

RESEARCH ARTICLE

REGULAR MILDLY GENERALIZED CLOSED AND REGULAR MILDLY GENERALIZED OPEN MAPS IN TOPOLOGICAL SPACES.

^{*}R. s. wali¹, nirani laxmi² and basayya b. Mathad².

1. Department of Mathematics, Bhandari & Rathi College, Guledagudd-587 203, Karnataka, India.

2. Department of Mathematics, Rani Channamma University, Belagavi-591 156, Karnataka, India.

.....

.....

inter relationship with other closed and open maps.

In this article, we introduce a new class of RMG-closed and RMG-open maps in topological spaces and study some of their properties as well

Manuscript Info

Abstract

Manuscript History

Received: 23 June 2017 Final Accepted: 25 July 2017 Published: August 2017

Key words:-

RMG-closed maps, RMG*-closed maps, RMG-open maps and RMG*-open maps.

Copy Right, IJAR, 2017,. All rights reserved.

Introduction:-

Different types of closed and open mappings were studied by various researchers in general topology. In 1982 Malghan [6] introduced and investigated some properties of generalized closed maps. El-Deeb et. al[3], M. Sheik John [15], N. Nagaveni[9], I Arockiarani[1] and Benchalli et. al[2] have introduced and studied pre-closed and preopen maps, w-closed and w-open maps, wg-closed, rwg-closed and wg-open, rwg-open maps, rg-closed and rg-open maps and rw-closed, rw-open maps respectively. But in this article we introduce new class of weaker forms of closed and open maps i.e. RMG-closed maps and RMG-open maps and also stronger form of RMG-closed and RMG*-open maps. Here we discuss the properties of all newly formed maps and relationship with existed maps in topological spaces.

Preliminaries:-

Throughout this paper (X,τ) , (Y,σ) and (Z,γ) (or simply X, Y and Z) always means topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. We denote the closure, RMG-closure, interior, RMG-interior of A by cl(A), RMG-cl(A), int(A) and RMG-int(A) respectively and neighbourhood of an element in any topological space is denoted as nbd of x. X–A or A^c denotes the complement of A in X.

Now we recall the following known definitions and results that are used in our work;

Definition 2.1 A subset A of a topological space X is called

- (i) Regular open [16], if A=int(cl(A)) and regular closed if A=cl(int(A)).
- (ii) Pre-open [8], if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$.

(iii) α -open [10], if A \subseteq int(cl(int(A))) and α -closed if cl(int(cl(A))) \subseteq A.

Definition 2.2 A subset A of a topological space X is called

Corresponding Author:- R. s. wali. Address:- Department of Mathematics, Bhandari & Rathi College, Guledagudd-587 203, Karnataka, India. (i) Generalized closed (briefly g-closed) [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

- (ii) Generalized α -closed (briefly g α -closed) [7] if α -cl(A) \subseteq U whenever A \subseteq U and U is α -open in X.
- (iii) Weakly generalized closed (briefly wg-closed) [9] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (iv) Strongly generalized closed (briefly g*-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- (v) Weakly closed (briefly w-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- (vi) Mildly generalized closed (briefly mildly g-closed) [12] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- (vii) Regular weakly generalized closed (briefly rwg-closed) [9] if cl(int(A)) ⊆U whenever A⊆U and U is regular open in X.
- (viii) Regular weakly closed (briefly rw-closed)[2] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open in X.

(ix) Regular generalized closed (briefly rg-closed) [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open set in X.

The complements of above all closed sets are their respective open sets in the same topological space X.

Definition 2.3: A subset A of a space X is said to be Regular Mildly Generalized closed (briefly RMG-closed) set [17], if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is rg-open set in X.

Definition 2.4: A subset A of X is called Regular Mildly Generalized open (briefly RMG-open) set [18], if X-A is RMG-closed set in X.

Definition 2.5: For a subset A of a space X, RMG-cl(A)= \cap {F:A \subseteq F and F is RMG-closed set in X} is called RMG-closure of A [18].

Definition 2.6: Let A is a subset of X. A point $x \in A$ is said to be RMG-interior point of A, if A is a RMG-nhd of x. The set of all RMG-interior [18] of A and is denoted by RMG-int(A).

Definition 2.7: For a subset A of X, RMG-closure[18] of A is defined as RMG-cl(A) to be the intersection of all RMG-closed sets containing A.

Definition 2.8: Let X be any topological space and let $x \in X$. A subset N is said to be RMG-nbd[18] of x, if and only if there exists a RMG-open set G such that $x \in G \subseteq N$.

Definition 2.9: A subset N of X is a RMG-nbd[18] of $A \subseteq X$ in topological space (X, τ) , if there exists a RMG-open set G such that $A \subseteq X \subseteq N$.

Definition 2.10: A function f: $X \rightarrow Y$ is said to be RMG-continuous function [19], if $f^{-1}(V)$ is RMG-closed set of X for every closed set V of Y.

Definition 2.11 A function f: $X \rightarrow Y$ is called RMG-irresolute [19], if $f^{-1}(V)$ is RMG-closed set in X for every RMG-closed subset V of Y.

Definition 2.12A function f: $X \rightarrow Y$ is said to be

- (i) rg-irresolute [11], if $f^{-1}(V)$ is rg-open set in X for every rg-open set V of Y.
- (ii) strongly RMG-continuous [19], if $f^{-1}(V)$ is open set in X for every RMG-open set V of Y.

