

Journal homepage: http://www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

ON EQUIVALENCE OF A-SET AND AB- SET DUE TO DONTCHEV AND TONG

¹P.L. POWAR, ²PRATIBHA DUBEY

Department of Mathematics and Computer Science, R.D.V.V., Jabalpur
 St. Aloysius College, Sadar, Jabalpur

.....

Manuscript Info	Abstract
Manuscript History:	Erdal Ekici, Takashi Noiri (Decomposition of continuity, α -continuity and
Received: 15 April 2014 Final Accepted: 12 May 2014 Published Online: June 2014	AB-continuity, Chaos, Solitons and Fractals $41(2009) 2055 - 2061$) have introduced the interesting concepts of A-set and AB-set for defining generalized versions of continuity viz. A-continuity and AB-continuity. In this paper, it has been noticed that the conditions applied to derive A-set and
Key words: Semi-open sets, A-sets, AB-sets	AB-set with respect to a given topology emerge the same family of the sets and hence the concepts of A-continuity and AB-continuity coincide.
Corresponding Author	
P.L. POWAR	Copy Right, IJAR, 2014,. All rights reserved.

1. INTRODUCTION

The idea of C-sets, η -sets, A-sets, AB-sets, AC-sets, α -AB-sets has been initiated by Noiri et al. [10] and Ekici et al. [6]. By using the concept of these sets they have defined [6] four generalized concepts of continuity viz. A-continuity, AB-continuity, AC-continuity and α - AB-continuity.

In the present paper, it has been studied that the concepts of A-set and AB-set are equivalent. In fact, we have established the **necessary and sufficient condition** for the set to be a semi-regular set which in turns establishes the equivalence of two families of the sets viz. A-sets and AB-sets.

Hence, in view of our assertion, it follows directly that the two different definitions of A-continuity and AB-continuity introduced in [6] turned equivalent.

2. PREREQUISITES

Throughout this paper (X, τ) and (Y, σ) denote topological spaces on which no separation axioms are assumed. F_X and F_Y denote collection of closed sets corresponding to the topologies on X and Y respectively. For a subset A $\subset X$, the closure and the interior of A are denoted by cl(A) and int(A) respectively. A function $f: X \to Y$ denotes a single valued function of a topological space (X, τ) into topological space (Y, σ) .

We recall the following definitions, which are required for our study.

DEFINITION 2.1 A subset S of a space (X, τ) is called **Semi-open** [8] if $S \subseteq cl(int(S))$. The complement of Semi-open set is called **Semi-closed set**. The collection of Semi-open sets is denoted by SO(X).

EXAMPLE 2.1 Consider a set $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{a, b\}, \{a\}, \{b\}\}, F_X = \{\phi, X, \{c\}, \{b, c\}, \{a, c\}\}$. Let $A = \{a, c\}$ be a subset of X.

Then, int $\{a, c\} = \{a\}$, $cl(int\{a, c\}) = cl\{a\} = \{a, c\} \Rightarrow \{a, c\} \subseteq cl(int\{a, c\})$. Hence, A is semi-open and complement of $\{a, c\}$ is $\{b\}$ which is semi-closed.

DEFINITION 2.2 A subset S of a space (X, τ) is called **semi-regular** if it is both semi-open and semi-closed. The

collection of all semi-regular sets in X is denoted by Sr(X) (cf.[6]).

EXAMPLE 2.2 Consider a topological space $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, F_X = \{\phi, X, \{b, c\}, \{a, c\}, \{c\}\}$. Let $A = \{b, c\}$ be a subset of X, then int $\{b, c\} = \{b\}$ and $cl(int \{b, c\}) = cl \{b\} = \{b, c\} \Rightarrow \{b, c\} \subseteq cl(int \{b, c\}) = \{b, c\}$.

Hence, A is a semi-open set. In order to establish that A is semi-closed, it is enough if we show that complement of $A = \{a\}$ is semi-open. Since, $\{a\} \in \tau$, and every open set is semi-open, hence, $\{a\}$ is semi-open. Therefore, A is semi-regular set.

REMARK 2.1 Collection of semi-regular sets of X does not form a topology on X.

EXAMPLE 2.3 Consider a topological space $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, F_X = \{\phi, X, \{b, c\}, \{a, c\}, \{c\}\}$. It is easy to verify that the collection of semi-regular sets of X viz. $Sr(X) = \{X, \phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$ precisely. It may be noted that the collection of Sr(X) is not a topology on X.

The following concepts of AB-set and A-set have been introduced in [6]. We focus our study on these two different classes of sets.

