

# **RESEARCH ARTICLE**

## FORECASTING IMPORT DATA USING NON-LINEAR MODEL.

Rahela A. R, Yann T.S, Ching L. S, Yee K. K, Hoow T. W and Shao T. Y. Associate Professor, School of Quantitative Science, Universiti Utara Malaysia.

#### ..... Manuscript Info Abstract ..... When Malaysia government Manuscript History implemented GST in 2015, it raised the Received: 17 April 2018 import of Malaysia as GST minimized Final Accepted: 19 May 2018 the production of local goods and drove Published: June 2018 up costs. But, too many imports in relation to exports can distort a nation's balance of trade and devalue its currency. In order to lower the possibility of the increasing imports, it is important to determine the future import value in advance. If the future import is forecasted, then action can be taken to reduce the consequence effects of the high imports. In this study, we predict the future import value using five empirical models of least square method: Linear model, Logarithmic model, Power Exponential model. model and Polynomial model. The method has shown that Quadratic model is the best

Copy Right, IJAR, 2018,. All rights reserved

fitted model for Malaysia import data.

### **Introduction:-**

Import is to bring in (merchandise, commodities, workers, etc.) from a foreign country for use, sale, processing, reexport, or services. (dictionary.com, 2017). Imports help in the growth of any country's economy and expand the global market. It is important for businesses and individual consumer as goods or services that are not available domestically or are available cheaper overseas to be imported into the country. Imports can provide a better standard of living for the people by supplying products or services which could not be obtained in a country.

.....

As imports and exports form the backbone of international trade, a higher value of imports compared to the value of exports could impact the balance of trade in the country negatively. A country would like to be net exporters rather than net importers. They will want more exports than imports because more money will be coming into the country than the amount that is leaving through import.

**Corresponding Author:- Rahela A. R.** Address:- Associate Professor, School of Quantitative Science, Universiti Utara Malaysia.



Figure 1:-Malaysia's Imports in past ten years

The import of Malaysia is always in upward trend after 2009. In February of 2009, there is a significant decrease of the import of Malaysia. Based on the publications of economic development 2009, one of the reasons led to such situation is cautious of the consumers in their spending on imported consumer durables and semi-durables. In March of 2017, import of Malaysia reached the highest record. More intermediate goods and imports of transport equipment and capital which were driven mostly by high-value items such as a floating structure, oil and gas vessels and several aircrafts has raised the imports of Malaysia to the peak. (Developments in the malaysian economy, 2017)

Import could indirectly contribute to economic growth and economic growth could also directly contribute to import. (Kogid, 2011) Low level of import shows that low domestic demand and shrinking economy. If exports are surging, but imports have decreased significantly, it may show that the domestic economy is worse than the rest of the world.

GST is an attractive method to get rid of deformation of the existing process of multiple taxation also government has promised that GST will reduce the compliance burden at present. In India, there is no distinction between imported and Indian goods andthe tax is maintained at the same rate (Kour, 2016). If this is the situation, then the import goods will likely to be decreased. Thus, this might be the reason of the falling imports.

Additionally, other factors such as domestic income and money supply might influence imports. According to the Keynesian approach, the real exchange rate affects the allocation of global expenditure between exports and imports, which not only affects the trade balance, but also adjusts inflationary situation and controls the real income in an economy (Dornbusch et al., 1976). When the real exchange rate and the national income starts to deteriorate, the allocation of expenditure on foreign goods will decrease, this causes imports to drop as well.

However, the exchange rate misalignment which were overvalued in the pre-crisis and undervalued in the crisis period found to have a significant positive impact on imports demand (Naseem et al., 2009). The exchange rate misalignment induce the growth of imports during pre-crisis and crisis period. Ghorbani and Motallebi (2009) studied and concluded that the import demand in Iran is elastic related to increasing of gross domestic income. Therefore it can be assumed that import demand decrease with the drop of gross domestic income. The demand for imports are affected by the divergence and instability in the exchange rate misalignment and volatility.

Since early 1970s, the Malaysia government carried out an import substitution strategy with the introduction of the Pioneer Industry Ordinance (1958) by promoting the foreign direct investment (FDI) in export-oriented firms. Foreign direct investment in export-oriented firms was promoted actively through the introduction of the Investment Incentives Act (1968), Free Trade Zone Act (1971), and the Promotion of Incentives Act (1986) (Yusof and

Bhattasali, 2008). Through success implementation of the strategy by the government, the usage on local goods increases, thus might causes demands of imports to decrease.

