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Due complexity of digital systems, e.g., cellphones, internet of things, 

specific applications, this paper revisit the topic of optimization of 

Boolean expression using Genetic Algorithm, to show this area is not 

finished and there‟s much more to explore. For analysis, it was used the 

modeling approach in Shackleford, et. al. (2000) with some adjusts and 

was compared with original results and tabular methods, i.e., Quine-

McCluskey and Karnaugh map. In results of tests, this proposed 

approach was inferior at tabular methods and original GA, and the 

performance was too slow due to the huge search space, because, the 

search space increases exponentially with quantity of inputs. These 

facts show the importance of continuous research about this area. 
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Introduction:- 
Digital systems designs are indispensable in any company or university that works with Computer Science. Due the 

complexity of these designs, they are divided in many level of abstraction and in each level many challenges arise 

with new parts and models. Some papers approach these tasks and classified them according some methodology, 

e.g. Riesgo, Torroja, Torre (1999). 

 

Evolutionary or genetic algorithms present great results in many applications fields, accordingly, with optimization 

of Boolean expression was explored over the years, such as, Shackleford, et. al. (2000), Coello (1996), Sobrinho and 

Mantovani (2006), Lacerda, Silva and Toledo (2010), Pradhan, Kumarand Chattopadhyay (2008),Hahanov, et. al. 

(2002), Shieh, Wangand Tsai (1999), Saini (2016), Curtinhas, et. al. (2015). About Genetic Algorithm (GA), the 

modeling problem is the greater challenge to reach goods results, and that‟s the specific goal of this paper, revisit 

and rebuild the modeling problem for GA to optimize Boolean expressions. 

 

Besides, this method could be applied in CAD (Computer Aided-Design) tools, even for educational proposals. 

CAD tools can best be understood as project information management systems, along with the creation of graphs 

and simulation of the projects created. These simulations can be used, shared, published, republished and reused in 

different formats, scales and levels of detail (ERDENER, 2001). 

 

The goal is to couple GA in others softwares, so the methodology is uses a common interface. For this, was chosen 

JSON (JavaScript Object Notation) language as that interface. JSON is a text format that facilitates the exchange of 
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data between all programming languages. Its syntax uses only a few symbols that are: braces, brackets, colon, and 

comma. This simple structure is one of the aspects that make JSON an attractive language in many applications.  

JSON also supports value lists, which are created through the use of brackets. Every element included in the bracket 

range is one element in the list. In this work the JSON notation is used to model an intermediate code for a 

combinational circuit optimization step. Fig. 1 lists an example of the JSON code pattern that will be used in the 

paper. 

 

 
Figure 1:- Example of JSON file created as input and output for the genetic algorithm. 

 

Within the scope of each circuit are described the outputs and related inputs in outputs and inputs, respectively. 

Additionally, there are the expression and minimized_expression objects representing the original Boolean 

expression and after the minimization process, respectively. The behavior of the circuit is determined by the 

Boolean function of each existing output for the same circuit. 

 

This paper follows the approach of Shackleford, et. al. (2000) because the authors left questions about delay away 

and focus in minimize the transistors in the circuit. Thus, the new circuit is a multilevel circuit using only NOR 

gates, considering universally of gates and less transistor to build a circuit. 

 

The results were compared with the results obtained by the method of Quine-McCluskey and Karnaugh map. 

Optimizations were tested for three circuit models: Majority function, Odd Parity function and Magnitude 

Comparator function. 

 

Genetic Algorithm in minimization multilevel Boolean expression:- 

Once the input variables of the JSON file of circuit to be optimized and its Boolean expression (see example in Fig. 

1), the truth table for model is created for comparison with the true tables of each individual of the population 

making possible the classification of feasible and not feasible. The number of individuals in population is np, the mp 

is mutation rate, cp is crossover rate, are three parameters defined for GA as we can see in Fig. 2. 
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Figure 2:- Pseudo code of genetic algorithm implemented for modeling proposed according to Shackleford, et. al. 

(2000). 

