17Jul 2017

CARBOHYDRATE ASSIMILATION PROFILE OF TWO WILD STRAINS OF GENUS CANDIDA IN A MIXTURE OF HEXOSES AND PENTOSES BY ALCOHOL PRODUCTION.

  • Centro de Investigaci?n y Asistencia en Tecnolog?a y Dise?o del Estado de Jalisco, Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal-Chuburna Puerto Parque Cient?fico Tecnol?gico de Yucat?n, Merida, Yucatan, M?xico. CP. 97302.
  • Centro de Biotecnolog?a Gen?mica del Instituto Polit?cnico Nacional, Boulevard del Maestro s/n esq. El?as Pi?a, Col. Narciso Mendoza, Cd. Reynosa, Tamaulipas, M?xico. C.P. 88710.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Bioethanol is an alternative energy source used as fossil fuel complement. It can be obtained from microbial fermentation of sugars. Efficient fermentations require microorganisms capable of use all the carbohydrates present in raw materials but most of them have different preferences for its assimilation. Mixed cultures are an alternative to perform carbohydrate fermentations due the synergistic combination of different metabolic capacities. In this work the carbohydrate assimilation profile of two Candida glabrata strains (code T1 and LR2) isolated from termite gut and bovine ruminal fluid, respectively, was studied in single and mixed cultures on sugar mixtures. A minimal medium based on nitrogen with 120 g/l of carbohydrates (in proportions similar to those found in citric residues) was inoculated with 2.0 x 107 cell/ml. In mixed cultures (code MC1 and MC2), strains were inoculated at proportion 50:50 with the same inoculum concentration. Fermentations were made during ten days at 35?C (by T1 single culture and MC1) and 40?C (by LR2 single culture and MC2) at 200 rpm. LR2 had higher cellular population and biomass and T1 had better growth rate and doubling time. All the cultures assimilate all sugars. MC1 had the best assimilation of glucose (94.81?0.12%), fructose (83.83?0.60%) and arabinose (62.12?0.42%). T1 single culture had the best assimilation of galactose (52.64?0.71%) and xylose (56.75?0.66%). T1 and MC1 had the best ethanol production (24.28 ?0.78 g/l and 24.32 ?1.00 g/l, respectively). MC2 had the highest maximum productivity (6.98 ? 0.73 g/l?day) and alcohol production rate (0.128?0.004 g/lh).


