10Feb 2020

TRANSCRIPTIONAL REGULATION OF PROLINE BIOSYNTHESIS

  • Department of Biochemistry, College of Basic Sciences and Humanities, CCS-HAU, Hisar - 125004 (Haryana), India.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Plants are subjected to various kinds of abiotic and biotic stresses throughout their life cycles which include salinity, drought, temperature extremes, infection by pathogens, nutrient deficiency and UV radiation. A general response of plants to various kinds of stresses is the accumulation of compatible osmolytes such as proline, glycine betaine, proline betaine, glycerol, mannitol and sorbitol etc. which protect cells against damage caused by stress. Among them, proline plays a pivotal role and accumulates in a large number of species under salinity, drought, cold, nutrient deficiency, pathogen attack and high acidity. The core enzymes in this reaction are pyrroline5- carboxylate synthetase (P5CS) and pyrroline5- carboxylate reductase (P5CR). In another pathway, proline synthesis occurs via deamination of ornithine which is transaminated to P5C by ornithine-delta-aminotransferase (OAT). Plant cells have a potential to accumulate proline rapidly and break it down quickly when needed. Considerable evidence confirmed that proline synthesis under osmotic stress is driven by both ABA-dependent and ABA-independent signaling. Emerging data suggest that the expression of proline biosynthetic genes is regulated by many TFs that are related to almost all plant hormones. Several unique predicted elements were found in AtP5CR, including putative bZIP, HD-HOX, MYB and C2C2 (Zn) DOF binding sites. Thus, it could be concluded that proline regulation takes place through complex interrelation of different TFs and helps in generating tolerance in plants against abiotic stress.