Trade happens when one country does not have one kind of resources while another country has it. Import and export are important for development of industrialized world. However, if a country imports more than it exports, there will be trade deficit. Most of the countries prefer to import less and export more.

When Malaysia government implemented GST in 2015, it raised the import of Malaysia as GST minimized the production of local goods and drove up costs. But, too many imports in relation to exports can distort a nation's balance of trade and devalue its currency. Malaysian will be suffered due to lower purchasing power and some industries lost from weakening ringgit. (Khoo, 2015)

In order to lower the possibility of the increasing imports, it is important to determine the future import value in advance. If the future import of Malaysia is forecasted, then action can be taken to reduce the consequence effects of the high imports of Malaysia. Domestic markets and national economies will not be eroded. Currency of Ringgit Malaysia will not be devalued too. Unemployment rate can be decreased because domestic markets need more workers in production instead of import from foreign countries to meet the local demand. Thus, in this study, several mathematical models will be developed and used to forecast the future import of Malaysia. Government can then take actions such as increase local production in order to meet local demand to prevent the bad consequences of either high or low imports.

## Method:-

In order to achieve the objectives of this study, the monthly import data in Malaysia from August year 2007 to July year 2017 was used as the input. This data was obtained and gathered through secondary source from the Official Portal of Department of Statistics Malaysia. In this study, quantitative data analysis tool based on least square method will be used such as Microsoft Excel 2010 for data computation and an evaluation tool.

Five empirical models will be generated to obtain least square models; which includes linear model, logarithmic model, exponential model, power model and polynomial model. The models were computed to achieve the second objective through the formulation of the function in Microsoft Excel 2010. Following that, the model with the highest  $r^2$  (coefficient of determination) value will be selected as the best fitted least square model.Next, the best fitted model will be used to forecast the import data.

## **Results and Findings:-**

In this study, the import monthly data in Malaysia from August of year 2007 to July of year 2017 were used. Data was collected from the Department of Statistics Malaysia. The data obtained is shown in the following table:

| 1145 001 | ieerea nom i | <br>2 eparem | ent of statist | <br>manajen | ai The Gata s | 0.00 | 1110 4 18 81 |      | <u> </u> | s in this tac |      |
|----------|--------------|--------------|----------------|-------------|---------------|------|--------------|------|----------|---------------|------|
| x        | у            | x            | у              | x           | у             |      | x            | у    |          | x             | у    |
| 1        | 44.6         | 25           | 38.3           | 49          | 47.5          |      | 73           | 55.8 |          | 97            | 56.3 |
| 2        | 42.5         | 26           | 38.0           | 50          | 49.0          |      | 74           | 54.6 |          | 98            | 60.5 |
| 3        | 45.4         | 27           | 42.8           | 51          | 48.9          |      | 75           | 58.6 |          | 99            | 63.6 |
| 4        | 43.9         | 28           | 41.1           | 52          | 47.4          |      | 76           | 52.5 |          | 100           | 57.4 |
| 5        | 44.3         | 29           | 42.5           | 53          | 52.5          |      | 77           | 56.1 |          | 101           | 59.9 |
| 6        | 43.2         | 30           | 39.4           | 54          | 46.3          |      | 78           | 57.6 |          | 102           | 56.5 |
| 7        | 37.9         | 31           | 35.1           | 55          | 46.3          |      | 79           | 48.5 |          | 103           | 49.4 |
| 8        | 43.6         | 32           | 45.1           | 56          | 51.3          |      | 80           | 55.4 |          | 104           | 55.4 |
| 9        | 43.2         | 33           | 42.7           | 57          | 50.2          |      | 81           | 57.5 |          | 105           | 52.3 |
| 10       | 45.4         | 34           | 44.1           | 58          | 54.2          |      | 82           | 59.2 |          | 106           | 56.7 |
| 11       | 45.1         | 35           | 46.7           | 59          | 51.8          |      | 83           | 57.1 |          | 107           | 60.9 |
| 12       | 48.7         | 36           | 48.4           | 60          | 54.5          |      | 84           | 57.5 |          | 108           | 57.9 |
| 13       | 46.9         | 37           | 44.5           | 61          | 48.9          |      | 85           | 60.0 |          | 109           | 59.1 |
| 14       | 47.4         | 38           | 43.5           | 62          | 53.1          |      | 86           | 55.2 |          | 110           | 60.5 |
| 15       | 43.7         | 39           | 48.1           | 63          | 51.7          |      | 87           | 63.9 |          | 111           | 59.4 |
| 16       | 40.2         | 40           | 43.7           | 64          | 49.4          |      | 88           | 52.6 |          | 112           | 63.8 |
| 17       | 34.4         | 41           | 47.5           | 65          | 49.0          |      | 89           | 58.5 |          | 113           | 66.8 |

