which has been done in stability of ferromagnetic fluids till the present.


  1. Abraham, A. (2002): Rayleigh-B?nard convection in a micropolar ferromagnetic fluid. Int. J. Engg. Sci., 40: 449-460.
  2. Aggarwal, A.K. and Makhija, S. (2014): Hall Effect on thermal stability of ferromagnetic fluid in porous medium in the presence of horizontal magnetic field. Thermal Science, 18: 503-524.
  3. Aniss, S., Souhar, M. and Brancher, J.P. (1993): Thermal convection in a magnetic fluid in an annular hele-shaw cell. JMMM, 122: 319-322.
  4. Aniss, S., Belhaq, M. and Souhar, M. (2001): Effects of a magnetic modulation on the stability of a magnetic liquid layer heated from above. Heat Transfer, 123: 428-433.
  5. Belyaev, A.V. and Smorodin, B.L. (2009): Convection of a ferrofluid in an alternating magnetic field. Journal of Applied Mechanics and Technical Physics, 50: 558-565.
  6. Belyaev, A.V. and Smorodin, B.L. (2010): The stability of ferrofluid flow in a vertical layer subject to lateral heating and horizontal magnetic field. Journal of Magnetism and Magnetic Materials, 322: 2596-2606.
  7. Berkovskii, B.M. and Bashtovoi, V.G. (1971): Gravitational convection in a ferromagnetic liquid. Magnitnaya Gidrodinamika, 7: 24-28.
  8. Berkovsky, B.M., Fertman, V.E., Polevikov, V.E. and Isaev, S.V. (1976): Heat transfer across vertical ferrofluid layers. Int. J. Heat Mass Trans., 19: 981-986.
  9. Bhagat, N., Pant, S. and Kumar, A. (2016): Hall Effect on Rayleigh-B?nard convection of ferromagnetic fluid saturating in a porous medium in the presence of rotation. CONIAPS XIX, MS-101.
  10. Bhagat, N. and Pant, S., (2016): Effect of rotation and magnetic field on the onset of thermal convection in dusty-ferromagnetic fluid with varying gravitational field in porous medium. Acta Ciencia Indica, XLII (M): 239-249.
  11. Bhandari, A. and Kumar, V., (2016): Ferrofluid flow due to a rotating disk in the presence of a non-uniform magnetic field. J. of Applied Mechanics and Engineering, 21: 273-283.
  12. Chand, R. and Bala, A. (2013a): On the onset of Rayleigh-B?nard convection in a layer of ferrofluid. IJERA, 3: 1019-1025.
  13. Chand, R. and Bala, A. (2013b): Effect of rotation on the onset of Rayleigh-B?nard convection in a layer of ferrofluid. IJMER, 3: 2042-2047.
  14. Chand, S. (2012): Effect of rotation on triple-diffusive convection in a magnetized ferrofluid with internal angular momentum saturating a porous medium. Applied Mathematical Sciences, 6: 3245-3258.
  15. Chand, S. (2013): Linear stability of triple-diffusive convection in micropolar ferromagnetic fluid saturating porous medium. Appl. Math. Mech.-Engl. 34: 309-326.
  16. Finlayson, B.A. (1970): Convective instability of ferromagnetic fluids. Fluid. Mech., 40: 753-767.
  17. Govindan, S., Vasanthakumari, R. and Sacravarthy, P., (2012): Numerical study on the effect of temperature dependent viscosity on ferroconvection in an anisotropic porous medium. Int. J. of Emerging Tech. and Advanced Engg., 2: 51-55.
  18. Gupta, M.D. and Gupta, A.S. (1979): Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis. J. Eng. Sci., 17: 271-277.
  19. Kaloni, P.N. and Lou, J.X. (2005): Weakly nonlinear instability of a ferromagnetic fluid rotating about a vertical axis. JMMM, 284: 54-68.
  20. Lange, A. (2002): Thermal convection of magnetic fluids in a cylindrical geometry. JMMM, 252: 194-196.
  21. Lalas, D.P. and Carmi, S. (1971): Thermoconvective stability of ferrofluids. Fluids, 14: 436-438.