  1. Achinas, S. and Euverink, G.J.W. (2016): Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron. J. Biotechn., 23: 44-53.
  2. Acourene, S. amd Ammouche, A. (2012): Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and guillermondii. J. Ind. Microbiol. Biotechnol., 39(5): 759-766.
  3. Atlas, R. M. (2010): Handbook of Microbiological Media, 4th CRC Press. Taylor & Francis Group. Boca Raton, FL, USA, pp. 1937-1938.
  4. Bader, J., Mast-Gerlach, E. Popović, M.K., Bajpai, R. and Stahl, U. (2010): Relevance of microbial coculture fermentations in biotechnology. Appl. Microbiol., 109(2): 371-387.
  5. Balat, M. and Balat, H. (2009): Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energ., 86(11): 2273-2282.
  6. Bolotin-Fukuhara, M and Fairhead, C. (2014): Candida glabrata: a deadly companion? Yeast, 31(8): 279-288.
  7. Boluda-Aguilar, M., L?pez-G?mez, A. (2013): Production of bioethanol by fermentation of lemon (Citrus limon ) peel wastes pretreated with steam explosion. Ind. Crops and Prod., 41: 188-197.
  8. Brune, A. (2014): Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol., 12(3): 168-180.
  9. Brunke, S. and Hube, B. (2013): Two unlike cousins: albicans and C. glabrata infection strategies. Cell. Microbiol., 15(5): 701-708.
  10. Chandel, A.K., Chandrasekhar, G., Radhika, K., Ravinder, R., Ravindra, P. (2011): Bioconversion of pentose sugars into ethanol: A review and future directions. Biotechnol. Mol. Biol. R., 6(1): 8-20.
  11. Christopherson, M.R and Suen, G. (2013): Nature?s bioreactor: the rumen as a model for biofuel production. Biofuels, 4(5): 511-521.
  12. Demir, O. and Kurnaz, I.A. (2006): An integrated model of glucose and galactose metabolism regulated by the GAL genetic Comput. Biol. Chem., 30(3): 179-192.
  13. Dussan, K.J., Silva, D.D., Perez, V.H. and da Silva, S.S. (2016): Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast. Energ.,87: 703-710.
  14. Estrada-Mart?nez, R. (2013): Estudio de la capacidad fermentativa de microorganismos silvestres en cultivos mixtos para la producci?n de alcohol a partir de residuos c?tricos: tesis que para obtener el grado acad?mico de Maestro en Ciencia y Tecnolog?a en la Especialidad de Procesos Agroindustriales. Centro de Investigaci?n y Asistencia en Tecnolog?a y Dise?o del Estado de Jalisco, M?rida, Yucat?n, M?xico.
  15. Gargel, C.A., Baffi, M.A., Gomes, E. and Da-Silva, R. (2014): Invertase from Candida stellata strain isolated from grape: production and physicochemical characterization. J. Microbiol. Biotech. Food Sci., 4(1):24-28.
  16. Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S. and Bogel-Łukasik, R. (2010): Hemicelluloses for fuel etanol: A review. Bioresource Technol., 101(13): 4775-4800.
  17. Guan, D., Li, Y., Shiroma, R., Ike, M. and Tokuyasu, K. (2013): Sequential incubation of Candida shehatae and ethanol-tolerant yeast cells for efficient ethanol production from a mixture of glucose, xylose and cellobiose. Bioresource Technol., 132: 419-422.
  18. Gupta, A. and Verma, J.P. (2015): Sustainable bio-ethanol production from agro-residues: A review. Renew. Sust. Energ. Rev., 41: 550-567.
  19. Guti?rrez-Rivera, B., Ortiz-Mu?iz, B., G?mez-Rodr?guez, J., C?rdenas-C?gal, A., Dom?nguez-Gonz?lez, J.M. and Aguilar-Uscanga, M.G. (2015): Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses ?B? in a mixed yeast culture. Renew. Energ., 74: 399-405.
  20. Hermansyah, H., Novia, N. and Wiraningsih, M. (2016): Bioethanol production from cellulose by tropicalis, as an alternative microbial agent to produce ethanol from lignocelullosic biomass. S.J.E., 1(1): 10-13.
  21. Hickert, L.R., da Cunha-Pereira, F., de Souza-Cruz, P.B., Rosa, C.A. and Ayub, M.A. Z. (2013): Ethanogenic fermentation of co-cultures of shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresource Technol., 131: 508-514.ta
  22. Hittinger, C.T., Rokas, A. and Carroll, S.B. (2004): Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeast. Proc. Natl. Acad. Sci. U.S.A., 101(39): 14144-14149.
  23. Jahnke, J.P., Hoyt, T., LeFors, H.M., Summer, J.J. and Mackie, D.M. (2016): Aspergillus oryzae-Saccharomyces cerevisiae consortium allows bio-hybrid fuel cell to run on complex carbohydrates. Microorganisms, 4(1): 10.
  24. Jasman, J., Prijambada, I.D., Hidayat, C. and Widianto, D. (2012): Selection of yeast strains for ethanol fermentation of glucose-fructose-sucrose mixture. Indones. J. Biotechnol., 17(2): 114-120.
  25. Jasman, J., Prijambada, I.D., Hidayat, C. and Widianto, D. (2013): Ethanol fermentation on mixed sugars using coculture of two yeast strains. Indones. J. Biotechnol., 18(2): 116-122.