Definition 2.13 A function f: $X \rightarrow Y$ is called

- (i) regular closed [5] if f(F) is closed in Y for every regular closed set F of X.
- (ii) g-closed [6] if f(F) is g-closed in Y for every closed set F of X.
- (iii) w-closed [15] if f(F) is w-closed in Y for every closed set F of X.

(iv) pre-closed [3] if f(F) is pre-closed in Y for every closed set F of X.

(v) wg^{*}(=mildly-g)-closed [13] if f(F) wg^{*}-closed in Y for every closed set F of X.

(vi) wg-closed [9] if f(F) is wg-closed in Y for every closed set F of X.

(vii) rwg-closed [9] if f(F) is rwg-closed in Y for every closed set F of X.

(viii) rw-closed [2] if f(F) is rw-closed in Y for every closed set F of X.

(ix) rg-closed [1] if f(F) is rg-closed in Y for every closed set F of X.

(x) g^* -closed [14] if f(F) is g^* -closed in Y for every closed set F of X.

Definition 2.14: A function f: $X \rightarrow Y$ is called

(i) regular open[5] if f(F) is open in Y for every regular open set F of X.

(ii) g-open [6] if f(F) is g-open in Y for every open set F of X.

(iii) w-open [15] if f(F) is w-open in Y for every open set F of X.

(iv) pre-open [3] if f(F) is pre-open in Y for every open set F of X.

(v) wg^{*}-closed[13] if f(F) wg^{*}-open in Y for every open set F of X.

(vi) wg-open [9] if f(F) is wg-open in Y for every open set F of X.

(vii) rwg-open [9] if f(F) is rwg-open in Y for every open set F of X.

(viii) rw-open [2] if f(F) is rw-open in Y for every open set F of X.

(ix) rg-open [1] if f(F) is rg-open in Y for every open set F of X.
(x) g*-open [14] if f(F) is g*-open in Y for every open set F of X.

Lemma 2.15: Let X be any topological space, in which

(i) Every closed (resp. w-closed, ga-closed, pre-closed) set is RMG-closed set in X [17].

(ii) Every RMG-closed set is mildly-g-closed (resp. wg-closed, rwg-closed) set in X [17].

Definition 2.16: A topological space (X, τ) is called

- (i) T_{RMG} -space [19] if every RMG-closed set is closed.
- (ii) $T_{\frac{1}{2}}$ -space [6] if every g-closed set is closed.

Definition 2.17: A function f: $X \rightarrow Y$ is called

(i) closed if f(F) is closed in Y for every closed set F of X.

(ii) $g\alpha$ -closed if f(F) is $g\alpha$ -close in Y for every closed set F of X.

Definition 2.18: A function f: $X \rightarrow Y$ is called

(i) open if f(F) is open in Y for every open set F of X.

(ii) $g\alpha$ -open if f(F) is $g\alpha$ -open in Y for every open set F of X.

Regula Mildly Generalized Closed Maps In Topological Spaces:-

Definition 3.1: A map $f:X \rightarrow Y$ is said to be Regular Mildly Generalized closed (briefly, RMG-closed) map, if the image of every closed set in X is RMG-closed in Y.

Theorem 3.2: Every closed map is RMG-closed map but not conversely.

Proof: Let f: $X \rightarrow Y$ is closed map. Let F be any closed set in X. Then f(X) is closed but every closed set is RMG-closed set [17]. Hence f is RMG-closed map.

Example 3.3: Let $X = \{p, q, r\}$ with topology $\tau = \{X, \emptyset, \{p\}, \{p, q\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=c, f(q)=d and f(r)=d. Then f is RMG-closed map but not closed, since the image of closed set $\{r\}$ in X is $\{a\}$, which is not closed in Y.

Theorem 3.4: Every w-closed map is RMG-closed map but not conversely.

Proof: Let $f:X \rightarrow Y$ is w-closed map. Let F be any closed set in X. Then f(X) is w-closed but every w-closed set is RMG-closed set [17]. Hence f is RMG-closed map.

Example 3.5: Let X={m, n, o} with topology $\tau = \{X, \emptyset, \{m, n\}\}$ and Y = {a, b, c, d} with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(m)=a, f(n)=c and f(o)=b. Then f is RMG-closed map but not w-closed, since the image of closed set {o} in X is {b}, which is not w-closed in Y.

Theorem 3.6: Every $g\alpha$ -closed map is RMG-closed map but not conversely.

Proof: Let $f:X \rightarrow Y$ is $g\alpha$ -closed map. Let F be any closed set in X. Then f(X) is $g\alpha$ -closed but every $g\alpha$ -closed set is RMG-closed set [17]. Hence f is RMG-closed map.

Example 3.7: Let X={p, q} with topology $\tau = \{X, \emptyset, \{p\}\}$ and Y = {a, b, c, d} with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=b and f(q)=a. Then f is RMG-closed map but not g α -closed, since the image of closed set {q} in X is {a}, which is not g α -closed in Y.

Theorem 3.8: Every pre-closed map is RMG-closed map but not conversely.

Proof: Let $f:X \rightarrow Y$ is pre-closed map. Let F be any closed set in X. Then f(X) is pre-closed but every pre-closed set is RMG-closed set [17]. Hence f is RMG-closed map.

Example 3.9: Let $X=\{x, y, z\}$ with topology $\tau = \{X, \emptyset, \{x\}, \{x, z\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(x)=p, f(y)=b, and f(z)=a. Then f is RMG-closed map but not pre-closed, since the image of closed set $\{y\}$ in X is $\{b\}$, which is not pre-closed in Y.

Theorem 3.10: Every RMG-closed map is mildly- g-closed map but not conversely.

