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Introduction:- 
Different types of closed and open mappings were studied by various researchers in general topology. In 1982 

Malghan [6] introduced and investigated some properties of generalized closed maps. El-Deeb et. al[3], M. Sheik 

John [15], N. Nagaveni[9], I Arockiarani[1] and Benchalli et. al[2] have introduced and studied pre-closed and pre-

open maps, w-closed and w-open maps, wg-closed, rwg-closed and wg-open, rwg-open maps, rg-closed and rg-open 

maps and rw-closed, rw-open maps respectively. But in this article we introduce new class of weaker forms of 

closed and open maps i.e. RMG-closed maps and RMG-open maps and also stronger form of RMG-closed and 

RMG-open maps called RMG*-closed and RMG*-open maps. Here we discuss the properties of all newly formed 

maps and relationship with existed maps in topological spaces.   

 

Preliminaries:- 

Throughout this paper (X, ), (Y, ) and (Z, ) (or simply X, Y and Z) always means topological spaces on which no 

separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. We denote the closure, 

RMG-closure, interior, RMG-interior of A by cl(A), RMG-cl(A), int(A) and RMG-int(A) respectively and 

neighbourhood of an element in any topological space is denoted as nbd of x. X A or A
c
 denotes the complement of 

A in X. 

Now we recall the following known definitions and results that are used in our work; 

 

Definition 2.1 A subset A of a topological space X is called 

(i) Regular open [16], if A=int(cl(A)) and regular closed if A=cl(int(A)). 

(ii) Pre-open [8], if A int(cl(A)) and pre-closed if cl(int(A)) A.  

(iii)   -open [10], if A int(cl(int(A))) and -closed if cl(int(cl(A))) A. 

 

Definition 2.2 A subset A of a topological space X is called 
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(i) Generalized closed (briefly g-closed) [4] if cl(A)  U whenever A U and U is open in X. 

(ii) Generalized α-closed (briefly gα-closed) [7] if α-cl(A)  U whenever A U and U is α-open in X. 

(iii) Weakly generalized closed (briefly wg-closed) [9] if cl(int(A))  U whenever A U and U is open in X. 

(iv) Strongly generalized closed (briefly g*-closed) [15] if cl(A)  U whenever A U and U is g-open in X. 

(v) Weakly closed (briefly w-closed) [15] if cl(A)  U whenever A U and U is semi-open in X. 

(vi) Mildly generalized closed (briefly mildly g-closed) [12] if cl(int(A))  U whenever A U and U is g-open in X. 

(vii) Regular weakly generalized closed (briefly rwg-closed) [9] if cl(int(A))  U whenever A U and U is regular 

open in X. 

(viii) Regular weakly closed (briefly rw-closed)[2] if cl(A) U whenever A U and U is regular semi open in X. 

(ix) Regular generalized closed (briefly rg-closed) [11] if cl(A) U whenever A U and U is regular open set in X. 

The complements of above all closed sets are their respective open sets in the same topological space X. 

 

Definition 2.3: A subset A of a space X is said to be Regular Mildly Generalized closed (briefly RMG-closed) set 

[17], if cl(int(A)) U whenever A U and U is rg-open set in X. 

Definition 2.4: A subset A of X is called Regular Mildly Generalized open (briefly RMG-open) set [18], if X-A is 

RMG-closed set in X. 

Definition 2.5: For a subset A of a space X, RMG-cl(A)=  {F:A F and F is RMG-closed set in X}is called RMG-

closure of A [18]. 

Definition 2.6: Let A is a subset of X. A point     is said to be RMG-interior point of A, if A is a RMG-nhd of x. 

The set of all RMG-interior [18] of A and is denoted by RMG-int(A). 

Definition 2.7: For a subset A of X, RMG-closure[18] of A is defined as RMG-cl(A) to be the intersection of all 

RMG-closed sets containing A. 

Definition 2.8: Let X be any topological space and let x X. A subset   is said to be RMG-   [18] of x, if and only 

if there exists a RMG-open set G such that x G N. 

Definition 2.9: A subset N of X is a RMG-   [18] of A X in topological space (X,  ), if there exists a RMG-open 

set G such that A X N. 

Definition 2.10: A function f: X Y is said to be RMG-continuous function [19], if    (V) is RMG-closed set of X 

for every closed set V of Y. 

Definition 2.11 A function f: X Y is called RMG-irresolute [19], if        is RMG-closed set in X for every 

RMG-closed subset V of Y. 

Definition 2.12A function f: X Yis said to be  

(i) rg-irresolute [11], if    (V) is rg-open set in X for every rg-open set V of Y. 

(ii) strongly RMG-continuous [19], if    (V) is open set in X for every RMG-open set V of Y. 

