
ISSN: 2320-5407                                                                                          Int. J. Adv. Res. 4(12), 1-14 

1 

 

Journal Homepage: - www.journalijar.com 

     

 

 

 

Article DOI: 10.21474/IJAR01/2357 

DOI URL: http://dx.doi.org/10.21474/IJAR01/2357 

 

RESEARCH ARTICLE 
 

VOLUME-BASED SPECTRUM SENSING FOR COGNITIVE RADIO USING MULTIPLE ANTENNAS. 

 

B.Swarna Kumar
1
 and C. Subhas

2
. 

1. M. Tech (DECS), Sree Vidyanikethan Engineering College.   

2. Professor in ECE & Dean (Academics), Sree Vidyanikethan Engineering College. 

…………………………………………………………………………………………………….... 

Manuscript Info   Abstract 

…………………….   ……………………………………………………………… 
Manuscript History 

 
Received: 18 October 2016 
Final Accepted: 20 November 2016 
Published: December 2016 
 

Key words:- 
Cognitive Radio, Spectrum Sensing, 

Volume-based method, Gamma 

distribution.  

 

 

 

In this paper, we consider the use of Spectrum Sensing. The noise and 
primary user signal assumed as independent complex zero-mean, 

Gaussian random variables. The volume-based method for Spectrum 

sensing is analyzed, it can provide the properties of constant false 

alarm rate, and free of noise uncertainty. 

By comparing first and second moments for signals active and signals-

deactivate hypothesis together with using Gamma distribution 

approximation and derive false alarm and detection probabilities. 

In the sense of detection performance, we compare Proposed method, 

Hadamard ratio test, AGM, John‟s method and ED. 
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Introduction:-  
Cognitive radio(CR) defined as an intelligent wireless communication system, it provides more proficient 

transmission by allowing Secondary Users(SUs) to utilize the unused spectrum segments. The spectrum 

management is composed of four major steps as defined in [1]: sensing, decision making, sharing, and mobility. 

Among these, the SS and decision making are the most important constituents for the establishment of CR networks. 

CR users should detect the Primary user (PU) systems to find the spectrum holes or unused spectrum to utilize them 
effectively cognitive access. At the same time, they should prevent interference to the PUs due to their cognitive 

access of the channels [2]. 

 

It has unburdened in [3] that the current policies of fixed spectrum allocation do not fully utilize the available 

spectrum.  

 

CR, whose main idea is to sense the spectrum over a wide range of frequency bands and use the temporally 

unengaged groups for capable wireless transmission. It is a promising epitome to increase the spectrum 

manipulation efficiency. In a CR network, when the vast cycle resources of a PU not occupied, an SU is legitimate 

to use them. That is to say, and the SU desires to perceive the occurrence of the PU scrupulously. The Generating as 

a binary hypothesis testing problem and is particularly challenging for small sample size and low signal-to-noise 
ratio (SNR) circumstances. 

 

For the situation of signal absence, the noticed data only consist of noise and are usually given to be, Independent 

and identically distributed (IID). It is perceptible that the energy and correlation structure of the observations differ 

when the PU signal is present [4]. As a result, spectrum sensing can be concluded by making use of these 

dissimilarities. When the noise power is known, the energy detector(ED) [6,] has been shown to be optimal for the 

IID PU signals. The eigenvalues of the obtained signal sample covariance matrix (SCM) in the signal occurrence 
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situation are more spread out than those in the noise only case, which corresponds to a scaled identity matrix in the 

asymptotic sense. The spread-out Eigen-spectrum results from the connection contraction characteristic in the 

covariance matrix. As a consequence of many eigenvalues-based detectors which exploit the correlation for 

spectrum, sensing has been proposed in the literature [13]. Derived the framework of generalized likelihood ratio 

test (GLRT) [16], the arithmetic-to-geometric mean (AGM) method [17] can identify reliably the correlated signals 