Proof: Let $f:X \rightarrow Y$ is RMG-closed map. Let F be any closed set in X. Then f(X) is RMG-closed but every RMG-closed set is mildly-g-closed set[17]. Hence f is mildly-g-closed map.

Example 3.11: Let $X=\{a, b, c\}$ with topology $\tau=\{X, \emptyset, \{b, c\}\}$ and $Y=\{a, b, c, d\}$ with topology $\sigma=\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, Y\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a)=a, f(b)=c and f(c)=d. Then f is mildly-g-closed map but not RMG-closed, since the image of closed set $\{a\}$ in X is $\{a\}$, which is not RMG-closed in Y.

Theorem 3.12: Every RMG-closed map is wg-closed map but not conversely.

Proof: Let $f:X \rightarrow Y$ is RMG-closed map. Let F be any closed set in X. Then f(X) is RMG-closed but every RMG-closed set is wg-closed set[17]. Hence f is wg-closed map.

Example 3.13: Let $X = \{p, q, r\}$ with topology $\tau = \{X, \emptyset, \{p\}, \{q, r\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=b, f(q)=d and f(r)=a. Then f is wg-closed map but not RMG-closed, since the image of closed set $\{q, r\}$ in X is $\{a, d\}$, which is not RMG-closed in Y. **Theorem 3.14:** Every RMG-closed map is rwg-closed map but not conversely.

Proof: Let $f:X \rightarrow Y$ is RMG-closed map. Let F be any closed set in X. Then f(X) is RMG-closed but every RMG-closed set is rwg-closed set[17]. Hence f is rwg-closed map.

Example 3.15: Let $X=\{x, y, z\}$ with topology $\tau=\{X, \emptyset, \{x\}\}$ and $Y=\{a, b, c, d\}$ with topology $\sigma=\{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(x)=d, f(y)=a and f(z)=b. Then f is rwg-closed map but not RMG-closed, since the image of closed set $\{y, z\}$ in X is $\{a, b\}$, which is not RMG-closed in Y.

Remark 3.16: The regular closed map and RMG-closed maps are independent. This can be seen from following example.

Example 3.17: Let $X=\{a, b, c\}$ with topology $\tau=\{X, \emptyset, \{a, b\}\}$ and $Y=\{a, b, c, d\}$ with topology $\sigma=\{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a)=c, f(b)=a and f(c)=b. Then f is regular closed map but not RMG-closed, since the image of closed set $\{c\}$ in X is $\{b\}$, which is not RMG-closed in Y.

Example 3.18: let $X = \{a, b, c\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be a defined by f(a)=a, f(b)=c, and f(c)=d. Then f is RMG-closed map but not regular closed map, since the image of regular closed set $\{a, c\}$ in X is $\{b, d\}$, which is not closed set in Y.

Remark 3.19: The following example show that g-closed maps and RMG-closed maps are independent.

Example 3.20: Let $X=\{p, q, r\}$ with topology $\tau = \{X, \emptyset, \{p, q\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=d, f(q)=b and f(r)=c. Then f is RMG-closed map but not g-closed, since the image of closed set $\{r\}$ in X is $\{c\}$, which is not g-closed in Y.

Example 3.21: Let $X=\{p, q, r\}$ with topology $\tau = \{X, \emptyset, \{p\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(p)=c, f(q)=b and f(r)=d. Then f is g-closed map but not RMG-closed, since the image of closed set $\{q, r\}$ in X is $\{b, d\}$, which is not RMG-closed in Y.

Remark 3.22: The following example show that g^{*}-closed maps and RMG-closed maps are independent.

Example 3.23: Let $X = \{p, q\}$ with topology $\tau = \{X, \emptyset, \{p\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=b, and f(q)=c. Then f is RMG-closed map but not g^{*}-closed, as the image of closed set $\{q\}$ in X is $\{c\}$, which is not g^{*}-closed in Y.

Example 3.24: Let $X=\{x, y, z\}$ with topology $\tau = \{X, \emptyset, \{x\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(x)=b, f(y)=a and f(z)=d. Then f is g^* -closed map but not RMG-closed, since the image of closed set $\{y, z\}$ in X is $\{a, d\}$, which is not RMG-closed in Y.

Remark 3.25: The following example show that rw-closed maps and RMG-closed maps are independent.

Example 3.26: Let X={a, b, c} with topology $\tau = \{X, \emptyset, \{a\}, \{a, c\}\}$ and Y = {a, b, c, d} with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a)=b, f(b)=c and f(c)=d. Then f is RMG-closed map but not rw-closed, as the image of closed set {b} in X is {c}, which is not rw-closed in Y.

Example 3.27: Let $X = \{a, b, c\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{a, c\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a)=b, f(b)=c and f(c)=a. Then f is rw-closed map but not RMG-closed, as the image of closed set $\{b\}$ in X is $\{c\}$, which is not rw-closed in Y.

Remark 3.28: The following example show that rg-closed maps and RMG-closed maps are independent.

Example 3.29: Let $X=\{x, y, z\}$ with topology $\tau=\{X, \emptyset, \{y, z\}\}$ and $Y=\{a, b, c, d\}$ with topology $\sigma=\{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(x)=b, f(y)=a and f(z)=d. Then f is RMG-closed map but not rg-closed, as the image of closed set $\{x\}$ in X is $\{b\}$, which is not rg-closed in Y.