 

Definition 2.13 A function f: X Y is called 

(i) regular closed [5] if f(F) is closed in Y for every regular closed set F of X. 

(ii) g-closed [6] if f(F) is g-closed in Y for every closed set F of X. 

(iii) w-closed [15] if f(F) is w-closed in Y for every closed set F of X. 

(iv) pre-closed [3] if f(F) is pre-closed in Y for every closed set F of X. 

(v) wg
*
( mildly-g)-closed [13] if f(F) wg

*
-closed in Y for every closed set F of X. 

(vi) wg-closed [9] if f(F) is wg-closed in Y for every closed set F of X. 

(vii) rwg-closed [9] if f(F) is rwg-closed in Y for every closed set F of X. 

(viii) rw-closed [2] if f(F) is rw-closed in Y for every closed set F of X. 

(ix) rg-closed [1] if f(F) is rg-closed in Y for every closed set F of X. 

(x) g
*
-closed [14] if f(F) is g

*
-closed in Y for every closed set F of X. 

 

Definition 2.14: A function f: X Y is called 

(i) regular open[5] if f(F) is open in Y for every regular open set F of X. 

(ii) g-open [6] if f(F) is g-open in Y for every open set F of X. 

(iii) w-open [15] if f(F) is w-open in Y for every open set F of X. 

(iv) pre-open [3] if f(F) is pre-open in Y for every open set F of X. 

(v) wg
*
-closed[13] if f(F) wg

*
-open in Y for every open set F of X. 

(vi) wg-open [9] if f(F) is wg-open in Y for every open set F of X. 

(vii) rwg-open [9] if f(F) is rwg-open in Y for every open set F of X. 

(viii) rw-open [2] if  f(F) is rw-open in Y for every open set F of X. 
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(ix) rg-open [1] if f(F) is rg-open in Y for every open set F of X. 

(x) g
*
-open [14] if f(F) is g*-open in Y for every open set F of X. 

 

Lemma 2.15: Let X be any topological space, in which 

(i) Every closed (resp. w-closed, g -closed, pre-closed) set is RMG-closed set in X [17]. 

(ii) Every RMG-closed set is mildly-g-closed (resp. wg-closed, rwg-closed) set in X [17]. 

 

Definition 2.16: A topological space (X, τ ) is called 

(i) TRMG-space [19] if every RMG-closed set is closed. 

(ii) T½-space [6] if every g-closed set is closed. 

 

Definition 2.17: A function f: X Y is called 

(i) closed if f(F) is closed in Y for every closed set F of X. 

(ii) g -closed if f(F) is g -close in Y for every closed set F of X. 

 

Definition 2.18: A function f: X Y is called 

(i) open if f(F) is open in Y for every open set F of X. 

(ii) g -open if f(F) is g -open in Y for every open set F of X. 

 

Regula Mildly Generalized Closed Maps In Topological Spaces:- 

Definition 3.1: A map f:X Y is said to be Regular Mildly Generalized closed (briefly, RMG-closed) map, if the 

image of every closed set in X is RMG-closed in Y. 

Theorem 3.2: Every closed map is RMG-closed map but not conversely. 

Proof: Let f: X Yis closed map. Let F be any closed set in X. Then f(X) is closed but every closed set is RMG-

closed set [17]. Hence f is RMG-closed map. 

Example 3.3: Let X={p, q, r} with topology  = {X,  , {p}, {p, q}} and Y = {a, b, c, d} with topology  = {Y,  , 

{a}, {b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(p)=c, f(q)=d and f(r)=d. Then f is RMG-closed 

map but not closed, since the image of closed set {r} in X is {a}, which is not closed in Y. 

Theorem 3.4: Every w-closed map is RMG-closed map but not conversely. 

Proof: Let f:X Yis w-closed map. Let F be any closed set in X. Then f(X) is w-closed but every w-closed set is 

RMG-closed set [17]. Hence f is RMG-closed map. 

Example 3.5: Let X={m, n, o} with topology  = {X,  , {m, n}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, 

{b, c},{a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(m)=a, f(n)=c and f(o)=b. Then f is RMG-closed map 

but not w-closed, since the image of closed set {o} in X is {b}, which is not w-closed in Y. 

Theorem 3.6: Every g -closed map is RMG-closed map but not conversely. 

Proof: Let f:X Yis g -closed map. Let F be any closed set in X. Then f(X) is g -closed but every g -closed set is 

RMG-closed set [17]. Hence f is RMG-closed map. 

Example 3.7: Let X={p, q} with topology  = {X,  , {p}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, {b}, {a, 

b}}. Let a map f: (X,  )  (Y,  ) be defined as f(p)=b and f(q)=a. Then f is RMG-closed map but not g -closed, 

since the image of closed set {q} in X is {a}, which is not g -closed in Y. 