  1. Abraham, E., Rigo, G., Szekely, G., Nagy, R., Koncz, C., and Szabados, L. (2003). Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol. Biol. 51:363?372. doi: 10.1023/A:1022043000516
  2. Delauney, A. J. and Verma, D. P. S. (1993) Proline biosynthesis and osmoregulation in plants. Plant J. 4, 215-223.
  3. Dey, S., and Volt, A. C. (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Front. Plant Sci. 6:640. doi: 10.3389/fpls.2015.00640
  4. Fichman, Y., Gerdes, S. Y., Kov?cs, H., Szabados, L., Zilberstein, A., and Csonka, L. N. (2015). Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol. Rev. 90:1065?1099. doi: 10.1111/ brv.12146
  5. Hare, P. D. and Cress, W. A. (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21:79-102.
  6. Hong, Y., Zhang, H., Huang, L., Li, D., and Song, F. (2016). Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front. Plant Sci. 7:4. doi: 10.3389/fpls.2016.00004
  7. Jin, C., Huang, X.-S., Li, K.-Q., Yin, H., Li, L.-T., Yao, Z.-H., et al. (2016). Overexpression of a bHLH1 transcription factor of Pyrus ussuriensis confers enhanced cold tolerance and increases expression of stress-responsive genes. Front. Plant Sci. 7:441. doi: 10.3389/fpls.2016.00441
  8. Kavi Kishor, P. B., and Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 37:300?311. doi: 10.1111/pce.12157
  9. Khedr, A. H. A., Abbas, M. A., Wahid, A. A. A., Quick, W. P. and Abogadallah, G. M. (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum to salt-stress. J. Exp. Bot. 54:2553-2562.
  10. Lata, C., and Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62: 4731?4748. doi: 10.1093/jxb/err210
  11. Liu, W., Tai, H., Li, S., Gao, W., Zhao, M., Xie, C., et al. (2014). bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol. 201:1192?1204. doi: 10.1111/nph. 12607
  12. Liu, X., Liu, S., Wu, J., Zhang, B., Li, X., Yan, Y., et al. (2013). Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol. Biochem. 70:354?359. doi: 10.1016/j.plaphy.2013.05.018
  13. Liu, Y., Ji, X., Nie, X., Qu, M., Zheng, L., Tan, Z., et al. (2015). Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol. 207:692?709. doi: 10.1111/nph.13387
  14. Molinaria, H., Marura, C., Darosb, E., Camposa, M., Carvalhoa, J., Filhob, J., Pereirac, L. and Vieiraa, L. (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Plant 130:218-229.
  15. Qamar, A., Mysore, K. S., and Senthil-Kumar, M. (2015). Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Front. Plant Sci. 6:503. doi: 10.3389/fpls.2015.00503
  16. Rajendrakumar, C. S., Reddy, B. V. and Reddy, A. R. (1994) Proline-protein interactions: Protection of structural and functional integrity of M4 lactate dehydrogenase. Biophys. Res. Commun. 201:957-963.
  17. Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., et al. (2014). The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol. J. 12:468?479. doi: 10.1111/pbi.12153
  18. Savour?, A., Hua, X. J., Bertauche, N., VanMontagu, M., and Verbruggen, N. (1997). Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol. Gen. Genet. 254:104?109. doi: 10.1007/s004380050397
  19. Sripinyowanich, S., Klomsakul, P., Boonburapong, B., Bangyeekhun, T., Asamic, T., Gu, H., et al. (2013). Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ. Exp. Bot. 86: 94?105. doi: 10.1016/j.envexpbot.2010.01.009
  20. Tang, N., Zhang, H., Li, X., Xiao, J., and Xiong, L. (2012). Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol. 158:1755?1768. doi: 10.1104/pp.111.190389
  21. Wang, X., Han, H., Yan, J., Chen, F., and Wei, W. (2015). A new AP2/ERF transcription factor from the oil plant Jatropha curcas confers salt and drought tolerance to transgenic tobacco. Appl. Biochem. Biotechnol. 176:582?597. doi: 10.1007/s12010-015-1597-z
  22. Xu, Z., Ali, Z., Xu, L., He, X., Huang, Y., Yi, J., et al. (2016). The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean. Sci. Rep. 6:20366. doi: 10.1038/ srep20366
  23. Xue, X., Liu, A., Hua, X. (2009). Proline accumulation and transcriptional regulation of proline biothesynthesis and degradation in Brassica napus. BMB Reports 42:28?34. https://doi.org/10.5483/bmbrep.2009.42.1.028
  24. Yao, W., Wang, L., Zhoua, B., Wanga, S., Lia, R., and Jiang, T. (2015). Overexpression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. J. Plant Physiol. 198:23?31. doi: 10.1016/j.jplph.2016. 03.015
  25. Zhang, L., Zhang, L., Xia, C., Zhao, G., Liu, J., Jia, L., et al. (2015). A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol. Plant. 153:538?554. doi: 10.1111/ppl. 12261
  26. Zhang, W., Yang, G., Mu, D., Li, H., Zang, D., Xu, H., et al. (2016). An ethyleneresponsive factor BpERF11 negatively modulates salt and osmotic tolerance in Betula platyphylla. Sci. Rep. 6:23085. doi: 10.1038/srep23085
  27. Zhang, X.-X., Tang, Y.-J., Ma, Q.-B., Yang, C.-Y., Mu, Y.-H., Suo, H.-C., et al. (2013). OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS ONE 8:e83011. doi: 10.1371/journal.pone.008 3011
  28. Zhu, X., Qi, L., Liu, X., Cai, S., Xu, H., Huang, R., et al. (2014). The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol. 164:1499?1514. doi: 10.1104/pp.113. 229575
  29. Zong, J.-M., Li, X.-W., Zhou, Y.-H., Wang, F.-W., Wang, N., Dong, Y.-Y., et al. (2016). The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int. J. Mol. Sci. 17:E611. doi: 10.3390/ijms17040611
  30. Zong, W., Tang, N., Yang, J., Peng, L., Ma, S., Xu, Y., et al. (2016). Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol. 171:2810?2825. doi: 10.1104/pp.16.00469.

[Anju Rani and Jayanti Tokas (2020); TRANSCRIPTIONAL REGULATION OF PROLINE BIOSYNTHESIS Int. J. of Adv. Res. 8 (2). 67-73] (ISSN 2320-5407). www.journalijar.com


Jayanti Tokas
Assistant Scientist

DOI:


Article DOI: 10.21474/IJAR01/10436       DOI URL: http://dx.doi.org/10.21474/IJAR01/10436


Share this article