| 18 | 30.1 | 42 | 44.9 | 66 | 53.7 | 90 | 54.6 | 114 | 65.5 |
|----|------|----|------|----|------|----|------|-----|------|
| 19 | 27.4 | 43 | 39.2 | 67 | 44.3 | 91 | 48.6 | 115 | 63.1 |
| 20 | 30.9 | 44 | 50.6 | 68 | 55.1 | 92 | 58.6 | 116 | 77.2 |
| 21 | 33.7 | 45 | 46.8 | 69 | 54.8 | 93 | 53.7 | 117 | 65.2 |
| 22 | 33.0 | 46 | 46.6 | 70 | 52.9 | 94 | 55.1 | 118 | 73.9 |
| 23 | 36.0 | 47 | 50.3 | 71 | 52.4 | 95 | 56.5 | 119 | 63.2 |
| 24 | 41.0 | 48 | 49.8 | 72 | 57.9 | 96 | 60.8 | 120 | 70.6 |

Table 1:-The Malaysia's Monthly Import Data from August 2007 to July 2017

#### Least Square Model:-

In order to predict the future import value, a model needs to be determined. To find the best model to fit our data, five types of empirical models were used:Linear Function, Logarithmic Function, Power Function, Exponential Function and Polynomial Function

The models above were visualized using the Trendline function in Ms Excel and shownas below:

















Figure 6:-Polynomial Model of the Monthly Import Data from August 2007 to July 2017

By comparing their coefficient of determination,  $r^2$ , the highest  $r^2$  value will be chosen as the best fitted model for this data set.

| Empirical Model | $r^2$  |
|-----------------|--------|
| Linear          | 0.7283 |
| Logarithm       | 0.4648 |
| Power           | 0.4495 |
| Exponential     | 0.6913 |
| Polynomial      | 0.7412 |

**Table 2:-**The coefficient of determination values of the five empirical models.

 *Note: The highlighted value is the highest value.*

From the result above, the polynomial function will be the best fitted model to represent the respective import data and can be used to predict the future value.

The idea behind this method is minimizing the sum of the absolute deviations, Given a set of data  $(x_i, y_i) = i = 1, 2, ..., m$  and the estimated model y = f(x). Let  $e_i = |y_i - f(x_i)|$ , which is absolute that denote the deviation between the observed and predicted values. The  $\sum_{i=1}^{m} e_i$  is the sum of absolute deviations. Therefore minimize  $\sum_{i=1}^{m} e_i$  would give f(x) the best fitted model for the respective data.

From a graphical analysis, a quadratic polynomial function has been chosen as the best fitted model for the import data. Therefore the analytical model proposed is given as:

$$\hat{\mathbf{Q}} = \sum_{i=1}^{m} (y_i - (c_1 x_i^2 + c_2 x_i + c_3)^2)$$

With a necessary condition given by

$$\frac{\partial Q}{\partial C_1} = \frac{\partial Q}{\partial C_2} = \frac{\partial Q}{\partial C_3} = 0$$

Thus

 $C_{1}(\sum x_{i}^{2}) + C_{2}(\sum x_{i}) + C_{3}(\sum m) = \sum y_{i}$   $C_{1}(\sum x_{i}^{3}) + C_{2}(\sum x_{i}^{2}) + C_{3}(\sum x_{i}) = \sum x_{i} y_{i}$  $C_{1}(\sum x_{i}^{4}) + C_{2}(\sum x_{i}^{3}) + C_{3}(\sum x_{i}^{2}) = \sum x_{i}^{2} y$ 

Solving the required systems of equities for the least-square quadratic fit give the following equation with the obtained solution of C1.

 $C_1 = 0.001, C_2 = 0.1068, C_3 = 39.568$  $f(x) = 0.001x^2 + 0.1068x + 39.568$ 

Least Square Model has featured the quadratic equation as best fitted model for the import data as shown in Figure 6.



Figure 7:-Polynomial Model of the Monthly Import Data from August 2007 to July 2017

#### **Data Projection:-**

Graph below shows the combination line graphs of actual value and predicted value by least square model.