 

After generating the initial population GA implements a way to always protect the best individual present in each 

generation. Initially it keeps the chromosome better at zero index of the population (in order, the best fitness occupy 

the first positions) and at each iteration, a comparison of the individual‟s fitness of that  position is performed with 

the fitness of the best. If a better cost is found, the variable is updated. 

 

The evolution process is carried out in two stages. The first is responsible for leaving all individuals of the 

population feasible for later in the second, evolve their costs, evolution is driven by the cost of the circuit. The 

survival paradigm of fittest (low cost) in which the fittest children randomly replace the less fit individuals ensures 

the evolutionary advance to an optimal solution (SHACKLEFORD et. al., 2000). 

 

According to Shackleford, et. al. (2000), the number of different logical functions (truth tables) increases 

exponentially according to the number of inputs input variables, and the number of possible logical functions, nf, for 

a binary function of ni inputs is given by: 

 

       
 (1) 

 

For example, for a three-input circuit we have only two hundred and fifty-six possible functions and for a five-input 

circuit this number jumps to more than four billion possible functions, that is, it grows very fast. Using such a 

population is unfeasible, GA would become too slow for execution, especially on conventional machines. Due to 

this problem, the ideal size for the np population is given by: 

 

                (2) 

 

The number of inputs squared plus one is the same as the number of logic gates of the circuit squared. For example, 

the number of individuals in the population for a three-input circuit is one hundred. 

 

The matrix of Fig. 3 is defined so that any input of the function can be connected to any port and any logical port gn 

can be connected to any other input gk where k > j. Once complete, the connection matrix is able to describe all 
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circuits up to ng ports and ni inputs of the function. The size of the upper (rectangular) part of the matrix is given by 

     . Already the size of the lower (triangular) portion is formed by   (    )  ng cells (SHACKLEFORD et. 

al., 2000). 

 

The rows represent function inputs (rectangular upper part of matrix) or output ports (lower triangular part of 

matrix). The columns are represented by gates. Inputs are represented by in and outputs by f. There are no 

restrictions on the number of inputs and outputs. The model supports n entries where     and n outputs where 

   . 

Genes are traditionally represented by zeros and ones. The size of a chromosome nc is defined by, 

 

        
  (    )

 
 

(3) 

 

where the number of inputs is represented by ni and the number of ports per ng. Therefore, the size of chromosome 

depends on the number of inputs and gates. 

 

The shape of the binary chromosome vector can be seen from Fig. 3. The genes are distributed in the vector 

according to the orderly path of the matrix of connections, where the lines relating to the inputs i1, i2, ..., in are 

arranged in the first positions of the chromosome vector preceded by the rows of the matrix referring to the logic 

gates. Note that the output gate (column to the right of the matrix) does not appear on the chromosome because it is 

the output port of the circuit and can not be attached to any other gate according to the configuration of the matrix of 

connections. 

 

Gates that have a connection (input) are represented by bit „1‟. When there is not connection, then the bit 

representing this case is „0‟. In the matrix of Fig. 3 for example, input i1 is connected to port g2 just as port g1 is 

connected to port g3. The Boolean expression is described as:              .  

 

The GA measures the cost of an individual in basic cells (BCs), by summing the individual costs of each logic gate 

of the circuit. A NOT port (has only one entry) has a cost of two BCs and a three-entry NAND or NOR has a cost of 

four BCs. If the fan-in of a port is zero, then its cost is also zero. For NAND and NOR ports, the CB cost of a g port 

in BCs is given by: 

 

 

  (        )  {
                  

          
 

(4) 

 

 

For example, if a feasible circuit has four NOR ports with two inputs each, then its cost is twelve. However, the GA 

will produce non-feasible individuals, that is, they do not correctly implement the logical source function and so a 

cost increment is added as penalty for each instance where the logical network F does not provide the output 

specified by the function of T source when tested against all possible input combinations (SHACKLEFORD et. al., 

2000). These comparisons are made using the truth tables of T and F. 
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Figure 3:- Representation of chromosome which uses a connection matrix for NOR gate multilevel circuit 

(SHACKLEFORD et. al. 2000). 