Theorem 3.8: Every pre-closed map is RMG-closed map but not conversely. 

Proof: Let f:X Yis pre-closed map. Let F be any closed set in X. Then f(X) is pre-closed but every pre-closed set is 

RMG-closed set [17]. Hence f is RMG-closed map. 

Example 3.9: Let X={x, y. z} with topology  = {X,  , {x},{x, z}} and Y = {a, b, c, d} with topology  = {Y,  , 

{a}, {b}, {a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(x)=p, f(y)=b, and f(z)=a. Then f is RMG-

closed map but not pre-closed, since the image of closed set {y} in X is {b}, which is not pre-closed in Y. 

Theorem 3.10: Every RMG-closed map is mildly- g-closed map but not conversely. 

Proof: Let f:X Yis RMG-closed map. Let F be any closed set in X. Then f(X) is RMG-closed but every RMG-

closed set is mildly-g-closed set[17]. Hence f is mildly-g-closed map. 

Example 3.11: Let X={a, b, c} with topology  = {X,  , {b, c}} and Y = {a, b, c, d} with topology  = { , {a}, {b}, 

{a, b}, {a, b, c}, Y}. Let a map f: (X,  )  (Y,  ) be defined as f(a)=a, f(b)=c and f(c)=d. Then f is mildly-g-closed 

map but not RMG-closed, since the image of closed set {a} in X is {a}, which is not RMG-closed in Y. 

Theorem 3.12: Every RMG-closed map is wg-closed map but not conversely. 

Proof: Let f:X Yis RMG-closed map. Let F be any closed set in X. Then f(X) is RMG-closed but every RMG-

closed set is wg-closed set[17]. Hence f is wg-closed map. 
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Example 3.13: Let X={p, q, r} with topology  = {X,  , {p}, {q, r}} and Y = {a, b, c, d} with topology  = {Y,  , 

{a}, {b}, {a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(p)=b, f(q)=d and f(r)=a. Then f is wg-closed 

map but not RMG-closed, since the image of closed set {q, r} in X is {a, d}, which is not RMG-closed in Y.  

Theorem 3.14: Every RMG-closed map is rwg-closed map but not conversely. 

Proof: Let f:X Yis RMG-closed map. Let F be any closed set in X. Then f(X) is RMG-closed but every RMG-

closed set is rwg-closed set[17]. Hence f is rwg-closed map. 

Example 3.15: Let X={x, y, z} with topology  = {X,  , {x}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, {b}, 

{a, b}, {b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(x)=d, f(y)=a and f(z)=b. Then f is rwg-closed 

map but not RMG-closed, since the image of closed set {y, z} in X is {a, b}, which is not RMG-closed in Y. 

Remark 3.16: The regular closed map and RMG-closed maps are independent. This can be seen from following 

example. 

Example 3.17: Let X={a, b, c} with topology  = {X,  , {a, b}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, 

{b}, {a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(a)=c, f(b)=a and f(c)=b. Then f is regular closed 

map but not RMG-closed, since the image of closed set {c} in X is {b}, which is not RMG-closed in Y.  

Example 3.18: let X= {a, b, c} with topology  = {X,  , {a}, {b}, {a, b}} and Y = {a, b, c, d} with topology  = {Y, 

 , {a}, {b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be a defined by f(a)=a, f(b)=c, and f(c)=d. Then f is RMG-

closed map but not regular closed map, since the image of regular closed set {a, c} in X is {b, d}, which is not 

closed set in Y. 

Remark 3.19: The following example show that g-closed maps and RMG-closed maps are independent. 

Example 3.20: Let X={p, q, r} with topology  = {X,  , {p, q}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, 

{b}, {a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(p)=d, f(q)=b and f(r)=c. Then f is RMG-closed 

map but not g-closed, since the image of closed set {r} in X is {c}, which is not g-closed in Y. 

Example 3.21: Let X={p, q, r} with topology  = {X,  , {p}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, {b}, 

{a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined by f(p)=c, f(q)=b and f(r)=d. Then f is g-closed map but not 

RMG-closed, since the image of closed set {q, r} in X is {b, d}, which is not RMG-closed in Y. 

Remark 3.22:  The following example show that g
*
-closed maps and RMG-closed maps are independent. 

Example 3.23: Let X={p, q} with topology  = {X,  , {p}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, {b}, 

{a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(p)=b, and f(q)=c. Then f is RMG-closed map but not 

g
*
-closed, as the image of closed set {q} in X is {c}, which is not g

*
-closed in Y. 

Example 3.24: Let X={x, y, z} with topology  = {X,  , {x}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, {b}, 

{a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(x)=b, f(y)=a and f(z)=d. Then f is g
*
-closed map but 

not RMG-closed, since the image of closed set {y, z} in X is {a, d}, which is not RMG-closed in Y. 