Example 3.30: Let $X=\{x, y, z\}$ with topology $\tau=\{X, \emptyset, \{y\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma=\{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(x)=b, f(y)=d and f(z)=a. Then f is rg-closed map but not RMG-closed, as the image of closed set $\{x, z\}$ in X is $\{a, b\}$, which is not RMG-closed in Y.

Remark 3.31: From the above discussion and known results we have the following implications.

Remark 3.32: The composition of two RMG-closed maps need not be RMG-closed map in general. This can be shown by the following example.

Example 3.33: Let $X=\{p, q, r\}$ with topology $\tau = \{X, \emptyset, \{p\}, \{p, r\}\}, Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $Z = \{x, y, z, w\}$ with topology $\eta = \{Z, \emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z\}, \{x, y, z\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=c, f(q)=b and f(r)=d and $g:(Y, \sigma) \rightarrow (Z, \eta)$ defined by g(a)=z, g(b)=x, g(c)=y and g(d)=w. Then f and g are two RMG-closed maps but their composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is not RMG-closed map because $F=\{q\}$ is closed in X, but $(g \circ f)(F)=g(f(\{q\}))=g(\{b\})=\{x\}$, which is not RMG-closed in Z.

Theorem 3.34: If f: $X \rightarrow Y$ is closed map and g: $Y \rightarrow Z$ is RMG-closed map, then the gof: $X \rightarrow Z$ is RMG-closed map.

Proof: Let F be any closed set in X. Since f is closed map, f(F) is closed set in Y. Since g is RMG-closed map, $g(f(F))=(g \circ f)(F)$ is RMG-closed set in Z. Hence $g \circ f$ is RMG-closed map.

Remark 3.35: If f: $X \rightarrow Y$ is RMG-closed map and g: $Y \rightarrow Z$ is closed map, then the composition need not be RMG-closed map. This can be seen from following example.

Example 3.36: Let X={a, b, c} with topology $\tau = \{X, \emptyset, \{a, b\}\}$, Y = {a, b, c, d} with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and Z ={a, b, c, d} with topology $\eta = \{Z, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a)=c, f(b)=d and f(c)=b and g: $(Y, \sigma) \rightarrow (Z, \eta)$ defined by g(a)=c, g(b)=b, g(c)=c and g(d)=d. Then f is RMG-closed map and g is a closed map but their composition gof: $(X, \tau) \rightarrow (Z, \eta)$ is not RMG-closed map because F={c} is closed in X, but (gof)(F)=g(f({c}))=g({b})={b}, which is not RMG-closed in Z.

Theorem 3.37: If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ are two RMG-closed maps and Y be a T_{RMG} -space then gof: $X \rightarrow Z$ is RMG-closed map.

Proof: Let A be a closed set of X. Since f is RMG-closed map, f(A) is RMG-closed in Y. Then by hypothesis, f(A) is closed. Since g is RMG-closed, g(f(A)) is RMG-closed in Z and $g(f(A))=(g\circ f)(A)$. Therefore $g\circ f$ is RMG-closed map.

Theorem 3.38: If f: $X \rightarrow Y$ is g-closed map and g: $Y \rightarrow Z$ is RMG-closed maps and Y be $T_{1/2}$ -space then $g \circ f: X \rightarrow Z$ is RMG-closed map.

Proof: Let A be a closed set of X. Since f is g-closed, f(A) is g-closed in Y. Since Y is $T_{1/2}$, f(A) is closed in Y. Since g is RMG-closed, g(f(A)) is RMG-closed in Z and $g(f(A))=(g\circ f)(A)$. Therefore $g\circ f$ is RMG-closed map.

Theorem 3.39: Composition of closed maps is RMG-closed map.

Proof: Proof is straight forward and fact that every closed set is RMG-closed set.

Theorem 3.40: A map $f:X \rightarrow Y$ is said to be RMG-closed map if and only if for each subset A of Y and for each open set U containing $f^{-1}(A)$, there is a RMG-open set V of Y such that $A \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Suppose f is RMG-closed map. Let A is a subset of Y and U is a open set of X such that $f^{-1}(A)\subseteq U$. Now X-U is a closed set in X. Since f is RMG-closed map, f(X-U) is a RMG-closed set in Y i.e. V=Y-f(X-U), V=Y-f(X-U) is RMG-open set of Y. Note that $f^{-1}(A)\subseteq U$ implies that $A\subseteq V$ and $f^{-1}(V)=X-f^{-1}(f(X-U))=X-(X-U)=U$ i.e. $f^{-1}(V)\subseteq U$.

Conversely, suppose that F is a closed set in X. Then $f^{-1}(f(X-F))\subseteq X$ -F and X-F is open in X. By the hypothesis, there exists a RMG-open set V in Y such that Y-f(F) \subseteq V and $f^{-1}(V)\subseteq X$ -F. Therefore, $F\subseteq X$ - $f^{-1}(V)$. Hence Y-V $\subseteq f(F)\subseteq f(X-f^{-1}(V))\subseteq Y$ -V which implies $f(F)\subseteq V$. Since Y-V is RMG-closed, f(F) is RMG-closed. Therefore f(F) is RMG-closed in Y. Hence f is RMG-closed map.

Theorem 3.41: If f:X \rightarrow Y is g-closed map and Y is a T_{1/2}-space, then f:X \rightarrow Y is RMG-closed map.

Proof: Let F be a closed set in X. Since f is g-closed map, f(F) is g-closed set in Y. As Y is a $T_{1/2}$ -space, we have f(F) is closed in Y. As every closed set is RMG-closed, f(F) is a RMG-closed in Y. Thus f is a RMG-closed map.