 

When choosing the penalty increment as maximum possible cost (i.e., nc + ng) for a connection matrix, we can be 

sure that a network with n errors will have a lower cost than a network with n + 1 errors (SHACKLEFORD et. al., 

2000). The cost of the penalty is given by: 

 

   (     ) ∑ {
             
          

     

   

 

(5) 

 

Therefore, the cost C for a given chromosome is composed of a penalty cost added to the intrinsic cost of the 

network: 

     ∑      

  

   

 

 

(6) 

The crossover rate defines the number of individuals in the population who donate their genetic material for the 

generation of offspring. According to the Fig. 5, parents are selected randomly, so GA draws a pair of distinct 

chromosomes (parents) to generate a single child. 

 

Afterwards, the algorithm chooses the parent that has the highest fitness cost between two and saves the variable 

called the position of the population. Already the fitness cost of this worst individual is stored in the variable called 

fitnessWorst. 

 

Only one cut-off point is used. This single point is also defined in a random manner, ensuring that the first and / or 

last position of the chromosome is not chosen. According to Fig. 4, the first half of parent 1 composes the first half 

of the child generated while the second half of parent 2 composes the second half of child. 

 

After fitness calculation of the child is performed, the value is compared to the value that is stored in the 

fitnessWorst variable. If offspring‟s fitness is worse than the worst fitness between the two parents, the insertion of 

child into local population stored in the worst position is not performed, ensuring that the population can always 

receive better individuals, thus maintaining the evolution in each generation. 
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Figure 4:- Pseudo code of crossover function implemented for modeling proposed (SHACKLEFORD et. al. 2000). 

 

In the case of the mutation, it happens only in the child every time they are generated. It is important to note that 

mutation happens before the child's fitness is compared to the worst father‟s fitness. Once the percentage of 

mutation mp is defined, the amount of bits that will be changed in the chromosome vector is the same for all 

individuals until the end of the GA execution (SHACKLEFORD et. al., 2000). 

 

It is observed in Fig. 2 that stopping criterion is treated during the second GA evolution. When the first evolution is 

finalized, that is, when all individuals are feasible, the best fitness variable receives the value of the best fitness 

generated until then. Thus, stop criteria in while command (Fig. 2, line 17) is satisfied when the fitness value of the 

individual occupying the position in the half of the population np / 2 is greater than the value of better fitness. This is 

a good approach and ensures that an individual with great aptitude is found, but it can take many more generations 

to complete than if it did not implement stop criteria. 

 

By conducting the tests, we sought a way of comparing the models of circuits minimized by the GA with the results 

obtained by the work of Shackleford, et. al. (2000), by the map of Karnaugh and Quine-McCluskey. The basic cells 

(BCs) presented by Shackleford, et. al. (2000) is used in this paper to evaluate and compare the cost of the results 

obtained by GA of other methods presented. The evaluation of circuits tested in (BCs) of CMOS technology is 

relevant, since this is the most used technology in the manufacture of integrated circuits for offering a very low 

energy consumption. 

 

The GA parameters used for the test cases are presented in Table 1. Column (nf) shows the number of functions in 

relation with number of inputs. In the case of majority and parity functions that have three entries, the population 

was defined as the number of one hundred individuals (np), mutation rate (mp) of twenty percent in the genes of the 

child chromosome and seventy-five percent of the Crossover (cp). For the four-variable comparator test, the 

population (np) was two hundred and eighty-nine individuals. The mutation rate (mp) and the crossover rate (cp) were 

the same for that case, twenty percent and seventy five percent respectively. 

 

Experimental tests and results:- 
Majority function:- 

The behavior of majority function has output „1‟ if at least two of the three inputs are „1‟.Because it is a stochastic 

algorithm, GA can present good results in one execution and worse results in another. Fig. 5 shows the graph for the 

five best runs of the function. One observes an abrupt fall of the fitness soon in the first generations. This is due to 
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the change of steps, from the first evolution to the second when individuals become feasible and free of penalty 

costs. It is worth emphasizing that each value in the horizontal axis represents the fitness of the best and worst 

individual in each generation. 