Figure 8:-The Actual Value and Predicted Value

The Appendix B shows the actual value, and predicted value using least square model for data obtained from August 2007 until July 2017. The results have been compared with the results obtained using Discrete Dynamical System modelling technique. Based on the results in Appendix B, the predicted future import data shows an increasing trend.

Since the comparative results shows that the least square model is the best fitted model for the respective data, therefore it is used to forecast the import value from August 2017 until July 2018. Table below shows the forecasted value from August 2017 until July 2018.

| Year | Month     | x   | Forecasted Value |
|------|-----------|-----|------------------|
| 2017 | August    | 121 | 62.925           |
|      | September | 122 | 63.1683          |
|      | October   | 123 | 63.414           |
|      | November  | 124 | 63.6621          |
|      | December  | 125 | 63.9127          |
| 2018 | January   | 126 | 64.1657          |
|      | February  | 127 | 64.4213          |
|      | March     | 128 | 64.6794          |
|      | April     | 129 | 64.9401          |
|      | May       | 130 | 65.2035          |
|      | June      | 131 | 65.4695          |
|      | July      | 132 | 65.7382          |

Table 3:-The forecasted import value from August 2017 to July 2018

Based on the forecasted value computed, it shows that import Malaysia will increase to the predicted numbers on the next following years.



Figure 9:-The Forecasted Import Value from August 2017 to July 2018

## **Conclusion:-**

Among the five different types of empirical model which are linear model, logarithmic model, exponential model, power model and polynomial model, the polynomial model provides the largest coefficient of determination,  $r^2$  value. This implied that the polynomial model is the most significant model among the others. Later, different order of polynomial were tested in order to determine the best fitted model for Malaysia's monthly import data. Based on the results, a polynomial of order three has shown the smallest error compared to other polynomials. Hence, the best fitted least square model was determined by computing the coefficient of the cubic equation. Lastly, by using the cubic polynomial least square model, the future import value was calculated which shows an increasing trend from August 2017 until July 2018. This results may help the authority to plan an action or policy for controlling the import in order to improve the national economy.

### **Bibliography:-**

- Import Of Vegetables, Fruits To Be Reduced By 2020. (2014, Marcg 21). Retrieved November 5, 2017, from MalaysianDigest.Com: http://malaysiandigest.com/news/493921-import-of-vegetables-fruits-to-be-reduced-by-2020.html
- Malaysian-grown fragrant rice to help reduce imports. (2016, December 3). Retrieved November 5, 2017, from The Rakyat Post: http://www.therakyatpost.com/business/2016/12/03/malaysian-grown-fragrant-rice-to-helpreduce-imports/
- 3. *Developments in the malaysian economy*. (2017). Retrieved November 5, 2017, from Bank Negara Malaysia: https://www.bnm.gov.my/files/publication/qb/2017/Q1/p3.pdf
- 4. *Interesting Facts About Imports and Exports*. (2017, May 1). Retrieved November 7, 2017, from Investopedia: http://www.investopedia.com/articles/investing/100813/interesting-facts-about-imports-and-exports.asp
- 5. *S&P expects Malaysia's economy to grow over 4% up to 2020.* (2017, June 22). Retrieved November 6, 2017, from The Star Online: https://www.thestar.com.my/business/business-news/2017/06/22/sp-expects-malaysia-economy-to-grow-over-4pct-up-to-2020/
- 6. *The World Bank In Malaysia*. (2017, September). Retrieved November 6, 2017, from The World Bank: http://www.worldbank.org/en/country/malaysia/overview
- 7. Amadeo, K. (2017, July 1). *The 2008 Financial Crisis*. Retrieved November 6, 2017, from The Balance: https://www.thebalance.com/2008-financial-crisis-3305679
- 8. A. Jayakumar, K. (2014). Impact of Foreign Direct Investment, Imports and Exports. International Review of Research in Emerging Markets and the Global Economy (IRREM), 51-58.
- 9. *Import.* (n.d.). Retrieved November 15, 2017, from Investopedia: https://www.investopedia.com/terms/i/import.asp
- 10. Import. (n.d.). Retrieved November 1, 2017, from Dictionary.com: http://www.dictionary.com/browse/import