embedded in IID noise. AGM algorithm has its root in the maximum likelihood (ML) theory which turns out to be 
inefficient when the temporal and spectacular amplitude are tiny, that is, the hypothetical verdict threshold cannot be 

precisely indomitable. On the other hand, the maximum-to-minimum eigenvalues (MME) approach is heuristically 

developed to test if the SCM corresponds to a particularity conditions or its applicator alternative with the use of its 

greatest extent and smallest amount eigenvalues. Since not all Eigen- values are occupied, its exposure enactment is 

incredibly perceptive to weak applicatory signals and tiny samples scales. Moreover, the reckoning of the 

hypothetical threshold for the MME algorithm relies on the dispersion of the limit and smallest eigenvalues in the 

structure of random matrix theory (RMT) [18]. In practice, the SU receivers are usually uncelebrated, making the 

noises at different antennas to be non- uniform. 

 

Some approaches have suggested for robust SS in the literature, such as the GLRT test [18], independence test [17], 

Hadamard ratio test, locally most important invariant test(LMPIT)[17] and volume-based approaches [19]. The 

underlying idea is that the determinant of SCM or volume differs dramatically between the signal absence and 
signal-presence situations It is worth pointing that the volume-based detector developed [18] for real-valued 

observation, and its detection enactment has not yet been critiqued, which is the officer involvement of these work. 

By comparing first and second consequences of signal absence and signal-presence hypothesis simultaneously with 

using the Gamma distribution approximation, we originate accurate analytic formulae for the false alarm and 

detection probabilities for the situation of IID noise. It enables us to develop the theoretical decision threshold for 

possible primary signal detection as well as receiver operating characteristic (ROC) for performance evaluation. 

 

The rest of the paper organized as follows. The problem formulation of spectrum sensing conferred in section II. 

Volume-based determined in section III. Simulation results presented in section IV. Conclusions presented in 

section V.  

 

Problem Formulation:- 
Signal model:- 
Consider a multipath fading channel model and assume there 1 PU and (d-1) interference users with d >=1, and each 

of them equipped along with a single antenna in a CR network. The intervention users are now counted as PUs 

because they cover the same channel, that is, there are d PUs. To find the temporally unoccupied channel, an SU 

receiver with M antennas desires to scrutinize this channel. Denote the signal absence and signal-presence 

hypothesis by H0 and H1, respectively. 

 

SU with M antennas tries to detect the signals emitted by d PUs with the single antenna. 

       Xt=H St + nt                                                      (1) 

 

Here H ϵ C
M X d

 denotes the channel matrix between the PUs and SU, which is stranger deterministic throughout the 

wise period, and the 
Xt =[x1(t) ,……xM(t)]T                                     (2) 

 

St =[S1(t),……..Sd(t)]
T                                     (3) 

 

nt =[n1(t) …….,nM(t)]T                                     (4) 

 

and the consideration, signal, and noise vectors, correspondingly, with (.)T being transposed operator. We assume 

that sounds are statically independent and satisfy Si(t) ~ N( 0,σ2
Si)(i=1,….,d) with σ2

Si being the ith unknown signal 

variance, and that Ni(t) ~ N(0, Ti) (i=1….M) with Ti being the unknown noise variance. In signal –absence hypothesis 

H0, the population covariance matrix of the observation xt is Σ=E[xt xt
H]=diag (T1….TM). 

 

However, presence of primary signals destroys this diagonal structure, leading to  
Σ= H ΣsH

H +diag(T1…..TM)                                        (5) 
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Here Σs=E[St St]. 

 

When signal absence and signal presence SS issues cast as the binary hypothesis test, there four it can be written as 

H0=Σ = diag(T1,…..TM)                                              (6) 

H1=Σ > diag(T1,…..TM)                                              (7) 

Here H0 is denoted as signal absence and H1 is denoted as signal presence. 
 