Theorem 3.42: If f: $X \rightarrow Y$ is RMG-closed map, then RMG-cl(f(A)) \subseteq f(cl(A)) for every subset A of X.

Proof: Suppose that f is RMG-closed and $A \subseteq X$. Then cl(A) is closed in X and so f(cl(A)) is RMG-closed in Y. We have f(A) \subseteq f(cl(A)) and by Theorem 6.2[18], RMG-cl(f(A)) \subseteq RMG-cl(f(cl(A)))...(i). Since f(cl(A)) is RMG-closed set in Y, RMG-cl(f(cl(A)))=f(cl(A)) ...(ii), by Theorem 6.3[18]. From (i) and (ii), RMG-cl(f(A)) \subseteq f(cl(A)) for every subset A of X.

Corollary 3.43: If f: $X \rightarrow Y$ is a RMG-closed then the image f(A) of closed set A in X is τ_{RMG} -closed in Y.

Proof: Let A be a closed set in X. Since f is RMG-closed, by Theorem 3.42, RMG-cl(f(A)) \subseteq f(cl(A))...(i). Also cl(A)=A as A is a closed set and so f(cl(A))=f(A)...(ii). From (i) and (ii), RMG-cl(f(A)) \subseteq f(A). We know that f(A) \subseteq RMG-cl(A) and so RMG-cl(f(A))=f(A). Therefore f(A) is τ_{RMG} -closed in Y.

Theorem 3.44: Let X and Y are two topological spaces where 'RMG-cl(A)=pcl(A) for every subset A of Y' and f: $X \rightarrow Y$ be map, then the following are equivalent;

- (i) f is RMG-closed map.
- (ii) RMG-cl(f(A)) \subseteq f(cl(A)) for every subset A of X.

Proof: (i) \Rightarrow (ii) follows from the Theorem 3.42.

(ii) \Rightarrow (i), let A be any closed set of X then A=cl(A) and so RMG-cl(f(A)) \subseteq f(cl(A))=f(A), by hypothesis. We have f(A) \subseteq RMG-cl(A) by Theorem 6.2[18]. Therefore f(A)=RMG-cl(f(A)). Also f(A)=RMG-cl(f(A))=pcl(f(A)), by hypothesis. i.e. f(A)=pcl(f(A)) and so f(A) is pre-closed set in Y. Thus f(A) is RMG-closed set in Y. Hence f is RMG-closed map.

Theorem 3.45: Let $f_i: (X_i, \tau_i) \to (X_{i+1}, \tau_{i+1})$ be a map, then following are true;

- (i) If $f_1, f_2, f_3, \ldots, f_n$ are closed maps then their compositions $f_n \circ f_{n-1} \circ f_{n-2} \circ \ldots \circ f_1$ is RMG-closed map.
- (ii) If $f_1, f_2, f_3, \dots, f_{n-1}$ are closed maps and f_n is a RMG-closed map then the compositions $f_n \circ f_{n-1} \circ f_{n-2} \circ \dots \circ f_1$ is RMG-closed map.

Proof: (i) The proof follows from the Theorem 3.39 and fact that every closed set is RMG-closed set.

(ii) The proof follows from the Theorem 3.34.

Theorem 3.46: If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ are two mappings such that their composition $g \circ f: X \rightarrow Z$ is RMG-closed map, then the following statements are true;

(i) If f is continuous and surjective, then g is RMG-closed map.

- (ii) If g is RMG-irresolute and injective, then f is RMG-closed map.
- (iii) If f is g-continuous, surjective and X is a $T_{1/2}$ -space, then g is RMG-closed map.
- (iv) If g is strongly RMG-continuous and injective, then f is RMG-closed map.

Proof: (i) Let A be a closed set of X. Since f is continuous, $f^{-1}(A)$ is closed in X and since gof is RMG-closed, $(g \circ f)(f^{-1}(A))$ is RMG-closed in Z. i.e. g(A) is RMG-closed in Z, since f is surjective. Therefore g is RMG-closed map.

(ii) Let B be a closed set of X. Since $g \circ f$ is RMG-closed, $(g \circ f)(B)$ is RMG-closed in Z. Since g is RMG-irresolute, $g^{-1}((g \circ f)(B))$ is RMG-closed set in Y implies that f(B) is RMG-closed in Y, since f is injective. Therefore f is RMG-closed map.

(iii) Let C be a closed set of Y. Since f is g-continuous, $f^{-1}(C)$ is g-closed set in X. Since X is a $T_{1/2}$ -space, $f^{-1}(C)$ is RMG-closed set in X. Since g of is RMG-closed, $(g \circ f)(f^{-1}(C))$ is RMG-closed in Z implies g(C) is RMG-closed in Z, since f is surjective. Therefore g is RMG-closed map.

(iv) Let D be a closed set of X. Since $(g \circ f)(D)$ is RMG-closed in Z. Since g is strongly RMG-continuous, $g^{-1}((g \circ f)(D))$ is closed set in Y implies f(D) is closed set in Y, since g is injective. Therefore f is closed map.

Theorem 3.47: If f: $X \rightarrow Y$ is rg-irresolute, RMG-closed and A is a RMG-closed subset of X, then f(A) is a RMG-closed set in Y.

Proof: Let $f(A)\subseteq G$, where G is a rg open in Y. Since f is rg-irresolute, $f^{-1}(G)$ is rg-open in X by definition 2.12 and $A\subseteq f^{-1}(G)$. Since A is a RMG-closed set in X, $cl(int(A))\subseteq f^{-1}(G)[19]$. Since f is RMG-closed, f(cl(int(A))) is RMG-closed set contained in rg-open set G implies that $cl(int(f(cl(int(A)))))\subseteq f(cl(int(A)))\subseteq G$ and so $cl(int(f(A)))\subseteq G$. Hence f(A) is RMG-closed set in Y.