DEFINITION 2.3 A subset H of a space (X, τ) is called

- An **AB-set** [11] if $H (\in AB\text{-set}) = \{A \cap B, \text{ where } A \text{ is open and } B \text{ is semi-regular}\}.$
- An A-set [5] if $H (\in A\text{-set}) = \{A \cap B : A \in \tau, B = cl(int(B))\}.$

For a topological space X, we denote $F_A = \{A \text{-set in } X\}, F_{AB} = \{AB \text{-set in } X\}.$

EXAMPLE 2.4 Consider a topological space $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{a\}\}, F_X = \{\phi, X, \{b, c\}\}$. It is easy to see that there are only two open sets say X and ϕ which are semi-regular. Given $A = \{a\} \in \tau$ is open in X, then, $\{a\} \cap X = \{a\} \in \mathbf{F}_{AB}$.

EXAMPLE 2.5 Consider a topological space $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, $F_X = \{\phi, X, \{b, c\}, \{a, c\}, \{c\}\}$. Consider $A = X \in \tau$ open in X and $B = \{a, c\} \subset X$. Then, $int\{a, c\} = \{a\}$ and $cl(int\{a, c\}) = cl\{a\} = \{a, c\}, B = \{a, c\} = cl(int\{a, c\}) = \{a, c\}$. Now we see that $A \cap B = X \cap \{a, c\} = \{a, c\} \in F_A$.

DEFINITION 2.4 A function $f: (X, \tau) \to (Y, \sigma)$ is called **A-continuous** if $f^{-1}(G) \in F_A$ for each $G \in \sigma$ (cf [6]).

EXAMPLE 2.6 Consider the topological spaces $X = \{a, b, c, d\}$, $Y = \{1, 2, 3, 4\}$ with their corresponding topologies $\tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}, \sigma = \{Y, \phi, \{2, 3\}, \{1, 2, 4\}, \{2\}\}$ respectively. $F_A = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$. Define a function $f : X \to Y$ as

$$f(x) = \begin{cases} 1, & \text{for } x = a \\ 2, & \text{for } x = b \\ 3, & \text{for } x = c \\ 4, & \text{for } x = d \end{cases}$$
(2.1)

In view of (2.1), for $G \in \sigma$, we get

$$f^{-1}(G) = \begin{cases} X, & \text{for } G = Y \\ \varphi & \text{for } G = \varphi \\ \{b\}, & \text{for } G = \{2\} \\ \{b, c\} & \text{for } G = \{2,3\} \\ \{a, b, d\} & \text{for } G = \{1,2,4\} \end{cases}$$
(2.2)

Hence, we notice that $f^{-1}(G) \in F_A$ and conclude that f is **A-continuous** (when we appeal to Definition 2.4), but not continuous.

DEFINITION 2.5 A function $f: (X, \tau) \to (Y, \sigma)$ is called **AB-continuous** if $f^{-1}(G) \in F_{AB}$ for each $G \in \sigma$. (cf [6]).

EXAMPLE 2.7 Consider the topological spaces $X = \{a, b, c, d\}$, $Y = \{1, 2, 3, 4\}$ with their corresponding topologies $\tau = \{X, \phi, \{b\}, \{d\}, \{b, d\}\}$, $\sigma = \{Y, \phi, \{3, 4\}, \{1, 3, 4\}\}$ respectively. $F_{AB} = \{X, \phi, \{b\}, \{d\}, \{b, d\}\}$,

 $\{b, c\}, \{a, d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}\}$. Define a function $f: X \to Y$ as

$$f(x) = \begin{cases} 1, & \text{for } x = a \\ 2, & \text{for } x = b \\ 3, & \text{for } x = c \\ 4, & \text{for } x = d \end{cases}$$
(2.3)

In view of (2.3), for $G \in \sigma$, we get

$$f^{-1}(G) = \begin{cases} X, & \text{for } G = Y \\ \phi & \text{for } G = \phi \\ \{c, d\} & \text{for } G = \{3, 4\} \\ \{a, c, d\} & \text{for } G = \{1, 3, 4\} \end{cases}$$
(2.4)

Hence, we notice that $f^{-1}(G) \in F_{AB}$ and conclude that f is **AB-continuous** (when we appeal to Definition 2.5), but not continuous.

REMARK 2.2 Collection of AB-sets, A-sets, do not form a topology on X.

The following result play a crucial role in establishing the equivalence of the classes F_{AB} and F_{A} .

THEOREM 2.1 Let A be a subset of the topological space X. Then $x \in \overline{A}$ if and only if every open set U containing x intersects A (cf.[9], Theorem 17.5, page 96).

3. ASSERTION DUE TO EKICI AND NOIRI

Using the concepts of AB-set and A-set, Ekici et al. [6] have concluded the following assertions:

- A-set \Rightarrow AB-set. (cf.[5], [11])
- A-continuity \Rightarrow AB-continuity.

4. MAIN RESULTS

Equivalence of the concepts of A-sets and AB-sets is a direct consequence of the following Lemma which is the main objective of this paper.

LEMMA 4.1 Let (X, τ) be the topological space then B be semi-regular with respect to the topology τ on X if and only if B = cl(int(B)).