Sensing solution:- 

Σ is the hyper volume of the geometry determined by the row vectors of Σ. For example, let us consider the scenario 

of three receiving antennas where the observed data with zero mean and unity variance may be independent, 

correlated or coherent. 

 

Here corresponding covariance matrices are the 3x3 identity matrix, full rank matrix, and list one arbitrary pattern. 

For namesake, it can be called as the cube, parallelepiped, and line. It formed by the row vectors of the matrices is 

drawn in Fig.1. 

 

Here, the volume of the cube, parallelepiped, and line, are denoted by v1, v2, and v3, in the sense of cube represented 

as absence signal situation, whereas parallelepiped and line can represent a signal present case. For signal-absence 
situation, the covariance matrix is a 3x3 identity matrix, that is v1=1, and signal presence situation v2 < v1, v1 =0. 

 

Here to utilize the correlation structure for practical spectrum sensing, we need to calculate the sample covariance 

matrix(SCM) rather than the population covariance matrix Σ; it represented as 

                                                          𝑆 =
1

𝑁
 𝑥𝑡

𝑁
𝑡=1 𝑥𝑡𝑇

                                                                      (8) 

 

And the volume of geometry with unity edge is |D-(1/2)S D-(1/2))|, consequently we have  

         𝜉𝑉𝑂𝐿   ≜
 𝑆 

|𝐷|

                                                                                    (9) 

For the situation of signal absence, |D-(1/2)S D-(1/2))| asymptotically get the identity matrix as the number samples tend 

to infinity, leading the volume of one. For the situation of signal presence, the correlation structure gets leads to the 

notable reduction of the total amount. So we compare the predetermined threshold and volume of the geometry, 

                                                    𝜉𝑣𝑜𝑙 
𝐻0

≷ 
𝐻1

ϒ𝑣𝑜𝑙                                                   (10) 

 

Here volume-based detector offers the same expression as the Hadamard ratio test but with a different diagonal 

matrix in the denominator. The Hadamard ratio rules given below   

                                                  ᶓ𝐻𝐷𝑀 ≜
 𝑆 

 𝐺 
 
𝐻0

≷ 
𝐻1

ϒ𝐻𝐷𝑀                                      (11) 

 

In this configuration, ϒ𝑣𝑜𝑙 is approximately equal to the ᶓℎ𝑚𝑑. 

On another hand, iPI is much larger than the iiRII due to the correlation, making 𝜉𝑣𝑜𝑙 much smaller than ᶓℎ𝑚𝑑 under 

H1. 
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Fig 1:- Volume comparison for uncorrelated, correlated, coherent (a) v1=1; (b) v2 < v1 (c) v1=0. 

 

To consider the different behaviors of the volume-based and Hadamard ratio approaches, the empirical probability 

density functions (PDFs) of the test statistics for these two methods plotted in fig.2. In this configuration we are 

taking four antennas, three primary signals with powers [-2,-3, -4] Db are assumed to exist in the sensed channel, 

and the noise is IID with unity power. In fig.2(a), the number samples sufficiently large. Here N=5000, so that the 

SCM is the very accurate estimate of the population covariance matrix, and for absent signal situation, the 

covariance matrix is an identity matrix, it means that volume-based method is approximately equal to the Hadamard 

ratio, as drawn in fig. 2 (a). It seemed that the PDF under H1, denoted as p1, is much further away from the PDF 

under H0, denoted as p0, volume based detector than that of the Hadamard ratio rule. When the number samples 
become small, like N=50, the SCM is the inaccurate estimate of the population one. These numerical results 

represented in fig.2(b).The thereby implies that the volume-based algorithm can detect the PUs correctly with higher 

probability than the Hadamard ratio approach especially in the small sample and low signal to noises ratio situations.  