- 11. Importing and Exporting in a Global Market: Definition, Process & Importance. (n.d.). Retrieved November 15, 2017, from Study.com: http://study.com/academy/lesson/importing-and-exporting-in-a-global-market.html
- 12. Khoo, D. (2015, June 13). *Impact of weakening ringgit*. Retrieved November 6, 2017, from The Star Online: The star online: https://www.thestar.com.my/business/business-news/2015/06/13/impact-of-weakening-ringgit/
- 13. Kogid, M. M. (2011). Does Import Affect Economic Growth in Malaysia. Research Gate, 298-307.
- 14. Kour, M. C. (2016). A STUDY ON IMPACT OF GST AFTER ITS IMPLEMENTATION. Kour, M. C. (2016). A STUDY ON IMPACT OF GSInternational Journal of Innovative Studies in Sociology and Humanities, 17-24.
- 15. Lewis, L. M. (2016). Causes of the Global Trade Slowdown. *International Finance Discussion Paper Note*, 1-17.
- 16. Naseem, N. A.-B. (2009). Exchange Rate Misalignment, Volatility and Import Flows in Malaysia. *Journal of Economics and Management*, 130-150.
- 17. Nykamp, D. Q. (n.d.). An Introduction to discrete dynamical system. Retrieved November 15, 2017, from Main Insight: http://mathinsight.org/discrete\_dynamical\_system\_introduction
- 18. Nykamp, D. Q. (n.d.). *Discrete dynamical system definition*. Retrieved November 15, 2017, from Math Insight: http://mathinsight.org/definition/discrete\_dynamical\_system
- Ruban, A. (2016, May 25). Why Malaysia imports vegetables. Retrieved November 5, 2017, from Malaymail Online: http://www.themalaymailonline.com/malaysia/article/why-malaysia-importsvegetables#X4iKT2PtgiOWvfD1.97
- 20. Shagar, L. K. (2013, November 11). *All set for Visit Malaysia 2014*. Retrieved November 6, 2017, from The Start Online: https://www.thestar.com.my/news/nation/2013/11/11/visit-malaysia-2014/

| Ye | Мо   | n | $P_n$ | $\Delta P_n$ | (Max          | $\Delta \boldsymbol{P}_{\boldsymbol{n}}$ |  | Ye | Мо   | n | $P_n$ | $\Delta P_n$ | (Max          | $\Delta P_n$   |
|----|------|---|-------|--------------|---------------|------------------------------------------|--|----|------|---|-------|--------------|---------------|----------------|
| ar | nth  |   |       |              | $(-P_n)(P_n)$ | $(Max - P_n)($                           |  | ar | nth  |   |       |              | $(-P_n)(P_n)$ | $(Max - P_n)($ |
| 20 | Aug  | 0 | 44    | -            | 1455.2        | -                                        |  | 20 | Aug  | 6 | 48    | 4.           | 1385.7        | 0.00308240     |
| 07 |      |   | .6    | 2.           |               | 0.001415721                              |  | 12 |      | 0 | .9    | 3            |               | 305961         |
|    |      |   |       | 1            |               | 06159                                    |  |    |      |   |       |              |               |                |
|    | Sept | 1 | 42    | 2.           | 1475.6        | 0.001927319                              |  |    | Sept | 6 | 53    | -            | 1279.8        | -              |
|    |      |   | .5    | 8            |               | 39880                                    |  |    |      | 1 | .1    | 1.           |               | 0.00113803     |
| _  |      |   |       |              |               |                                          |  |    |      |   |       | 5            |               | 667380         |
|    | Oct  | 2 | 45    | -            | 1445.2        | -                                        |  |    | Oct  | 6 | 51    | -            | 1320.0        | -              |
|    |      |   | .4    | 1.           |               | 0.000986645                              |  |    |      | 2 | .7    | 2.           |               | 0.00174903     |
|    |      |   |       | 4            |               | 11556                                    |  |    |      |   |       | 3            |               | 727318         |
|    | Nov  | 3 | 43    | 0.           | 1462.4        | 0.000215428                              |  |    | Nov  | 6 | 49    | -            | 1375.0        | -              |
|    |      |   | .9    | 3            |               | 31856                                    |  |    |      | 3 | .4    | 0.           |               | 0.00025810     |
|    |      |   |       |              |               |                                          |  |    |      |   |       | 4            |               | 181398         |
|    | Dec  | 4 | 44    | -            | 1459.0        | -                                        |  |    | Dec  | 6 | 49    | 4.           | 1382.5        | 0.00340091     |
|    |      |   | .3    | 1.           |               | 0.000722695                              |  |    |      | 4 | .0    | 7            |               | 655450         |
|    |      |   |       | 1            |               | 44286                                    |  |    |      |   |       |              |               |                |
| 20 | Jan  | 5 | 43    | -            | 1469.8        | -                                        |  | 20 | Jan  | 6 | 53    | -            | 1262.5        | -              |
| 08 |      |   | .2    | 5.           |               | 0.003610374                              |  | 13 |      | 5 | .7    | 9.           |               | 0.00750064     |
| _  |      |   |       | 3            |               | 82643                                    |  |    |      |   |       | 5            |               | 428854         |
|    | Feb  | 6 | 37    | 5.           | 1490.4        | 0.003831185                              |  |    | Feb  | 6 | 44    | 10           | 1459.1        | 0.00744082     |
|    |      |   | .9    | 7            |               | 56582                                    |  |    |      | 6 | .3    | .9           |               | 471295         |
|    | Mar  | 7 | 43    | -            | 1465.9        | -                                        |  |    | Mar  | 6 | 55    | -            | 1218.7        | -              |
|    |      |   | .6    | 0.           |               | 0.000260777                              |  |    |      | 7 | .1    | 0.           |               | 0.00027919     |
|    |      |   |       | 4            |               | 09669                                    |  |    |      |   |       | 3            |               | 943222         |
|    | Apr  | 8 | 43    | 2.           | 1469.6        | 0.001478635                              |  |    | Apr  | 6 | 54    | -            | 1229.8        | -              |
|    |      |   | .2    | 2            |               | 13185                                    |  |    |      | 8 | .8    | 1.           |               | 0.00150330     |
|    |      |   |       |              |               |                                          |  |    |      |   |       | 8            |               | 637832         |
|    | May  | 9 | 45    | -            | 1444.8        | -                                        |  |    | May  | 6 | 52    | -            | 1286.1        | -              |
|    |      |   | .4    | 0.           |               | 0.000208813                              |  |    |      | 9 | .9    | 0.           |               | 0.00038819     |
|    |      |   |       | 3            |               | 77556                                    |  |    |      |   |       | 5            |               | 700415         |
|    | June | 1 | 45    | 3.           | 1448.8        | 0.002502414                              |  |    | June | 7 | 52    | 5.           | 1300.2        | 0.00418464     |
|    |      | 0 | .1    | 6            |               | 30240                                    |  |    |      | 0 | .4    | 4            |               | 859818         |