PROOF OF THE LEMMA Referring the definitions of A-sets and AB-sets from [6], we consider

$$F_A = \{A \cap B : A \in \tau, B = cl(int(B))\}$$

$$(4.1)$$

$$F_{AB} = \{A \cap B : A \in \tau, B \text{ is semi - regular}\}$$
(4.2)

We have to show that, B is semi-regular \Leftrightarrow B = cl(int(B)). It is enough if we show that (4.1) \cong (4.2).

We first show that $(4.2) \Rightarrow (4.1)$.

B is semi-regular \Rightarrow B is both semi-open and semi-closed (cf. [6]).

 \Rightarrow B, CB are both semi-open.

(Throughout our further discussions C denotes the complement of a set).

Since B is semi-open, by applying the definition 2.1, we have

$$B \subseteq cl(int(B)) \tag{4.3}$$

Similarly, since CB is semi-open, we have $CB \subseteq cl(int(CB))$ which is same as

$$B \supseteq C[cl(int(CB))] \tag{4.4}$$

In view of (4.4), it is enough if we show the following :

$$C[cl(int(CB))] \supseteq cl(int(B))$$
(4.5)

Let $x \in cl(int(B))$. Then every neighborhood V_x of x intersects int(B) (cf. Th. 2.1, see also [9]))

 \Rightarrow V_x \cap int(B) $\neq \phi \Rightarrow$ y \in V_x \cap int(B) \Rightarrow y \in V_x and y \in int(B).

Since
$$y \in int(B)$$
 then $y \in cl(int(B))$ (4.6)

Since, $y \in int(B)$, \exists a neighborhood V_y of y such that $V_y \subseteq B$

 $\Rightarrow V_v \cap CB = \phi \Rightarrow V_v \cap int(CB) = \phi \Rightarrow y \notin cl(int(CB))$ It is clear that

$$y \in C[cl(int(CB))]$$
(4.7)

Referring conclusions (4.6) and (4.7), we obtain

$$cl(int(B)) \subseteq C[cl(int(CB))] \subseteq B \implies cl(int(B)) \subseteq B \quad (cf. [4.4])$$

$$(4.8)$$

Combining (4.3) and (4.8), we get B = cl(int(B)).

We now establish $(4.1) \Rightarrow (4.2)$.

Given B = cl(int(B)), this shows that $B \subseteq cl(int(B))$, this implies B is semi-open. Also, $B \supseteq cl(int(B))$ and it is already proved that $cl(int(B)) \subseteq C[cl(int(CB))]$. Hence

$$B \supseteq C[cl(int(CB))]$$
(4.9)

Taking the complement in (4.9), we get

$$CB \subseteq cl(int(CB)) \tag{4.10}$$

In view of (4.10), CB is semi-open, therefore B is semi-closed. Hence B is both semi-open and semi-closed. This shows that B is semi-regular.

Thus, $(4.1) \Rightarrow (4.2)$. We therefore conclude that $(4.1) \cong (4.2)$.

THEOREM 4.1 Let (X, τ) be the topological space. Consider the collection of A(X) (cf. [6]) and AB(X) sets (cf.[6]) defined as follows :

$$A(X) = \{A \cap B : A \in \tau, B = cl(int(B))\} \cong F_A(say)$$

 $AB(X) = \{A \cap B : A \in \tau, B \text{ is semi-regular }\} \cong F_{AB}$ (say)

Then, $F_A \cong F_{AB}$.

PROOF OF THE THEOREM It is a direct consequence of Lemma 4.1.

CONCLUSION By establishing the necessary and sufficient condition for the semi-regularity of sets, several results depending on the concept of A-sets and AB-sets may be presented in the concise form.

REFERENCES

- Abd El-Monsef M. E., El-Deeb S. N., Mahmoud R. A., β-open sets and β- continuous mapping, Bull Fac Sci Assiut Univ. A 1983, 12, 77 – 90.
- [2] Andrijevic D., Semi Pre Open Sets, Mat. Versnik, 1986, 38, 24 32.
- [3] Andrijevic, D., On b-open sets, Math Bech 1996, 48, 56 64.
- [4] Beceren Y., Noiri T., Some functions defined by α-open and pre-open sets, Chaos, Solitons and Fractals, 2008, 37, 1097 - 1103.
- [5] Dontchev J., Between A and B-sets, Math Balkanica (N.S) 1998, 12, 295-302.
- [6] Ekici E., Noiri T., Decompositions of Continuity,α-continuity, and AB-continuity, Chaos, Solitons and Fractals, 2009, 41, 2055 2061.
- [7] Erguang Y, Pengfei Y. On decomposition of A-continuity, Acta. Math. Hunger 2006, 110 (4), 309 313.
- [8] Levine N., Semi-open sets and semi-continuity in topological spaces, Am. Math. Monthly, 1963, 70, 36 41.
- [9] Munkers J. R., Topology, Second Edition, Pearson Education Asia.
- [10] Noiri T., Sayed O.R., On decomposition of continuity, Acta. Math. Hunger 2006, 111 (1-2), 1-8.
- [11] Tong J., On decomposition of continuity in topological spaces, Acta Math Hunger 1989, 54, 51-55.