 

In theoretical analysis, the volume-based test statics is modified as                                                      

                                                    ᶓ ≜ −𝑙𝑜𝑔
 𝑆 

 𝐷 
 
𝐻0

≷ 
𝐻1

ϒ                                                (12) 

Here ϒ is the decision threshold of the volume-based detector, the next section, derived the Gamma distribution 

approximation, accurate analytic formulae derived for false alarm probability, detection probability, the theoretical 

decision threshold as well as ROC. It enables us accurately to determine the theoretical decision threshold for the 

practical SS.  

 

Performance analysis;- 
In this one, the analytic formula for the false-alarm probability, detection probability, decision threshold as well as 

ROC is derived by assuming the additive noise is IID. 

 

Here we are trying to first and second moments under the signal activation hypothesis and signal deactivation 

theory, and first, we derived the Detection probability of the volume-based method. 

 

Detection Probability:- 

Let us considered the p1(y) be the PDF of the statistic variable ξ under presence signal hypothesis (H1), which is 

determined the following proposition. 

 

Preposition 1:- 
For number of antennas M and sample numbers N with N≥M, the first moment Gamma approximation to the PDF of 

ξ under signal presence hypothesis(H1) is  

                                           P1(y )ᴝ 
𝑦𝛼1−1𝛽1−𝛼1𝑒−𝑦/𝛽1

𝛤(𝛼1)
  , yε[0,00]                                 

   (13) 

 

Here Γ(.) is a complete function. 

                                                      𝛼1 =
𝜇1

2

𝜈1
2                                                       (14a) 

                                          β1 = 
𝜈1

2

𝜇1
                                                                      (14b) 
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μ1 and ν1 being the second order approximation to the mean of ξ and the first-order approximations to the variance of 

ξ.  Detection probability is computed as  

                                         Pd(ϒ) ≜ Prob(ξ<ϒ| H1 ) = F(ϒ;α1 ,β1)                        (15) 

 

Provide that the population covariance matrix Σ gave, and 
F(ϒ;α1,β1) is the cumulative distribution function (CDF) of Gamma distribution. From the constant false-alarm 

rate(CFAR) perspective, the decision threshold ϒ usually is determined under the absence signal hypothesis, it must 

be resolute and independent of the noise variance.  

 
Fig.2:- Probability density function and threshold M = 4 , d = 3 and SNR = [-2, -3, -4 ]db.(a) N=5000. (b)N = 50. 

 

Detection probability:- 

False-alarm probability determined by the following proposition, 

Proposition 2:For any antenna number M  and sample number N with N ≥ M , the two-first-moment Gamma 

approximation to the PDF of ξ under H0 is  

                                     P0(y)ᴝ
𝑦𝛼0−1𝛽0−𝛼0𝑒−𝑦/𝛽0

𝛤(𝛼0)
  , yε[0,00]                                 (16)       

 Here  

                                                   𝛼0 =
𝜇0

2

𝜈0
2                                                              (17a) 

                                              β1 = 
𝜈0

2

𝜇0
                                                                 (17b) 

 

With μ0 and ν0 being the second order approximation to the mean of ξ and the first order approximation to the 

variance of ξ. 

 

It follows from the Proposition 2 that the false-alarm probability is determined as 

                                PFA(ϒ) ≜ Prob(ξ < ϒ | H0 ) = F(ϒ;α0 ,β0)                         (18) 
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Given a false-alarm probability Pfa, the decision threshold can be obtained by the numerically inverting F(ϒ;α0,β0). 

That is  

                                                    ϒ=F-1(PFA;α0 β0)                                                       (19) 

Here F-1(.) represents the inverse function of the F(.).  

 

And the mapping between the false-alarm probability and detection probability yields in ROC. Hence the analytic 
ROC formula for the volume-based test is  

                                       Pd= F[F-1=(Pf;α0, β0); α1 , β1]                                   (20) 

 

Numerical Results:- 
In this section, we are going to the discussion about the simulation results for analytic false alarm and detection 

probabilities. Moreover, the superiority of the volume-based approach over the representative methods for the 

spectrum sensing under the IID and non-IID noise conditions are demonstrated. 
 