Corollary 3.48: If f: $X \rightarrow Y$ be a RMG-closed map and g: $Y \rightarrow Z$ be RMG-closed and rg-irresolute map, then their composition $g \circ f: X \rightarrow Z$ is RMG-closed map.

Proof: Let A be a closed set of X. Since f is a RMG-closed map, f(A) is RMG-closed in Y. Since g is both RMG-closed and rg-irresolute, g(f(A)) is RMG-closed in Z by Theorem 3.47. Also $g(f(A))=(g\circ f)(A)$. Therefore $g\circ f$ is RMG-closed map.

Theorem 3.49: If f: $X \rightarrow Y$ is an open, continuous, RMG-closed, surjection and cl(int(F))=F for every RMG-closed set in Y, where X is regular, then Y is regular.

Proof: Let U be an open set in Y and p \in U. Since f is surjection, there exists a point x \in X such that f(x)=p. Since X is regular and f is continuous, there is an open set V in X such that $x\in$ V \subseteq cl(int(V)) \subseteq f⁻¹(U). Here $p\in$ f(V) \subseteq f(cl(int(V))) \subseteq U...(i). Since f is RMG-closed, f(cl(int(V))) is a RMG-closed set contained in the open set U. By hypothesis cl(int(f(cl(int(A))))=f(cl(int(V))) and cl(int(f(V))) \subseteq cl(int(f(cl(int(V))))...(ii). From (i) and (ii), $p\in$ f(V) \subseteq f(cl(int(V))) \subseteq U and f(V) is open, since f is open. Hence Y is regular.

Theorem 3.50: If f: X \rightarrow Y is RMG-closed and A is closed set of X, then its restriction $f_A:(A, \tau_A) \rightarrow$ Y is RMG-closed map.

Proof: Let F be a closed set of A. Then $F=A\cap E$ for some closed set E of X and so F is closed set of X. Since f is RMG-closed, f(F) is RMG-closed set in Y. But $f(F)=f_A(F)$. Therefore $f_A:(A, \tau_A) \to Y$ is RMG-closed map.

Now we define the new class of stronger form of RMG-closed maps is called RMG*-closed maps in topological spaces.

Definition 3.51: A map f: $X \rightarrow Y$ is said to be **RMG*-closed maps**, if the image of every RMG-closed set of X is RMG-closed set in Y.

Theorem 3.52: If f: $X \rightarrow Y$ is RMG*-closed map, then which is RMG-closed map, but not conversely.

Proof: Let F be a closed set in X and the fact that every closed set is RMG-closed set. Hence F is RMG-closed set in X. Since f: $X \rightarrow Y$ be a RMG*-closed map, f(F) is RMG-closed set in Y. Therefore f is RMG-closed map.

Example 3.53: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a)=c, f(b)=a, f(c)=d and f(d)=b. Then f is RMG-closed map but not RMG*-closed, since the image of RMG-closed set $\{b, d\}$ in X is $\{a, b\}$, which is not RMG-closed in Y.

Theorem 3.54: If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ are two RMG*-closed maps, then their composition gof: $X \rightarrow Z$ is RMG*-closed map.

Proof: Let F be a RMG-closed set in X. Since f is RMG*-closed map, f(F) is RMG-closed set in Y. Since g is RMG*-closed map, g(f(F)) is RMG-closed set in Z. Hence g of is RMG*-closed map.

Theorem 3.56: If f: $X \rightarrow Y$ is irresolute and RMG-closed map then f is RMG*-closed map.

Theorem 3.57: If f: $X \rightarrow Y$ be a closed map and g: $Y \rightarrow Z$ be RMG*-closed, then their composition gof: $X \rightarrow Z$ is RMG-closed map.

Proof: Let F be a closed set in X. Then f(F) is closed in Y. The fact that every closed set is RMG-closed set implies that f(F) is RMG-closed set in Y. Since g is RMG*-closed map, $g(f(F))=(g\circ f)(F)$ is RMG-closed set in Z. Hence $g\circ f$ is RMG-closed map.

Theorem 3.58: If f: $X \rightarrow Y$ be a RMG-closed map and g: $Y \rightarrow Z$ be RMG*-closed, then their composition gof: $X \rightarrow Z$ is RMG-closed map.

Proof: Let F be a closed set in X. Since f is RMG-closed map, f(F) is RMG-closed set in Y. Since g is RMG*closed map, $g(f(F))=(g \circ f)(F)$ is RMG-closed set in Z. Hence $g \circ f$ is RMG-closed map.

Regular Mildly Generalized Open Maps In Topological Spaces:-

Definition 4.1: A map f: $X \rightarrow Y$ is said to be Regular Mildly Generalized open (briefly, RMG-open) map, if the image of every open set in X is RMG-open in Y.

From the definition 4.1 we have following results;

Theorem 4.2: (i) Every open map is RMG-open map, but not conversely.

(ii) Every w-open map is RMG-open map, but not conversely.

(iii) Every $g\alpha$ -open map is RMG-open map, but not conversely.

(iv) Every pre-open map is RMG-open map, but not conversely.

(v) Every RMG-open map is mildly-g-open map, but not conversely

(vi) Every RMG-open map is wg-open map, but not conversely.

(vii) Every RMG-open map is rwg-open map, but not conversely.