Remark 3.25: The following example show that rw-closed maps and RMG-closed maps are independent. 

Example 3.26: Let X={a, b, c} with topology  = {X,  , {a}, {a, c}} and Y = {a, b, c, d} with topology  = {Y,  , 

{a}, {b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined by f(a)=b, f(b)=c and f(c)=d. Then f is RMG-closed 

map but not rw-closed, as the image of closed set {b} in X is {c}, which is not rw-closed in Y. 

Example 3.27: Let X={a, b, c} with topology  = {X,  , {a}, {a, c}} and Y = {a, b, c, d} with topology  = {Y,  , 

{a}, {b}, {a, b},{a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined by f(a)=b, f(b)=c and f(c)=a. Then f is rw-closed 

map but not RMG-closed, as the image of closed set {b} in X is {c}, which is not rw-closed in Y. 

Remark 3.28: The following example show that rg-closed maps and RMG-closed maps are independent. 

Example 3.29: Let X={x, y, z} with topology  = {X,  , {y, z}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, 

{b}, {a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined by f(x)=b, f(y)=a and f(z)=d. Then f is RMG-closed 

map but not rg-closed, as the image of closed set {x} in X is {b}, which is not rg-closed in Y. 

Example 3.30: Let X={x, y, z} with topology  = {X,  , {y}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, {b, 

c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined by f(x)=b, f(y)=d and f(z)=a. Then f is rg-closed map but not 

RMG-closed, as the image of closed set {x, z} in X is {a, b}, which is not RMG-closed in Y. 

Remark 3.31: From the above discussion and known results we have the following implications. 
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Remark 3.32: The composition of two RMG-closed maps need not be RMG-closed map in general. This can be 

shown by the following example. 

Example 3.33: Let X={p, q, r} with topology  = {X,  , {p}, {p, r}}, Y = {a, b, c, d} with topology  = {Y,  , {a}, 

{b, c}, {a, b, c}} and Z ={x, y, z, w} with topology  ={Z,  , {x}, {y}, {x, y}, {y, z}, {x, y, z}}. Let a map f: 

(X,  )  (Y,  ) be defined as f(p)=c, f(q)=b and f(r)=d and g:(Y,  )  (Z,   ) defined by g(a)=z, g(b)=x, g(c)=y and 

g(d)=w. Then f and g are two RMG-closed maps but their composition g f: (X,  )  (Z,  )is not RMG-closed map 

because F={q} is closed in X, but(g f)(F)=g(f({q}))=g({b})={x}, which is not RMG-closed in Z. 

Theorem 3.34: If f: X Y is closed map and g: Y Z is RMG-closed map, then the g f: X Z is RMG-closed map. 

Proof: Let F be any closed set in X. Since f is closed map, f(F) is closed set in Y. Since g is RMG-closed map, 

g(f(F))=(g f)(F) is RMG-closed set in Z. Hence g f is RMG-closed map. 

Remark 3.35: If f: X Y is RMG-closed map and g: Y Z is closed map, then the composition need not be RMG-

closed map. This can be seen from following example. 

Example 3.36: Let X={a, b, c} with topology  = {X,  , {a, b}}, Y = {a, b, c, d} with topology  = {Y,  , {a}, {b, 

c}, {a, b, c}} and Z ={a, b, c, d} with topology  ={Z,  , {a}, {b}, {a, b}, {a, b. c}}. Let a map f: (X,  )  (Y,  ) be 

defined as f(a)=c, f(b)=d and f(c)=b and g:(Y,  )  (Z,  ) defined by g(a)=c, g(b)=b, g(c)=c and g(d)=d. Then f is 

RMG-closed map and g is a closed map but their composition g f: (X,  )   (Z,  ) is not RMG-closed map because 

F={c} is closed in X, but (g f)(F)=g(f({c}))=g({b})={b}, which is not RMG-closed in Z. 

Theorem 3.37: If f: X Y and g: Y Z are two RMG-closed maps and Y be a     -space then g f: X Z is RMG-

closed map. 

Proof: Let A be a closed set of X. Since f is RMG-closed map, f(A) is RMG-closed in Y. Then by hypothesis, f(A) 

is closed. Since g is RMG-closed, g(f(A)) is RMG-closed in Z and g(f(A))=(g f)(A). Therefore g f is RMG-closed 

map. 

Theorem 3.38: If f: X Y is g-closed map and g: Y Z is RMG-closed maps and Y be     -space then g f: X Z is 

RMG-closed map. 

Proof: Let A be a closed set of X. Since f is g-closed, f(A) is g-closed in Y. Since Y is     , f(A) is closed in Y. 

Since g is RMG-closed, g(f(A)) is RMG-closed in Z and g(f(A))=(g f)(A). Therefore g f is RMG-closed map. 