Analytic False- Alarm and Detection Probability:-  

In this one, the accuracy of the analytic formulae for the false alarm and detection probabilities is numerically 

calculated. To comparison, exact false alarm and detection probabilities, which empirically determined by 105 

Monte Carlo simulation trials, are presented as well. 

 

In figure 3(a) plots the false-alarm probability versus decision threshold in the presence of IID noise. Here we are 

using the four antennas, and samples are [100,200,400]. Antennas can represent as M and samples can represent as 

N. In figure 3(a) Gamma approximation false-alarm probability is very accurate regarding fitting the empirical false 

alarm probability for IID noise. The simulation results for Gamma approximate and the empirical false alarm 

probabilities are depicted in fig3 (b) for M=6 and N= [200,400,600]. In this figure, we observed that the Gamma 
approximation PFA is very close to the exact one. This turn implies that the derived false-alarm probability provides 

the accurate theoretical calculation for practical spectrum sensing. 

 

Let us try the accuracy of the detection probability for the proposed Gamma approximation. Similarly, the exact 

detection probability empirically determined by 105 Monte Carlo simulations is also presented for comparison. The 

Presence of primary signals, the Rayleigh-fading channel is adopted to evaluate the accuracy of the derived Gamma 

Approximation Pd. 

 

The Rayleigh-fading situation, the columns of the channel matrix H follow a complex Gaussian distribution with 

zero mean and covariance matrix ɸ due to the correlation between the signals at the receiving antennas which cannot 

sufficiently space for physical size constraints. The correlated Rayleigh-fading channel model is able precisely to 

characterize the behavior of the working channel. The (K, l) entry of ψ is determined as follows 

                                         ɸkl  =  
𝐼0 ( 𝑘2−4п2𝑑𝑘𝑙

2 + 𝑗  4 п𝑘 sin  𝜓 𝑑𝑘𝑙     )

𝐼0  (𝐾)
        (k , l = 1,..M)(21) 

 
(a) 
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Where I0(.) denotes the zero-order modified Bessel function, k controls the width of the angles-of-arrival (AOAs) of 

the primary signal, impinging upon the receiving antennas of the SU. Which can vary from 0 up to 00 (extremely 

non-isotropic scattering), ψ Ɛ [-п,п) represents the mean direction of the AOAs, and dkl stands for the distance, which 

normalized on the wavelength λ, between the n-th and i-th antennas of the SU. 

 

The figure. 4 demonstrate the numerical results of the single primary signal in the Rayleigh fading channel and 
under the situation of IID noise. 

 

In this one M =4, N=100,200 to 300, and the power of the primary signal set as -5db. It simplified that the derived 

detection probability can accurately predict the detection performance for the volume-based approach. Fig4 (b) plots 

the Gamma approximate and exact detection likelihood of the volume-based detection method for IID noise. Here 

M=6, N=200,300 to 400, and the signal power are same as in Fig.4 (a). 

 
(b) 

Fig.3:- False alarm probability versus threshold in IID noise. (a) M =4 and N varies from 100,200 to 400. (b) M=6 

and N range from 200,400 to 600. 

 

The numerical results again validate the efficiency of the derived approximate Pd. These figures are plotting in the 

Fig. 5. 

 

The numerical results for three primary signals with powers of [-2,-3,-4] dB. And the number of antennas is 4 and 

the number of samples set as [100, 200, 400] in Fig.5 (a). Here we can observe that the proposed Gamma relative 

detection probability is quite precise regarding fitting the exact one. 

In Fig.5 (b). The number of antennas and some samples set as M=6 and N=[200, 400, 800], respectively. Here in 

this one, we are observed that the derived Pd is very accurate concerning the predicting the detection performance 

for the volume-based algorithm.  

 
4(a) 
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4(b) 

Fig.4. Detection probability versus threshold for three primary signals in IID noise. 𝜎𝑠1
2  =   -5db.(a) M=4  and N 

varies from 100, 200 to 300. (b) M = 6 and N varies from 200, 300 to 400. 

