13May 2018

THEORETICAL STUDIES OF ELECTRONIC AND OPTICAL PROPERTIES FOR SOME NEW AZO DISPERSE DYES FOR DYE-SENSITIZED SOLAR CELLS BY USING TD AND TD DFT METHOD.

  • Department of Chemistry, College of Natural and Mathematical Sciences,The University of Dodoma, post box: 338, Dodoma, Tanzania.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The ground states geometries, absorption wavelengths, oscillation strengths of new azo disperse dyes such as 3-aminopyrazoleazo -4-thiol-2,3,5-thiadiazole (D1),3-amino-4-methylpyrazoleazo-4-thiol-2,3, 5-thiadiazol (D2),2, 4-dihydroxybenzeneazo-4-thiol 1-2, 3,5-thiadiazole (D3),4-amino-3-benzonitrileazo-4-thiol-2,3,5-thiadiazole (D4), 2-hydroxylnaphtholazo-4-thiol-2,3,5-thiadiazole (D5) and 2-amino-5-ethylcarbazoleazo-4-thiol-2,3,5-Thiadiazole (D6) have been optimized by using density functional theory (DFT) at B3LYP level of theory with 6-31G(d) basis set. The excitation energies have been computed by using time dependent density functional theory (TD-DFT). The study of structural, electronic and optical properties for these dyes could help to design more efficient functional photovoltaic organic materials. The electron injection (ΔGinject), electron coupling constants (|VRP|) and light harvesting efficiencies (LHE) of studied dyes and have been discussed with esteem to DSSCs. This theoretical designing will the pave way for experimentalists to synthesize the efficient sensitizers for solar cells.