Theorem 3.39: Composition of closed maps is RMG-closed map. 

Proof: Proof is straight forward and fact that every closed set is RMG-closed set. 

Theorem 3.40: A map f:X Y is said to be RMG-closed map if and only if for each subset A of Y and for each open 

set U containing       , there is a RMG-open set V of Y such that A V and    (V) U. 

Proof: Suppose f is RMG-closed map. Let A is a subset of Y and U is a open set of X such that    (A) U. Now X-

U is a closed set in X. Since f is RMG-closed map, f(X-U) is a RMG-closed set in Y i.e. V=Y-f(X-U), V=Y-f(X-U) 

is RMG-open set of Y. Note that    (A) U implies that A V and    (V)=X-   (f(X-U))=X-(X-U)=U 

i.e.   (V) U. 
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Conversely, suppose that F is a closed set in X. Then    (f(X-F)) X-F and X-F is open in X. By the hypothesis, 

there exists a RMG-open set V in Y such that Y-f(F) V and   (V) X-F. Therefore, F X-   (V). Hence Y-

V f(F) f(X-   (V)) Y-V which implies f(F) V. Since Y-V is RMG-closed, f(F) is RMG-closed. Therefore f(F) 

is RMG-closed in Y. Hence f is RMG-closed map. 

Theorem 3.41: If f:X Y is g-closed map and Y is a T1/2-space, then f:X Y is RMG-closed map. 

Proof: Let F be a closed set in X. Since f is g-closed map, f(F) is g-closed set in Y. As Y is a T1/2-space, we have 

f(F) is closed in Y. As every closed set is RMG-closed, f(F) is a RMG-closed in Y. Thus f is a RMG-closed map. 

Theorem 3.42: If f: X Y is RMG-closed map, then RMG-cl(f(A)) f(cl(A)) for every subset A of X. 

Proof: Suppose that f is RMG-closed and A X. Then cl(A) is closed in X and so f(cl(A)) is RMG-closed in Y. We 

have f(A) f(cl(A)) and by Theorem 6.2[18], RMG-cl(f(A)) RMG-cl(f(cl(A)))…(i). Since f(cl(A)) is RMG-closed 

set in Y, RMG-cl(f(cl(A)))=f(cl(A)) …(ii), by Theorem 6.3[18]. From (i) and (ii), RMG-cl(f(A)) f(cl(A)) for every 

subset A of X. 

Corollary 3.43: If f: X Y is a RMG-closed then the image f(A) of closed set A in X is     -closed in Y. 

Proof: Let A be a closed set in X. Since f is RMG-closed, by Theorem 3.42, RMG-cl(f(A)) f(cl(A))…(i). Also 

cl(A)=A as A is a closed set and so f(cl(A))=f(A)…(ii). From (i) and (ii), RMG-cl(f(A)) f(A). We know that 

f(A) RMG-cl(A) and so RMG-cl(f(A))=f(A) . Therefore f(A) is     -closed in Y. 

Theorem 3.44: Let X and Y are two topological spaces where ‘RMG-cl(A)=pcl(A) for every subset A of Y’ and 

f:X Y be map, then the following are equivalent; 

(i) f is RMG-closed map. 

(ii) RMG-cl(f(A)) f(cl(A)) for every subset A of X. 

Proof: (i) (ii) follows from the Theorem 3.42. 

(ii) (i), let A be any closed set of X then A=cl(A) and so RMG-cl(f(A)) f(cl(A))=f(A), by hypothesis. We have 

f(A) RMG-cl(A)  by Theorem 6.2[18]. Therefore f(A)=RMG-cl(f(A)). Also f(A)=RMG-cl(f(A))=pcl(f(A)), by 

hypothesis. i.e. f(A)=pcl(f(A)) and so f(A) is pre-closed set in Y. Thus f(A) is RMG-closed set in Y. Hence f is 

RMG-closed map. 

Theorem 3.45: Let                        be a map, then following are true; 

(i) If   ,  ,  ,…,   are closed maps then their compositions                …     is RMG-closed map. 

(ii) If   ,  ,  ,…,     are closed maps and    is a RMG-closed map then the compositions                … 
    is RMG-closed map. 

Proof: (i) The proof follows from the Theorem 3.39 and fact that every closed set is RMG-closed set. 

(ii) The proof follows from the Theorem 3.34. 

Theorem 3.46: If f: X Y and g: Y Z are two mappings such that their composition g f: X Z is RMG-closed 

map, then the following statements are true; 

(i) If f is continuous and surjective, then g is RMG-closed map. 

(ii) If g is RMG-irresolute and injective, then f is RMG-closed map. 

(iii)  If f is g-continuous, surjective and X is a T1/2-space, then g is RMG-closed map. 