 
5(a) 

 
5(b) 

Fig.5:- Detection probability versus threshold for three primary signals in IID noise. [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ] db. (a) M= 4 

and N varies from 100, 200 to 400. (b) M = 6 and N varies from 200,400 to 800. 
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Detection Performance:- 

Here we have derived robustness as well as the accuracy of the volume-based detection algorithm for complex-

valued observed data by comparing its empirical ROC with those other representative methods. In particular, the 

decision threshold is varied to calculate the false-alarm probability and its corresponding detection probability, 

leading to the ROC curve, for the purpose of comparison, the numerical results of the John's, AGM (or ST ), 

Hadamard ratio as well as ED detectors are provided. All the numerical results obtained from 105 Monte Carlo trials. 
 

The ROC of the volume-based, AGM, John‟s, Hadamard ratio and Energy detection and IID noise drawn in 

Figure.6.  

 

In fig. 6(a) where the number of antennas M=4, some samples N=10. The number of primary signals is one, and its 

power equals to 8 dB, the volume-based approach is superior to the AGM and Hadamard ratio methods but inferior 

to John's detector which is known to be the locally most powerful invariant test for sphere city. Moreover, all of 

them are inferior to the actual noise variance based ED approach.  

 

Similarly, in Fig. 6(b) where the number of antennas M = 6, number of samples N = 10, number of primary signals 

increases to three and their powers are set as [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ] = [5, 2, 0] dB.  

 

It indicates that the volume-based detector surpasses the AGM and Hadamard ratio methods but is not as accurate as 

John's approach in the scenario of IID noise. However, as the sample number increases to 50, the volume-based 

algorithm can provide the same accuracy as John's algorithm which has been proved to be the more potent for the 

small sample case.  

 
6 (a):- 

 
6(b):- 
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6(c):- 

Fig.6:- ROCs of various detectors for Rayleigh fading channel in IID noise. (a) M =4, N =10, d = 1 and  𝜎𝑠1
2  = 8 db, 

(b)  M = 4, N = 10, d = 3 , and [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ] = [5, 2, 0]db, (c) M = 4, N = 50, d =3 ,and [𝜎𝑠1

2  , 𝜎𝑠2
2  , 𝜎𝑠3

2  ] = [0, -3, -
5]db. 

 

Similarly in Fig. 7(a) where the numbers of antennas M = 4 number of samples N  = 10, primary signal d = 1, and 

its power equals 8db, and different noise models namely non-IID noise. Under such a sound condition, the volume-

based detector is capable of offering the best detection performance among the blind methods. In turn, implies that 

the volume-based approach is superior to the Hadamard ratio method in accuracy and the AGM and John's schemes 

in robustness against the deviation of IID noise. In fig. 7(b) where the numbers of antennas M= 4 and number of 

samples N = 10, primary signals increases to 3 and its powers set as [𝜎𝑠1
2 , 𝜎𝑠2

2 , 𝜎𝑠3
2  ] = [5, 2,0]db, and different noise 

models namely non-IID noise. Under this condition, we plotted volume-based approach was superior to the 

Hadamard ratio method in accuracy and the AGM and John's schemes in robustness against the deviation of IID 

noise. In fig. 7(c) where the numbers of antennas M = 4 and number of samples N = 30, d = 3, and its powers are set 

as [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ] = [0, -3 , -5] dB, and with non-IID noise. Under this condition, we plotted volume-based approach 

was superior to the Hadamard ratio method in accuracy and the AGM and John's schemes in robustness against the 
deviation of IID noise. 

 

Similarly in Fig. 8(a) where the number of antennas M = 6, and some samples N = 10, primary signal d=1, and its 

power equals 8db, and noise models namely IID. Under such a sound condition, the volume-based method is 

superior to the AGM and Hadamard ratio schemes but inferior to John's system in detection performance. In fig. 