  22. Mokhtar, N. and Arifin, N. (2012): B?nard-Marangoni ferroconvection with feedback control. Int. J. of Modern Phys., 9: 552-559.
  23. Nanjundappa, C.E., Shivakumara, I.S. and Srikumar, K., (2009): Effect of MFD viscosity on the onset of ferromagnetic fluid layer heated from below and cooled from above with constant heat flux. Measurement Science Review, 9: 75-80.
  24. Nanjundappa, C.E., Savitha, B., Arpitha Raju, B. and Shivakumara, I.S. (2014): Effect of temperature-dependent viscosity on the onset of B?nard-Marangoni ferroconvection in a ferrofluid saturated porous layer. Acta. Mech., 225: 835-850.
  25. Nanjundappa, C.E., Shivakumara, I.S., Arunkumar, R. and Tadmor, R. (2015): Ferroconvection in a porous medium with vertical throughflow. Acta Mech, 226: 1515-1528.
  26. Odenbach, S. (2002): Magnetoviscous effects in ferrofluids. Springer-Verlag, Berlin, Heidelberg.
  27. Palaniswamy, V.A. and Purushotham, C.M. (1981): Stability of shear flow of stratified fluids with fine dust. Phys. Fluids, 24: 1224-1228.
  28. Pant, S., Bhagat, N. and Singh, B. (2016): Combined effect of Hall Current and rotation on thermal stability of ferromagnetic fluids saturating in a porous medium under varying gravity field. IJSEAS, 2: 237-249.
  29. Pant, S., Bhagat, N. and Kharayat, H. (2016): Effect of suspended particles and magnetic field on thermal convection in ferromagnetic fluid with varying gravitational field in porous medium. IJAR, 4: 939-946.
  30. Pant, S., Bhagat, N. and Kharayat, H. (2017): Effect of Hall Current on the thermal convection of rotating ferromagnetic fluid in the presence of vertical magnetic field saturating in a porous medium. Int. J.Curr. Sci. Tech., 6: 26-39.
  31. Polevikov, V.K. (1997): Stability of a magnetic fluid under the action of an external pressure drop. Fluid Dyn., 32: 457.
  32. Qin, Y. and Kaloni, P.N. (1994): Non-linear stability problem of a ferromagnetic fluid with surface tension effect. Eur. J. Mech. Fluids, 13: 305-321.
  33. Ram, P., Sharma, K. and Bhandari, A. (2010): Effect of porosity on ferrofluid flow with rotating disk. Int, J. of Appl. Math and Mech., 6: 67-76.
  34. Ram, P. and Sharma, K. (2014): Effect of rotation and MFD viscosity on ferrofluid flow with rotating disk. Indian Journal of Pure and Applied Physics, 52: 87-92.
  35. Ramanathan, A. and Muchikel, N. (2006): Effect of temperature dependent viscosity on ferroconvection in a porous medium. Int. J. Appl. Mech. and Engg., 11: 93-104.
  36. Rashmi Venkatesh Murthy, (2010): Effect of temperature modulation on Rayleigh-B?nard convection in a rotating layer of a ferromagnetic fluid. [Dissertation-(Submitted to Christ University)].
  37. Rosenwieg, R.E. (1985): Ferrohydrodynamics. Cambridge University Press, Cambridge.
  38. Saffman, P.G. (1962): On the stability of a laminar flow of a dusty gas. J. Fluid Mech. 13: 120-128.
  39. Scanlon, J.W. and Segel, L.A. (1973): Some effects of suspended particles on the onset of B?nard convection. Fluids, 16: 573-578.
  40. Schwab, L., Hildebrandt, U. and Stierstadt, K. (1983): Magnetic B?nard convection. JMMM, 39: 113-114.
  41. Sharma, R.C., Prakash, K. and Dube, S.N. (1976): Effect of suspended particles on the onset of B?nard convection in hydromagnetics. Acta Physica Hungarica, 40: 3-10.
  42. Sharma, R.C. and Sharma, K.N. (1982): Thermal instability of fluids through a porous medium in the presence of suspended particles, rotation and solute gradient. Math. Phys. Sci., 16: 167.