Proof: Proofs follow from Definition 4.1 and fact that lemma 2.14.

Example 4.3: Let X={s, t, r} with topology $\tau = \{X, \emptyset, \{s\}, \{s, r\}\}$ and Y = {a, b, c, d} with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(s)=b, f(t)=c and f(r)=a. Then f is RMG-open map but not open, since the image of open set {s} in X is {b}, which is not open in Y.

Example 4.4: Let $X=\{p, q, \}$ with topology $\tau = \{X \emptyset, \{p\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=c, and f(q)=a. Then f is RMG-open map but not w-open, since the image of open set $\{p\}$ in X is $\{c\}$, which is not w-open in Y.

Example 4.5:Let X={x, y, z} with topology $\tau = \{X, \emptyset, \{z\}, \{x, z\}\}$ and Y= {a, b, c, d} with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(x)=b, f(y)=d and f(z)=c. Then f is RMG-open map but not g α -open, since the image of open set {z} in X is {c}, which is not g α -open in Y.

Example 4.6: Let X={m, n, o} with topology $\tau = \{X, \emptyset, \{m, n\}\}$ and Y= {a, b, c, d} with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(m)=a, f(n)=c and f(o)=b. Then f is RMG-open map but not pre-open, since the image of open set {m, n} in X is {a, c}, which is not pre-open in Y.

Example 4.7: Let $X=\{p, q, r\}$ with topology $\tau = \{X, \emptyset, \{p\}, \{q\}, \{p, q\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=b, f(q)=c and f(r)=a. Then f is mildlyg-open map but not RMG-open, since the image of open set $\{p, q\}$ in X is $\{b, c\}$, which is not RMG-open in Y.

Example 4.8: Let $X=\{x, y, z\}$ with topology $\tau = \{X, \emptyset, \{x, y\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(x)=a, f(y)=c and f(z)=b. Then f is wg-open map but not RMG-open, since the image of open set $\{x, y\}$ in X is $\{a, c\}$, which is not RMG-open in Y.

Example 4.9: Let $X = \{m, n, o\}$ with topology $\tau = \{X, \emptyset, \{m\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(m)=d, f(n)=a and f(o)=b. Then f is rwg-open map but not RMG-open, since the image of open set $\{m\}$ in X is $\{d\}$, which is not RMG-open in Y

Theorem 4.10: If f: $X \rightarrow Y$ is RMG-open, then $f(int(A)) \subseteq RMG-int(f(A))$ for every subset A of X.

Proof: Let f: $X \rightarrow Y$ is an open map and A is any subset of X. Then int(A) is open in X and so f(int(A)) is RMG-open set in Y. We have f(int(A)) \subseteq f(A). Therefore by the Theorem 5.8 [18], f(int(A)) \subseteq RMG-int(f(A)).

Theorem 4.11: A map f: $X \rightarrow Y$ be RMG-open if and only if for any subset S of Y and any closed set of X containing $f^{-1}(S)$, there exists a RMG-closed set T of Y containing S such that $f^{-1}(T) \subseteq F$.

Proof: Suppose f: $X \rightarrow Y$ is RMG-open map. Let $S \subseteq Y$ and F be a closed set of X such that $f^{-1}(S) \subseteq F$. Now X-F is an open set in X. Since f is RMG-open map, f(X-F) is RMG-open set in Y. Then T=Y-f(X-F) is a RMG-closed set in Y. Note that $f^{-1}(S) \subseteq F$ implies $S \subseteq T$ and $f^{-1}(T) = X - f^{-1}(X-F) \subseteq X - (X-F) = F$. i.e. $f^{-1}(T) \subseteq F$.

Conversely, suppose U be an open set of X. Then $(Y-f(U))\subseteq X$ -U is a closed set in X. By hypothesis, there exists a RMG-closed set T of Y such that $Y-f(U)\subseteq T$ and $f^{-1}(T)\subseteq X$ -U and so $U\subseteq X-f^{-1}(T)$. Hence $Y-T\subseteq f(U)\subseteq Y-f(f^{-1}(T)\subseteq Y-T)$ which implies f(U)=Y-T. Since Y-T is a RMG-open, f(U) is RMG-open in Y and therefore f is RMG-open map.

Theorem 4.12: If f: $X \rightarrow Y$ is RMG-open, then $f^{-1}(RMG-cl(A)) \subseteq cl(f^{-1}(A))$ for each subset A of Y.

Proof: Let f: X→Yis a RMG-open map and A be any subset of Y. Then $f^{-1}(A) \subseteq cl(f^{-1}(A))$ and $cl(f^{-1}(A))$ is closed set in X. Then by above Theorem 4.11, there exists a RMG-closed set B of Y such that $A \subseteq B$ and $f^{-1}(B) \subseteq cl(f^{-1}(A))$. Now RMG-cl(A) \subseteq RMG-cl(B)=B, by Theorem 6.2(ii) and 6.3[18], as B is RMG-closed set of Y. Therefore $f^{-1}(RMG-cl(A)) \subseteq f^{-1}(B)$ and so $f^{-1}(RMG-cl(A)) \subseteq f^{-1}(B) \subseteq cl(f^{-1}(A))$. Thus $f^{-1}(RMG-cl(A)) \subseteq cl(f^{-1}(A))$ for each subset of A of Y.

Theorem 4.13: If f: $X \rightarrow Y$ is RMG-open, then for each neighbourhood U of x in X, there exists a RMG-neighbourhood N of f(x) in Y such that $N \subseteq f(U)$.