 

The similarity of functions of five executions in the graph shows that the fitness costs for a given circuit have the 

same levels of values as they evolve. Even for these worst cases, it can be observed that at the end of the run the 

results are close to the final results of the executions in which the population already had great individuals since its 

first generation. 

 

Table 2 presents the best and worst fitness values of each run and the number of generations that were required for 

the stop criteria of the algorithm to be satisfied. The resulting Boolean expression obtained by the tabular methods 

(Karnaugh map and Quine-McCluskey) and GA for the majority function is given by BC + AC + AB e 

               , respectively. Even though the circuits have different types of ports, the amount of fan-

in in each of them is the same, totaling a cost of 13 BCs as shown in Table 2. 

 

Odd parity function:- 

The odd parity function sets the output to „1‟ when the number of bits „1‟ is odd. When an initial population is 

generated with very good individuals, the tendency is that the first stage of GA evolution takes less time, improves 

the fitness of the population more quickly, and execution is completed with fewer generations. “run 1” (blue and 

orange) on the graph of Fig. 6, for example, was the first to start the second evolution stage and the first to be 

completed, while “run 4” was the opposite. 

 

Note that “run 1” (blue) even being on this list was a test considered as good as some of the best shown.  In the two 

graphs it is possible to observe that the behavior of the evolution of fitness in the second stage, does not undergo 

practically great changes throughout the generations. It is possible to conclude, in these cases, that the algorithm 

probably finds, in most runs, the most optimized individual possible for the function. 

 

Another ten tests performed are presented in Table 3. The best individual‟s fitness obtained in this set of tests was 

24, slightly below the average of 26.7. The standard deviation for this case was 1.487, while the average of 

generations was over thirteen thousand, a high value in relation to the majority function that has the same number of 

variables. This is due to the fact that there was a considerable variation in the number of generations between the 

runs.  

 

 
Figure 5:- Fitness evolution in five runs majority function plotting best and worst fitness. 
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Table 1:- Parameters used in experimental tests. 

Inputs Population (  ) (  ) Mutation (  ) Crossover (  ) 

3 100 256 20% 75% 

4 289 65,536 20% 75% 

 

Table 2:- Results in ten runs of majority function divided in best fitness and worst fitness, highlighted in red the best 

solution had founded. 

Run Best Fitness Worst Fitness Generations 

1 18 30 4162 

2 17 30 4433 

3 19 31 3018 

4 19 34 2820 

5 20 32 3332 

6 18 27 9309 

7 13 34 3266 

8 19 30 5399 

9 17 30 4575 

10 19 35 2167 

Average 17.9 31.3 4248.1 

Standard deviation 1.868 2.326 1917.631 

 

 
Figure 6:- Fitness evolution in five runs odd parity function plotting best and worst fitness. 

 

With a cost of 33 basic cells (BCs) with eleven logical ports is more expensive than the one generated by GA with 

only 7 ports and cost of 27 BCs. Among the tests, the odd parity function was the one that GA showed to be more 

efficient. 

 

It is important to note that the odd parity function is particularly difficult to minimize by the Karnaugh method. The 

pattern with the same amount of ones and zeros does not have adjacent terms that can be grouped for minimization. 

Each minterm of odd parity function is therefore an essential prime implicate of the function, thus leaving the larger 

Boolean expression. GA for the odd parity function is given by 

(     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

)  (     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

)  (      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
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Table 3:- Results in ten runs of odd parity function divided in best fitness and worst fitness, highlighted in red the 

best solution had founded. 

Run Best Fitness Worst Fitness Generations 

1 28 33 2657 

2 24 31 4987 

3 27 29 18295 

4 28 30 22670 

5 27 32 4366 

6 27 29 35065 

7 27 32 9128 

8 27 29 24184 

9 27 29 7528 

10 29 35 4946 

Average 27.1 30.9 13382.6 

Standard deviation 1.286 1.972 10428.624 

 

 

Comparator function:- 

As a result of the number of inputs in this example, individual‟s chromosome has a number of two hundred and four 

genes, which is why it contributed to a longer time in the execution of the algorithm in relation to the other two test 

cases presented. 