8(b) where the number of antennas M = 6, number of samples N = 10, and primary signals increases to 3 and its 

powers as set as [𝜎𝑠1
2 , 𝜎𝑠2

2 , 𝜎𝑠3
2  ]= [5, 2, 0] dB, and different noise models namely IID. Under such a sound condition, 

the volume-based method is superior to the AGM and Hadamard ratio schemes but inferior to John's  system in 

detection performance. In fig. 8(c) where the number of antennas M = 6, some samples N = 50,  and primary signals 

increases to 3 and its powers as set as [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ]=[0, -3 , -5]db with IID noise. Under the situation of these 

conditions, we plotted volume-based method was superior to the AGM and Hadamard ratio schemes but inferior to 

John's system in detection performance.  
 

Similarly in Fig. 9(a) where the number of antennas M = 6,  number of samples N = 10,  the primary signal d=1, and 

its power equals to 8 dB with non-IID noise. Under these conditions the volume-based detector out-performance the 

robust Hadamard ratio test and non-robust AGM as well as John‟s approaches in detection accuracy. In fig. 9(b) 

where the number of antennas M = 6, number of samples N = 50, and primary signals increases to 3 and its powers 

as set as [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ] = [5, 2 , 0] dB,, with non-IID noise. Under these conditions the volume-based detector out-

performance the robust Hadamard ratio test and non-robust AGM as well as John‟s approaches in detection 

accuracy. In fig. 9(c) number of antennas M = 6 , number of samples N = 50 , and primary signals increases to 3 and 

its power set as [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ] = [0, -3, -5] dB, with non-IID noise. Under this conditions, the volume-based 

algorithm is even superior to the ED scheme, as drawn in fig. 9(c). 
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7(a):- 

 
7(b):- 

 
7(c):- 

Fig. 7:- ROC of varies detectors for Rayleigh fading channel in non-IID noise.(a) M = 4, N = 10, d = 1 , and  𝜎𝑠1
2  = 

8db. (b) M = 4, N = 10, d =3 ,and [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ]=[5, 2, 0 ]db. (c) M = 4 , N = 30 , d = 3 ,and [𝜎𝑠1

2  , 𝜎𝑠2
2  , 𝜎𝑠3

2  ]=[0, -3, 

-5]db. 
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8(a):- 

 
8(b):- 

 
8(c):- 

Fig. 8:- ROC s of various detectors for Rayleigh fading channel in IID noise .(a) M = 6, N = 10 , d = 1, and  𝜎𝑠1
2  = 8 

db.(b) M = 6, N = 10, d = 3 , and [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ] = [5, 2, 0] db.(c) M =6 , N = 50 ,d =3, and [𝜎𝑠1

2  , 𝜎𝑠2
2  , 𝜎𝑠3

2  ] = [0, -3, 
-5]db. 
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                 9(a):- 

 
9(b):- 

 
9(c):- 

Fig. 9:- .ROC s of various detectors for Rayleigh fading channel in non- IID noise, (a) M = 6, N = 10 , d = 1, and  

𝜎𝑠1
2  = 8 db.(b) M = 6, N = 10, d = 3 , and [𝜎𝑠1

2  , 𝜎𝑠2
2  , 𝜎𝑠3

2  ] = [5, 2, 0] db.(c) M =6 , N = 50 ,d =3, and [𝜎𝑠1
2  , 𝜎𝑠2

2  , 𝜎𝑠3
2  ] = 

[0, -3, -5]db. 

Conclusion:- 
The volume-based method has derived for the IID noise; it is providing accurate theoretical threshold calculation 

and evaluating its sensing performance. Here we are taking first and second moments of signal active, signal in a 

current hypothesis; we can employ the Moment-matching method accurately derive the Gamma distribution.  
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By computing the exact first and second moments of the test statistic under the current signal hypothesis, we are 

capable of approximating the Gamma distribution for the volume-based test static, ending up with an accurate 

analytic expression for the detection probability.  
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