Appendix A:-Calculation of the value of carrying capacity (k)

| -        |          |   |     |         |         |             |    |          |   |    |         |        |                |
|----------|----------|---|-----|---------|---------|-------------|----|----------|---|----|---------|--------|----------------|
|          | July     | 1 | 48  | -       | 1388.6  | -           |    | July     | 7 | 57 | -       | 1120.3 | -              |
|          |          | 1 | .7  | 1.      |         | 0.001347295 |    |          | 1 | .9 | 2.      |        | 0.00185238     |
|          |          |   |     | 9       |         | 14021       |    |          |   |    | 1       |        | 697848         |
|          | Aug      | 1 | 46  | 0.      | 1422.9  | 0.000382343 |    | Aug      | 7 | 55 | -       | 1195.9 | -              |
|          | 0        | 2 | .9  | 5       |         | 97544       |    |          | 2 | .8 | 1.      |        | 0.00099468     |
|          |          |   |     | -       |         | 2.00        |    |          |   |    | 2       |        | 016984         |
|          | Sent     | 1 | 17  | _       | 1/13 7  | _           |    | Sent     | 7 | 54 | 1       | 1235.3 | 0.00320759     |
|          | Sept     | 2 | 4/  | 2       | 1413.7  | 0.002611714 |    | Sept     | 2 | 54 | 4.<br>0 | 1235.5 | 140545         |
|          |          | 3 | .4  | 3.<br>7 |         | 70149       |    |          | 3 | .0 | 0       |        | 140343         |
|          | 0        |   | 10  | /       | 11610   | /9148       |    | 0        | _ |    |         | 1002.0 |                |
|          | Oct      | 1 | 43  | -       | 1464.9  | -           |    | Oct      | 1 | 58 | -       | 1092.9 | -              |
|          |          | 4 | .7  | 3.      |         | 0.002386904 |    |          | 4 | .6 | 6.      |        | 0.00552470     |
|          |          |   |     | 5       |         | 65287       |    |          |   |    | 0       |        | 218554         |
|          | Nov      | 1 | 40  | -       | 1488.4  | -           |    | Nov      | 7 | 52 | 3.      | 1297.4 | 0.00279501     |
|          |          | 5 | .2  | 5.      |         | 0.003879862 |    |          | 5 | .5 | 6       |        | 439729         |
|          |          |   |     | 8       |         | 15464       |    |          |   |    |         |        |                |
|          | Dec      | 1 | 34  | _       | 1473 5  | _           |    | Dec      | 7 | 56 | 1       | 1183.3 | 0.00123356     |
|          | Dee      | 6 | 1   | 1       | 11/010  | 0.002963591 |    | Dee      | 6 | 1  | 5       | 1105.5 | 997546         |
|          |          | 0 |     |         |         | 20851       |    |          | 0 | •1 | 5       |        | <i>))13</i> +0 |
| 20       | Lan      | 1 | 20  | 4       | 1417.0  | 29631       | 20 | Ing      | 7 | 57 |         | 1120.0 |                |
| 20       | Jan      | 1 | 30  | -       | 1417.9  | -           | 20 | Jan      | / | 57 | -       | 1130.0 | -              |
| 09       |          | 1 | 1.  | 2.      |         | 0.001909929 | 14 |          | 1 | .6 | 9.      |        | 0.00808088     |
|          |          |   |     | 7       |         | 39593       |    |          |   |    | 1       |        | 618616         |
|          | Feb      | 1 | 27  | 3.      | 1364.3  | 0.002599801 |    | Feb      | 7 | 48 | 7.      | 1393.6 | 0.00498746     |
|          |          | 8 | .4  | 5       |         | 95158       |    |          | 8 | .5 | 0       |        | 942283         |
|          | Mar      | 1 | 30  | 2.      | 1431.6  | 0.001960107 |    | Mar      | 7 | 55 | 2.      | 1208.1 | 0.00170505     |
|          |          | 9 | .9  | 8       |         | 63704       |    |          | 9 | .4 | 1       |        | 966650         |
|          | Anr      | 2 | 33  | _       | 1466.9  | -           |    | Anr      | 8 | 57 | 1       | 1134.6 | 0.00147581     |
|          | r ipi    | 0 | 7   | 0       | 1100.9  | 0.000400263 |    | r.p.     | 0 | 5  | 7       | 1151.0 | 162306         |