 

The average fitness for this function in relation to the Table 4 tests was 59.9, with a standard deviation of 4.989 and 

an average of more than 2,000 generations 

 

The magnitude comparator is an arithmetic function that compares the magnitudes of two binary integers in the form 

<i1, i2> and <i3, i4>. The output of the function has resulted in „1‟ when (i1 2) + (i2 1) > (i3 2 + i4 1). 

 

In this example of four variables, the initial population generated had high fitness values, and just under twenty-two 

thousand generations. For example, “run 2” in this test yielded an initial population with values approaching 7,000 

fitness. As in the other test cases, the best and worst five runs of Fig. 7, maintains a similar pattern across the tests, 

when algorithm generates good individuals randomly in the initial population and when it does not generate. 

 

 
Figure 7:- Fitness evolution in five runs comparator function plotting best and worst fitness.  
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Table 4:- Results in ten runs of comparator function divided in best fitness and worst fitness, highlighted in red the 

best solution had founded. 

Run Best Fitness Worst Fitness Generations 

1 56 67 3223 

2 60 76 1869 

3 41 75 2093 

4 66 86 1513 

5 71 93 1939 

6 57 69 2009 

7 57 75 1357 

8 54 90 2190 

9 57 69 1442 

10 58 71 2604 

Average 59.9 77.1 2023.9 

Standard deviation 4.989 8.826 536.892 

 

The GA tests for the comparator function were poor in relation to the result obtained by the map of Karnaugh and 

Quine-McCluskey. The tabular methods obtained a cost of 23 BCs resulting in the circuit of only four logic gates. 

On the other hand, the result of the GA obtained in its best execution between the realized ones, a cost of 41 BCs.  

The resulting Boolean expression obtained by the tabular methods (Karnaugh map and Quine-McCluskey) and GA 

for the majority function is given by   ̅     ̅    ̅ ̅ e 

(  (  (      ̅̅ ̅̅ ̅̅ ̅̅  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)  (  (  ((      ̅̅ ̅̅ ̅̅ ̅̅  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)  (((      ̅̅ ̅̅ ̅̅ ̅̅  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  (        ̅̅ ̅̅ ̅̅ ̅̅  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  (    ̅̅ ̅̅ ̅̅ ̅̅  )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )        ̅̅ ̅̅ ̅̅ ̅̅  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

), 

respectively. 

 

Table 5 summarizes the general results comparing GA present in this paper, GA in Shackleford, et. al. (2000) and 

tabular methods. 

 

Table 5:- General results of experimental test and comparing with original paper and a classical method. 

  GA (SHACKLEFORD et. al. 2000) Quine-McCluskey 

Majority function BC 13 - 13 

Gates 4 - 4 

Odd parity function BC 27 24 33 

Gates 7 8 11 

Comparator function BC 41 20 23 

Gates 12 7 8 

 

The results in this paper were worst of comparison, due a lack of clarity of descriptions parameters used by 

Shackleford, et. al. (2000). As described in Shackleford, et. al. (2000) the complexity of problem increases too much 

with addition of inputs, charactering as NP-Problem.  

 

Conclusion and final remarks:- 
The goal of this paper was revisit the optimization of multilevel Boolean expression using GA. For this, was used 

the modeling approach in Shackleford, et. al. (2000). The method, how was implemented, had showed to be weak 

and with poor results compared with Shackleford, et. al. (2000) and tabular methods, such as Quine-McCluskey and 

Karnaugh map. 

 

The first tests performed with the GA determined some changes in GA settings throughout development. One of the 

changes made was to the definition of the stop criteria. The results obtained with these observations allowed to 

conclude that a configuration not suitable for the problem can compromise the efficiency of the GA and 

consequently the achievement of good results. 

 

The results obtained during the development of the work including those presented showed that GA can achieve in 

most cases better results in the task of minimizing combinational circuits in relation to the traditional tabular 
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methods described throughout the work, even with this disadvantage of owning slow processing. For this reason, the 

selected test cases needed to be more basic and have fewer variables. 
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