(iv)  If g is strongly RMG-continuous and injective, then f is RMG-closed map. 

Proof: (i) Let A be a closed set of X. Since f is continuous,        is closed in X and since g f is RMG-closed, 

(g f)(      ) is RMG-closed in Z. i.e. g(A) is RMG-closed in Z, since f is surjective. Therefore g is RMG-closed 

map. 

(ii) Let B be a closed set of X. Since g f is RMG-closed, (g f)(B) is RMG-closed in Z. Since g is RMG-irresolute, 

   ((g f)(B)) is RMG-closed set in Y implies that f(B) is RMG-closed in Y, since f is injective. Therefore f is 

RMG-closed map. 

(iii) Let C be a closed set of Y. Since f is g-continuous,    (C) is g-closed set in X. Since X is a T1/2-space,    (C) is 

RMG-closed set in X. Since g f is RMG-closed, (g f)(   (C)) is RMG-closed in Z implies g(C) is RMG-closed in 

Z, since f is surjective. Therefore g is RMG-closed map. 

(iv) Let D be a closed set of X. Since (g f)(D) is RMG-closed in Z. Since g is strongly RMG-continuous, 

   ((g f)(D)) is closed set in Y implies f(D) is closed set in Y, since g is injective. Therefore f is closed map. 

Theorem 3.47: If f: X Y is rg-irresolute, RMG-closed and A is a RMG-closed subset of X, then f(A) is a RMG-

closed set in Y. 

Proof: Let f(A) G, where G is a rg open in Y. Since f is rg-irresolute,    (G) is rg-open in X by definition 2.12 and 

A    (G). Since A is a RMG-closed set in X, cl(int(A))    (G)[19]. Since f is RMG-closed, f(cl(int(A))) is 

RMG-closed set contained in rg-open set G implies that cl(int(f(cl(int(A))))) f(cl(int(A)) G and so 

cl(int(f(A))) G. Hence f(A) is RMG-closed set in Y. 
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Corollary 3.48: If f: X Y be a RMG-closed map and g: Y Z be RMG-closed and rg-irresolute map, then their 

composition         is RMG-closed map. 

Proof: Let A be a closed set of X. Since f is a RMG-closed map, f(A) is RMG-closed in Y. Since g is both RMG-

closed and rg-irresolute, g(f(A)) is RMG-closed in Z by Theorem 3.47. Also g(f(A))=(g f)(A). Therefore g f is 

RMG-closed map. 

Theorem 3.49: If f: X Y is an open, continuous, RMG-closed, surjection and cl(int(F))=F for every RMG-closed 

set in Y, where X is regular, then Y is regular. 

Proof: Let U be an open set in Y and p U. Since f is surjection, there exists a point x X such that f(x)=p. Since X is 

regular and f is continuous, there is an open set V in X such that x V cl(int(V))     (U). Here 

p f(V) f(cl(int(V))) U…(i). Since f is RMG-closed, f(cl(int(V))) is a RMG-closed set contained in the open set U. 

By hypothesis cl(int(f(cl(int(A)))))=f(cl(int(V))) and cl(int(f(V))) cl(int(f(cl(int(V)))))…(ii). From (i) and (ii), 

p f(V) f(cl(int(V))) U and f(V) is open, since f is open. Hence Y is regular. 

Theorem 3.50: If f: X Y is RMG-closed and A is closed set of X, then its restriction fA:(A,  A)  Y is RMG-closed 

map. 

Proof: Let F be a closed set of A. Then F=A E for some closed set E of X and so F is closed set of X. Since f is 

RMG-closed, f(F) is RMG-closed set in Y. But f(F)=fA(F). Therefore fA:(A,  A)  Y is RMG-closed map. 

Now we define the new class of stronger form of RMG-closed maps is called RMG*-closed maps in topological 

spaces. 

Definition 3.51: A map f: X Y is said to be RMG*-closed maps, if the image of every RMG-closed set of X is 

RMG-closed set in Y. 

Theorem 3.52: If f: X Y is RMG*-closed map, then which is RMG-closed map, but not conversely. 

Proof: Let F be a closed set in X and the fact that every closed set is RMG-closed set. Hence F is RMG-closed set in 

X. Since f: X Y be a RMG*-closed map, f(F) is RMG-closed set in Y. Therefore f is RMG-closed map. 

Example 3.53: Let X= {a, b, c, d} with topology  = {X,  , {a}, {b, c}, {a, b, c}} and Y = {a, b, c, d} with topology 

 = {Y,  , {a}, {b}, {a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(a)=c, f(b)=a, f(c)=d and f(d)=b. 

Then f is RMG-closed map but not RMG*-closed, since the image of RMG-closed set {b, d} in X is {a, b}, which is 

not RMG-closed in Y. 