  43. Shivakumara, I.S., Lee, J., Nanjundappa, C.E. and Ravisha, M. (2011): Ferromagnetic convection in a rotating ferrofluid saturated porous layer. Transp. Porous Med., 87: 251-273.
  44. Shliomis, M.I. (1973): Convective instability of a ferrofluid. Fluid Dynamics-Sov. Res., 6: 957-962.
  45. Siddheswar, P.G. (1993): Rayleigh-B?nard convection in a magnetic fluid with second sound. Jpn Soc. Mag. Fluids, 25: 32-36.
  46. Siddheswar, P.G. (1995): Convective instability of ferromagnetic fluids bounded by fluid-permeable, magnetic boundaries. JMMM, 149: 148-150.
  47. Siddheswar, P.G. and Abraham, A. (1998): Convection in a ferromagnetic fluid occupying a vertical enclosure. J. Engg. Matl. Sci., 5: 423-426.
  48. Siddheswar, P.G. and Abraham, A. (2003): Effect of time-periodic boundary temperatures/body force on Rayleigh-B?nard convection in a ferromagnetic fluid. Acta Mech., 161: 131-150.
  49. Singh, J. and Bajaj, R. (2009): Temperature modulation in ferrofluid convection. Phys. Fluids, 21: 064105.
  50. Stiles, P.J. and Kagan, M. (1990): Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. JMMM, 85: 196-198.
  51. Sunil, Bharti, P.K. and Sharma, R.C. (2004): Thermosolutal convection in a ferromagnetic fluid. Mech., 56: 117-135.
  52. Sunil, Sharma, A., Sharma, D. and Sharma, R.C. (2005): Effect of dust particles on thermal convection in ferromagnetic fluid. Zeitschrift fur Natyrforschung, 60a: 494-502.
  53. Sunil, Sharma, A. and Shandil, R.C. (2008a): Effect of magnetic field dependent viscosity on ferroconvection in the presence of dust particles. J. Appl. Math. Comput, 27: 7-22.
  54. Sunil, Chand, P. and Bharti, P.K. (2007): Double-diffusive convection in a micropolar ferromagnetic fluid. Appl. Math. and Computing, 189: 1648-1661.
  55. Sunil, Chand, P., Bharti, P.K. and Mahajan, A. (2008b): Thermal convection in a micropolar ferrofluid in the presence of rotation. JMMM, 320: 316-324.
  56. Sunil and Mahajan, A. (2009a): A nonlinear stability analysis for thermoconvective magnetized ferrofluid saturating a porous medium. Trans. in Porous Media, 76: 327-343.
  57. Sunil and Mahajan, A. (2009b): A nonlinear stability analysis for rotating ferrofluid heated from below. Appl. Math. and Computation, 204: 299-310.
  58. Suresh, G. and Vasanthakumari, B. (2009): Comparison of theoretical and computational ferroconvection induced by magnetic field dependent viscosity in an anisotropic porous medium. Int. Jl. Recent Trends in Engg., 1: 41-45.
  59. Vaidayanathan, G. and Swkar, R. (2001): Effect of magnetic field dependent viscosity on ferroconvection in rotating medium. Indian Journal of Pure and Applied Physics, 40: 159-165.
  60. Venkatasubramaniam, S. and Kaloni, P.N. (1994): Effects of rotation on the thermoconvective instability of a horizontal layer of ferrofluids. J. Engg. Sci., 32: 237-256.
  61. Zakinyan, A.R. and Mkrtchyan, L.S. (2012): Instability of the ferrofluid layer on a magnetizable substrate in a perpendicular magnetic field. Magnetohydrodynamics, 48: 615-621.
  62. Zebib, A. (1996): Thermal convection in a magnetic fluid. Fluid. Mech., 321: 121-136.

[Deepti Joshi, Naveen Bhagat and Sumit Pant. (2017); A REVIEW ARTICLE ON STABILITY OF FERROMAGNETIC FLUIDS. Int. J. of Adv. Res. 5 (Jun). 169-177] (ISSN 2320-5407). www.journalijar.com


Naveen Bhagat
Associate Proffesor, Department of Mathematics, M.B. Govt. P.G. College, Haldwani, Nainital (Uttarakhand)

DOI:


Article DOI: 10.21474/IJAR01/4395      
DOI URL: http://dx.doi.org/10.21474/IJAR01/4395