Proof: Let f: $X \rightarrow Y$ is a RMG-open map. Let $x \in X$ and U be an arbitrary neighbourhood of x in X. Then there exists an open set G in X such that $x \in G \subseteq U$. Now $f(x) \in f(G) \subseteq f(U)$ and f(G) is RMG-open set in Y, as f is RMG-open map. By Theorem 4.10 [18] f(G) is RMG-neighbourhood of each of its points. By taking f(G)=N, N is a RMG-nbd of f(x) in Y such that $N \subseteq f(U)$.

Theorem 4.14: For any bijection map f: $X \rightarrow Y$, the following statements are equivalent;

(i) $f^{-1}: Y \rightarrow X$ is RMG-continuous.

(ii) F is RMG-open map.

(iii) F is RMG-closed map.

Proof: (i) \Rightarrow (ii), let U be an open set of X. By assumption, $(f^{-1})^{-1}(U)=f(U)$ is RMG-open in Y and so f is RMG-open.

(ii) \Rightarrow (iii), let F be a closed set of X, X-F is open set in X. By assumption, f(X-F) is RMG-open in Y i.e. f(X-F) is RMG-open set in Y, since every open set is RMG-open Corollary 3.6(3)[18] and therefore f(F) is RMG-closed in Y. Hence f is RMG-closed map.

(iii) \Rightarrow (i), let F be a closed set of X. By the assumption, f(F) is RMG-closed in Y. But f(F)=(f⁻¹)⁻¹(F) and therefore f⁻¹ is continuous.

Remark 4.15: The composition of two RMG-open maps need not be a RMG-open map.

Now we define the new class of stronger form of RMG-open maps is called RMG*-open maps in topological spaces.

Definition 4.16: A map f: $X \rightarrow Y$ is said to be **RMG*-open map**, if the image f(A) is RMG-open set in Y for every RMG-open set A in X.

Remark 4.17: Since every open set is a RMG-open set, we have every RMG*-open map is RMG-open map. The converse is not true generally as seen from the following example.

Example 4.18: Let $X=\{p, q, r\}$ with topology $\tau = \{X, \emptyset, \{q\}, \{q, r\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let a map f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined as f(p)=b, f(q)=a and f(r)=d. Then f is RMG-open map but not RMG*-open, since the image of RMG-open set $\{q, r\}$ in X is $\{a, d\}$, which is not RMG-open in Y. Hence f is not RMG*-open map.

Theorem 4.19: If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two RMG*-open maps, then their composition $g \circ f: X \rightarrow Z$ is RMG*-open map.

Proof: Proof is similar to the Theorem 3.54.

Theorem 4.20: For any bijective map f: $X \rightarrow Y$, the following statements are equivalent;

- (i) f^{-1} : $Y \rightarrow X$ is RMG-irresolute map.
- (ii) f is RMG*-open map.
- (iii) f is RMG*-closed map.

Proof: Proof is similar to the Theorem 4.14.

References:-

- 1. Arockiarani, Studies on generalization of generalized closed sets and maps in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, (1997)
- S. S. Benchalli and R. S. Wali, On rw-closed sets on topological spaces, Bull. MalaysiaMath. Sci. Soc., 30(2007), 99-110.
- 3. El-Deeb, N. Hasanein, I. A. Noiri, T. and Mashhour, A.S. On P-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(1983), 311-319.
- 4. N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(1970), 89-96.
- 5. P. E. Long and L. L. Heirington, Basic properties of regular closed functions, Rend. Cir. Math. Palermo, 27(1978), 20-28.
- 6. S. R. Malghan., Generalized closed maps, J. Karnataka Univ. Sci., 27(1982), 82-88.
- H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Sci. Kochi Univ.Ser. A. Math., 15(1994), 51-63.
- 8. A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deeb, On pre-continuous and mappings and weakly pre-continuous mappings, Proc. Math. Phy. Soc. Egypt, 53(1982), 47-53
- 9. N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D.Thesis, Bharathiar University, Coimbatore, 1999.
- 10. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- 11. N. Palaniappan and K.C.Rao, Regular generalised closed sets, kyungpook math, J., 33(1993), 211-219.
- 12. J.K. Park and J.H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitions and Fractals, 20(2004), 1103-1111.
- 13. O. Ravi^{1*}. I. Rajasekaran¹ and M. Sathyabama², Weakly g^{*}-closed sets, International Journal of Current Research in Science and Technology, Volume1, Issue 5(2015), 45-52.
- 14. Ratnesh Kumar Saraf and Miguel Caldas, Between closed maps and g-closed maps, Bulletin of the Greek Mathematical Society Valume 53, 2007(135-146).
- 15. M. Sheik John, A study on generalizations of sets on continuous maps in topological and bitopological spaces, Ph.D. Thesis Bharathiar Univ., Coimbatore (2002).
- 16. M. Stone, Application of the theory of Boolian rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- 17. R. S. Wali, Nirani Laxmi, On Regular Mildly Generalized (RMG) Closed sets in topological spaces. International Journal of Mathematical Archive-7(7), 2016, 108-114.

- R. S. Wali, Nirani Laxmi, On Regular Mildly Generalized (RMG) Open Sets in Topological Spaces", IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 4, Ver. IV (Jul.-Aug.2016), PP 93-100.
- 19. R. S. Wali, Nirani Laxmi and Basayya B. Mathad, On Regular Mildly Generalized (RMG) Continuous and irresolute functions in Topological Spaces", International Journal of Mathematics Trends and Technology-Paper ID- MTT6167.