  1. Kohn W., Heeger A. The Power of the Sun. 2005. Available online: http:/powerofthesun.ucsb.edu
  2. Kammen D.M. The rise of renewable energy. Sci. Am., 295 (2006) 84.
  3. O?Regan B., Gratzel? ,? Nature., 353 (1991) 737.
  4. Gratzel ,? J. Photochem. Photobiol., C 4 (2003) 145.
  5. Gratzel ,? J. Photochem. Photobiol., A 164 (2004) 3.
  6. Nazeeruddin M. K., Klein C., Liska P., Gratzel M. ., Coord. Chem. Rev., 249 (2005) 1460.
  7. Mishra A., Fischer M.K.R., B?uerle P., Angew Chem Int Ed Engl., 48 (2009) 2474.
  8. Zhang ., Li H.B., Sun S.L., Geng Y., Wu Y., Su Z.M., J Mater Chem., 22 (2012) 568.
  9. Fan W., Tan D., Deng W.Q., Chemphyschem., 13 (2012) 2051.
  10. Gu X., Zhou L., Li Y., Sun Q., Jena P., Phys Lett A., 376 (2012) 2595.
  11. Zhang J., Kan Y.H., Li H.B., Geng Y., Wu Y., Su Z.M.,Dyes Pigm., 95 (2012) 313.
  12. Sanchez-de-Armas R., San Miguel M.A., Oviedo J., Sanz J.F., Phys Chem Chem Phys., 14 (2012)225.
  13. Yang L., Guo L., Chen Q., Sun H., Liu J., Zhang X., Pan X., Dai S., J Mol Graph Model., 34 (2012)1.
  14. Mohammadi N., Mahon P.J., Wang F., J Mol Graph Model, 40 (2013) 64.
  15. Wang J., Gong S., Wen S.Z., Yan L.K., Su Z.M., J Phys Chem C., 117 (2013) 2245.
  16. Feng J., Jiao Y., Ma W., Nazeeruddin M.K., Gr?tzel M., Meng S., J Phys Chem C., 117 (2013) 3772.
  17. Kirkan B., Gup R., Turk. J. Chem., 32 (2008) 9.
  18. SI Y., Hu Q., Huang Z., Yang G. and Yin J., Turk. J .Chem., 29 (2005) 135.
  19. Maradiya H.R., Patel V.S.,J. Serb. Chem. Soc., 66 (2001) 87.
  20. Sokolowska-Gajda J., Freeman H.S., Reife A., National Textile Annual Reports., 30 (1993) 167.
  21. Maradiya H.R., Turk. J. Chem, 25 (2001) 441.
  22. Ohashi A., Tsukuda T., Watara H., Anal. Sci., 19 (2003) 1085.
  23. Karipcin F., Kabalcilar E., Acta. Chim. Slov., 54 (2007) 242.
  24. Patel V.H., Petal M.P., Patel R.G., J. Serb. Chem. Soc., 67 (2002) 727.
  25. Maradiya H.R., Patel V.S., J.Braz.Chem.Soc., 12 (2001) 1.
  26. Kutgen H.K., Heren Z., Turk. J. Chem., 22 (1998) 403.
  27. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E. Robb, M.A. Cheeseman J.R., Scalmani
  28. ,Barone V., et.al.,Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009
  29. Ando S., Nishida J., Inohue Y., Tokito S., Yamashita Y., Idem. Synth. Met.,156 (2006) 327.
  30. Shi Q., Fan H., Liu Y., Hu W., Li Y., Zhan X., J. Phys. Chem. C, 114 (2010) 16843.
  31. Zhang M., Guo X., Li Y., Adv. Energy Mater., 1 (2011) 557.
  32. Otutu J.O., IJRRAS., 15(2) (2013) 292.
  33. Parr R..G, SzentpRly L..V., Liu S., J. Am. Chem. Soc., 1999 (1922) 121.
  34. Chattaraj P,K,, Maiti B,, Sarkar U., J. Phys. Chem. A., 107 (2003) 4973.
  35. Parr R.G., Yang W., Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK; 1989.
  36. Pauling L., The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, New York, 1960
  37. Parr R.G., Pearson R.G.. Am. Chem. Soc.,105? (1983) 7512.
  38. Marinado T., Nonomura K., Nissfolk J., Karlsson M. K., Hagberg D. P., Sun L., Mori S., Hagfeldt A., , 26 (4)? (2009) 2592.
  39. Zhang J., Li H.B., Sun S.L., Geng Y., Wu Y., Su Z.M., J. Mater. Chem., 22(2) (2012) 568.
  40. Katoh R., Furube A., Yoshihara T., Hara K., Fujihashi G., Takano S., Murata S., Arakawa H.,TachiyaJ. Phys. Chem. B., 108 (15) (2004)
  41. Barbara P.F., Meyer T.J., Ratner M.A., J Phys Chem, 100 (1996) 13148.
  42. De Angelis F., Fntacci S., Selloni A., Nanotechnology., 19 (2008) 424002.
  43. Pourtois G., Beljonne J., Ratner M.A., Bredas J.L., J Am Chem Soc., 124 (2002) 4436.
  44. Hsu C., Acc Chem Res., 42 (2009) 509.
  45. Marcus R.A., Rev Mod Phys., 65 (1993) 599.
  46. Asbury J.B., Wang Y.Q., Hao E., Ghosh H., Lian T., Res Chem Intermed, 27 (2001) 393.
  47. Katoh R., Furube A., Yoshihara T., Hara K. et al., J Phys Chem B, 108 (2004) 4818.
  48. Hagfeldt A., Gr?tzel M., Chem Rev, 95 (1995) 49.
  49. Luke? V., Aquino A., Lischka H., J Phys Chem A., 109(45) (2005) 10232.

[Isaac Onoka, Numbury Surendra Babu and John J. Makangara. (2018); THEORETICAL STUDIES OF ELECTRONIC AND OPTICAL PROPERTIES FOR SOME NEW AZO DISPERSE DYES FOR DYE-SENSITIZED SOLAR CELLS BY USING TD AND TD DFT METHOD. Int. J. of Adv. Res. 6 (May). 83-91] (ISSN 2320-5407). www.journalijar.com


Numbury Surendra Babu
Department of Chemistry, College of Natural and Mathematical Sciences

DOI:


Article DOI: 10.21474/IJAR01/7010      
DOI URL: http://dx.doi.org/10.21474/IJAR01/7010