|          |          | U | . / | 0.<br>7 |         | 63547       |    |          | 0 |    | '       |        | 102390         |
|          | Mari     | 2 | 22  | 2       | 1450.4  | 0.002044028 |    | Mari     | 0 | 50 |         | 1069.6 |                |
|          | May      | 2 | 33  | 3.      | 1459.4  | 0.002044938 |    | May      | 8 | 59 | -       | 1068.6 | -              |
|          |          | 1 | .0  | 0       |         | 20901       |    |          | 1 | .2 | 2.      |        | 0.00191135     |
|          |          |   |     |         |         |             |    |          |   |    | 0       |        | 688750         |
|          | June     | 2 | 36  | 5.      | 1484.0  | 0.003374920 |    | June     | 8 | 57 | 0.      | 1148.4 | 0.00031015     |
|          |          | 2 | .0  | 0       |         | 27151       |    |          | 2 | .1 | 4       |        | 762898         |
|          | July     | 2 | 41  | -       | 1485.3  | -           |    | July     | 8 | 57 | 2.      | 1135.1 | 0.00224062     |
|          | -        | 3 | .0  | 2.      |         | 0.001840631 |    | -        | 3 | .5 | 5       |        | 260676         |
|          |          |   |     | 7       |         | 14769       |    |          |   |    |         |        |                |
| 20       | Αιισ     | 2 | 38  | -       | 1490.8  | _           | 20 | Aug      | 8 | 60 | -       | 1032.6 | -              |
| 09       | ing      | 4 | 3   | 0       | 119010  | 0.000198095 | 14 | 1 Iug    | 4 | 0  | 4       | 1052.0 | 0.00467371     |
| 07       |          | - | .5  | 3       |         | 46651       | 14 |          | т | .0 | ч.<br>Q |        | 120026         |
| <u> </u> | Sant     | 2 | 20  | 1       | 1400 5  | 0.002240727 |    | Sart     | 0 | 55 | 0       | 1016.0 | 0.00716200     |
|          | Sept     |   | 38  | 4.      | 1490.5  | 0.003249727 |    | Sept     | ŏ | 33 | ð.<br>7 | 1210.0 | 0.00/10309     |
|          | 6        | 5 | .0  | 8       |         | 55056       |    |          | 5 | .2 | /       | 071-   | 035016         |
|          | Oct      | 2 | 42  | -       | 1473.3  | -           |    | Oct      | 8 | 63 | -       | 851.3  | -              |
|          |          | 6 | .8  | 1.      |         | 0.001145536 |    |          | 6 | .9 | 11      |        | 0.01327980     |
|          |          |   |     | 7       |         | 02910       |    |          |   |    | .3      |        | 890029         |
|          | Nov      | 2 | 41  | 1.      | 1484.6  | 0.000941063 |    | Nov      | 8 | 52 | 5.      | 1295.3 | 0.00452263     |
|          |          | 7 | .1  | 4       |         | 71190       |    |          | 7 | .6 | 9       |        | 847435         |
|          | Dec      | 2 | 42  | -       | 1475.7  |             |    | Dec      | 8 | 58 | -       | 1097.1 | -              |
|          |          | 8 | 5   | 3       |         | 0.002078232 |    |          | 8 | 5  | 3       |        | 0.00347820     |
|          |          | 0 |     | 1       |         | 31862       |    |          |   |    | 8       |        | 017204         |
| 20       | Ion      | 2 | 20  | 1       | 1400.2  | 51002       | 20 | Ion      | 0 | 51 | 0       | 1224.0 | 017204         |
| 20       | Jall     |   | 39  | -       | 1490.2  | -           | 20 | Jall     | 0 | 54 |         | 1234.0 | -              |
| 10       |          | 9 | .4  | 4.      |         | 0.002913047 | 15 |          | 9 | .0 | 0.      |        | 0.00486012     |
| L        | <b>.</b> |   | 0-  | 5       | 1.450.5 | 04822       |    | <b>.</b> |   | 42 | 0       | 1000.0 | 025546         |
|          | Feb      | 3 | 35  | 10      | 1478.6  | 0.006733810 |    | Feb      | 9 | 48 | 10      | 1390.3 | 0.00716628     |
|          |          | 0 | .1  | .0      |         | 40375       |    |          | 0 | .6 | .0      |        | 254003         |
|          | Mar      | 3 | 45  | -       | 1449.3  | -           |    | Mar      | 9 | 58 | -       | 1091.1 | -              |