  26. Jeffries, T.W. and Sreenath, H.K. (1988): Fermentation of hemicellulosic sugars and sugar mixtures by shehatae. Biotechnol. And Bioeng., 31(15): 502-506.
  27. Karmee, S.K. (2016): Liquid biofuels from food waste: Current trends, prospect and limitation. Renew. Sust. Energ. Rev., 53: 945-953.
  28. Laplace, J.M., Delgenes, J.P., Moletta, R. and Navarro, J.M. (1991): Alcoholic fermentation of glucose and xylose by Pichia stipites, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: oxygen requirement as a key factor. Appl. Microbiol. Biotechnol., 36(2): 158-162.
  29. Leandro, M.J., Fonseca, C. and Gon?alves, P. (2009): Hexose and pentose transport in ascomycetous yeasts: and overview. FEMS Yeast Res., 9(4): 511-525.
  30. Li, S., Chen, X., Liu, L. and Chen, J. (2016): Pyruvate production in glabrata: manipulation and optimization of physiological function. Crit. Rev. Biotechnol., 36(1): 1-10.
  31. Lima, R.A., Andrade, R.F.S., Rodr?guez, D.M., Ara?jo, H.W.C., Santos, V.P. and Campos-Takaki, G.M. (2017): Production and characterization of biosurfactant isolated from glabrata using renewable substrates. Afr. J. Microbiol. Res., 11(6): 237-244.
  32. Marques, W.L., Raghavendran, V., Stambuk, B.U. and Gombert, A.K. (2016): Sucrose and Saccharomyces cerevisiae: a relationship most sweet. FEMS Yeast Res., 16(1): fov107.
  33. Preez, J.C., Bosch, M. and Prior, B.A. (1986): The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Microbiol. Biotechnol., 23(3): 228-233.
  34. Prillinger, H. Messner, R., K?nig, H., Bauer, R., Lopandic, K., Molnar, O., Dangel, P., Weigang, F., Kirists, T., Nakase, T. and Sigler, L. (1996): Yeast associated with termites: a phenotypic and genotyping characterization and use of coevolution for dating evolutionary radiations in asco- and basidiomycetes. System. Appl. Microbiol., 19(2): 265-283.
  35. Rodrigues, C.F., Silva, S. and Henriques, M. (2014): glabrata: a review of its features and resistance. Eur. J. Clin. Microbiol. Infect. Dis., 33(5): 673-688.
  36. Seiboth, B. anf Metz, B. (2011): Fungal arabinan and L-arabinose metabolism. Appl. Microbiol. Biotechnol., 89(6): 1665-1673.
  37. Sch?fer, A., Konrad, R., Kuhnigk, T., K?mpfer, P., Hertel, H., K?nig, H. (1996): Hemicellulose-degrading bacteria and yeast from the termite gut. J. Appl. Bacteriol., 80(5): 471-478.
  38. Tanimura, A., Nakamura, T., Watanabe, I., Ogawa, J. and Shima, J. (2012): Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. Springerplus, 1(1): 27.
  39. Tesfaw, A., Assefa, F. (2014): Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture and immobilization. Int. Sch. Res. Notices., 2014.
  40. Sopandi, T. and Wardah, A. (2017): Improving ethanol production by co-culturing of Saccharomyces cerevisiae with tropicalis from rice husk hydrolysate media. Afr. J. Microbiol. Res., 11(3): 65-74.
  41. Thongdumyu, P., Intrasungkha, N. and Sompong, O. (2014): Optimization of ethanol production from food waste hydrolysate by co-culture of Zymomonas mobilis and shehatae under non-sterile condition. Afr. J. Biotechnol., 13(7): 866-873.
  42. Wilkins, R, Widmer, W.W., Camero, R.G. and Grohmann, K. (2005): Effect of seasonal variation on enzymatic hydrolysis of Valencia orange peel waste. Proc. Fla. State Hort. Soc., 118: 419-422.
  43. Zhang G.C, Liu J.J., Kong I.I., Kwak S, Jin Y.S. (2015): Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr. Opin. Chem. Biol., 29: 49-57.
  44. Zili, D.M.W., Lopes, R.G., Alves Jr., S.L., Barros, L.M., Miletti, L.C. and Stambuk, B.U. (2015): Secretion of the acid trehalase encoded by the CgATH1 gene allows trehalose fermentation by Candida glabrata. Microbiol. Res., 179: 12-19.
  45. Zorec, M., Vodovnik, M. and Marin?ek-Logar, R. (2014): Potential of selected rumen bacteria for cellulose and hemicellulose degradation. Food Technol. Biotechnol., 52(2): 210-221.

[Eduardo Jos? Burgos-Valencia, Jos? Alberto Narv?ez-Zapata, Guadalupe L?pez-Puc, Manuel Octavio Ram?rez-Sucre and Ingrid Mayanin Rodr?guez-Buenfil. (2017); CARBOHYDRATE ASSIMILATION PROFILE OF TWO WILD STRAINS OF GENUS CANDIDA IN A MIXTURE OF HEXOSES AND PENTOSES BY ALCOHOL PRODUCTION. Int. J. of Adv. Res. 5 (Jul). 192-204] (ISSN 2320-5407). www.journalijar.com


Ingrid Mayanin Rodríguez-Buenfil1
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal-Chuburna Puerto Parque Científico Tecnológico de Yucatán, Merida, Yucatan, México. CP. 97302.

DOI:


Article DOI: 10.21474/IJAR01/4708      
DOI URL: http://dx.doi.org/10.21474/IJAR01/4708