Theorem 3.54: If f: X Y and g: Y Z are two RMG*-closed maps, then their composition g f: X Z is RMG*-

closed map. 

Proof: Let F be a RMG-closed set in X. Since f is RMG*-closed map, f(F) is RMG-closed set in Y. Since g is 

RMG*-closed map, g(f(F)) is RMG-closed set in Z. Hence g f is RMG*-closed map. 

Theorem 3.56: If f: X Y is irresolute and RMG-closed map then f is RMG*-closed map. 

Theorem 3.57: If f: X Y be a closed map and g: Y Z be RMG*-closed, then their composition g f: X Z is 

RMG-closed map. 

Proof: Let F be a closed set in X. Then f(F) is closed in Y. The fact that every closed set is RMG-closed set implies 

that f(F) is RMG-closed set in Y. Since g is RMG*-closed map, g(f(F))=(g f)(F) is RMG-closed set in Z. Hence g f 

is RMG-closed map. 

Theorem 3.58: If f: X Y be a RMG-closed map and g: Y Z be RMG*-closed, then their composition g f: X Z is 

RMG-closed map. 

Proof: Let F be a closed set in X. Since f is RMG-closed map, f(F) is RMG-closed set in Y. Since g is RMG*-

closed map, g(f(F))= (g f)(F) is RMG-closed set in Z. Hence g f is RMG-closed map. 

 

Regular Mildly Generalized Open Maps In Topological Spaces:- 

Definition 4.1: A map f: X Y is said to be Regular Mildly Generalized open (briefly, RMG-open) map, if the 

image of every open set in X is RMG-open in Y.  

From the definition 4.1 we have following results; 

Theorem 4.2: (i) Every open map is RMG-open map, but not conversely. 

(ii) Every w-open map is RMG-open map, but not conversely. 

(iii) Every g -open map is RMG-open map, but not conversely. 

(iv) Every pre-open map is RMG-open map, but not conversely. 

(v) Every RMG-open map is mildly-g-open map, but not conversely 

(vi) Every RMG-open map is wg-open map, but not conversely. 

(vii) Every RMG-open map is rwg-open map, but not conversely. 

Proof: Proofs follow from Definition 4.1 and fact that lemma 2.14. 
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Example 4.3: Let X={s, t, r} with topology  = {X,  , {s}, {s, r}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, 

{b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(s)=b, f(t)=c and f(r)=a. Then f is RMG-open map but 

not open, since the image of open set {s} in X is {b}, which is not open in Y. 

Example 4.4: Let X={p, q, } with topology  = {X  , {p}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, {b}, 

{a, b}, {b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(p)=c, and f(q)=a. Then f is RMG-open map but 

not w-open, since the image of open set {p} in X is {c}, which is not w-open in Y. 

Example 4.5:Let X={x, y, z} with topology  = {X,  , {z}, {x, z}} and Y= {a, b, c, d} with topology  = {Y,  , {a}, 

{b}, {a, b}, {b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(x)=b, f(y)=d and f(z)=c. Then f is RMG-

open map but not g -open, since the image of open set {z} in X is {c}, which is not g -open in Y. 

Example 4.6: Let X={m, n, o} with topology  = {X,  , {m, n}} and Y= {a, b, c, d} with topology  = {Y,  , {a}, 

{b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(m)=a, f(n)=c and f(o)=b. Then f is RMG-open map but 

not pre-open, since the image of open set {m, n} in X is {a, c}, which is not pre-open in Y. 

Example 4.7: Let X={p, q, r} with topology  = {X,  , {p}, {q}, {p, q}} and Y = {a, b, c, d} with topology  = {Y, 

 , {a}, {b}, {a, b}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(p)=b, f(q)=c and f(r)=a. Then f is mildly-

g-open map but not RMG-open, since the image of open set {p, q} in X is {b, c}, which is not RMG-open in Y. 

Example 4.8: Let X={x, y, z} with topology  = {X,  , {x, y}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, 

{b}, {a, b}, {b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(x)=a, f(y)= c and f(z)=b. Then f is wg-

open map but not RMG-open, since the image of open set {x, y} in X is {a, c}, which is not RMG-open in Y. 

Example 4.9: Let X={m, n, o} with topology  = {X,  , {m}} and Y = {a, b, c, d} with topology  = {Y,  , {a}, {b, 

c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(m)=d, f(n)=a and f(o)=b. Then f is rwg-open map but not 

RMG-open, since the image of open set {m} in X is {d}, which is not RMG-open in Y 

Theorem 4.10: If f: X Y is RMG-open, then f(int(A)) RMG-int(f(A)) for every subset A of X. 

Proof: Let f: X Yis an open map and A is any subset of X. Then int(A) is open in X and so f(int(A)) is RMG-open 

set in Y. We have f(int(A)) f(A). Therefore by the Theorem 5.8 [18], f(int(A)) RMG-int(f(A)). 

Theorem 4.11: A map f: X Y be RMG-open if and only if for any subset S of Y and any closed set of X 

containing    (S), there exists a RMG-closed set T of Y containing S such that    (T) F. 

Proof: Suppose f: X Yis RMG-open map. Let S Y and F be a closed set of X such that    (S) F. Now X-F is an 

open set in X. Since f is RMG-open map, f(X-F) is RMG-open set in Y. Then T=Y-f(X-F) is a RMG-closed set in Y. 

Note that    (S) F implies S T and    (T)=X-   (X-F) X-(X-F)=F. i.e.    (T) F. 

Conversely, suppose U be an open set of X. Then (Y-f(U)) X-U is a closed set in X. By hypothesis, there exists a 

RMG-closed set T of Y such that Y-f(U) T and    (T) X-U and so U X-   (T). Hence Y-T f(U)  Y-

f(   (T) Y-T which implies f(U)=Y-T. Since Y-T is a RMG-open, f(U) is RMG-open in Y and therefore f is RMG-

open map. 

Theorem 4.12: If f: X Y is RMG-open, then    (RMG-cl(A))  cl(   (A)) for each subset A of Y. 

Proof: Let f: X Yis a RMG-open map and A be any subset of Y. Then    (A) cl(   (A)) and cl(   (A)) is closed 

set in X. Then by above Theorem 4.11, there exists a RMG-closed set B of Y such that A B and 

   (B) cl(   (A)). Now RMG-cl(A) RMG-cl(B)=B, by Theorem 6.2(ii) and 6.3[18], as B is RMG-closed set of 

Y. Therefore    (RMG-cl(A))    (B) and so    (RMG-cl(A))    (B)           . Thus    (RMG-

cl(A)) cl(   (A)) for each subset of A of Y. 

Theorem 4.13: If f: X Y is RMG-open, then for each neighbourhood U of x in X, there exists a RMG-

neighbourhood N of f(x) in Y such that N f(U). 

Proof: Let f: X Yis a RMG-open map. Let x X and U be an arbitrary neighbourhood of x in X. Then there exists 

an open set G in X such that x G U. Now f(x) f(G) f(U) and f(G) is RMG-open set in Y, as f is RMG-open map. 

By Theorem 4.10 [18] f(G) is RMG-neighbourhood of each of its points. By taking f(G)=N, Nis a RMG-nbd of f(x) 

in Y such that N f(U). 

Theorem 4.14: For any bijection map f: X Y, the following statements are equivalent; 

(i)    : Y X is RMG-continuous. 

(ii) F is RMG-open map. 

(iii)  F is RMG-closed map. 

Proof: (i) (ii), let U be an open set of X. By assumption,        (U)=f(U) is RMG-open in Y and so f is RMG-

open. 

(ii) (iii), let F be a closed set of X, X-F is open set in X. By assumption, f(X-F) is RMG-open in Y i.e. f(X-F) is 

RMG-open set in Y, since every open set is RMG-open Corollary 3.6(3)[18] and therefore f(F) is RMG-closed in Y. 

Hence f is RMG-closed map. 
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(iii) (i), let F be a closed set of X. By the assumption, f(F) is RMG-closed in Y. But f(F)=       (F) and therefore 

    is continuous. 

Remark 4.15: The composition of two RMG-open maps need not be a RMG-open map. 

Now we define the new class of stronger form of RMG-open maps is called RMG*-open maps in topological 

spaces. 

Definition 4.16: A map f: X Y is said to be RMG*-open map, if the image f(A) is RMG-open set in Y for every 

RMG-open set A in X. 

Remark 4.17: Since every open set is a RMG-open set, we have every RMG*-open map is RMG-open map. The 

converse is not true generally as seen from the following example. 

Example 4.18: Let X={p, q, r} with topology  = {X,  , {q}, {q, r}} and Y = {a, b, c, d} with topology  = {Y,  , 

{a}, {b, c}, {a, b, c}}. Let a map f: (X,  )  (Y,  ) be defined as f(p)=b, f(q)=a and f(r)=d. Then f is RMG-open map 

but not RMG*-open, since the image of RMG-open set {q, r} in X is {a, d}, which is not RMG-open in Y. Hence f 

is not RMG*-open map. 

Theorem 4.19: If f: X Y and g: Y Z be two RMG*-open maps, then their composition g f: X Z is RMG*-open 

map. 

Proof: Proof is similar to the Theorem 3.54. 

Theorem 4.20: For any bijective map f: X Y, the following statements are equivalent; 

(i)    : Y X is RMG-irresolute map. 

(ii) f is RMG*-open map. 

(iii) f is RMG*-closed map. 

Proof: Proof is similar to the Theorem 4.14. 
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