|    |       | 1 | .1  | 2.      |          | 0.001624678 |    |              | 1 | .6 | 4.      |        | 0.00449021 |
|----|-------|---|-----|---------|----------|-------------|----|--------------|---|----|---------|--------|------------|
|    |       |   |     | 4       |          | 06772       |    |              |   |    | 9       |        | 899108     |
|    | Apr   | 3 | 42  | 1.      | 1474.1   | 0.000940871 |    | Apr          | 9 | 53 | 1.      | 1263.0 | 0.00108403 |
|    | 1     | 2 | .7  | 4       |          | 33145       |    | 1            | 2 | .7 | 4       |        | 104834     |
|    | May   | 3 | 44  | 2.      | 1460.9   | 0.001813907 |    | May          | 9 | 55 | 1.      | 1219.8 | 0.00116578 |
|    |       | 3 | .1  | 6       |          | 70835       |    |              | 3 | .1 | 4       |        | 764306     |
|    | June  | 3 | 46  | 1.      | 1424.8   | 0.001152746 |    | June         | 9 | 56 | 4.      | 1171.0 | 0.00369894 |
|    |       | 4 | .7  | 6       |          | 59522       |    |              | 4 | .5 | 3       |        | 913759     |
|    | July  | 3 | 48  | -       | 1395.4   | -           |    | July         | 9 | 60 | -       | 997.3  | -          |
|    |       | 5 | .4  | 3.      |          | 0.002768574 |    |              | 5 | .8 | 4.      |        | 0.00450997 |
|    |       |   |     | 9       |          | 37785       |    |              |   |    | 5       |        | 792190     |
|    | Aug   | 3 | 44  | -       | 1456.0   | -           |    | Aug          | 9 | 56 | 4.      | 1176.9 | 0.00354379 |
|    |       | 6 | .5  | 1.      |          | 0.000728181 |    |              | 6 | .3 | 2       |        | 818847     |
|    |       |   |     | 1       |          | 13074       |    |              |   |    |         |        |            |
|    | Sept  | 3 | 43  | 4.      | 1467.4   | 0.003176148 |    | Sept         | 9 | 60 | 3.      | 1011.7 | 0.00309620 |
|    |       | 7 | .5  | 7       |          | 63461       |    |              | 7 | .5 | 1       |        | 791023     |
|    | Oct   | 3 | 48  | -       | 1400.5   | -           |    | Oct          | 9 | 63 | -       | 864.7  | -          |
|    |       | 8 | .1  | 4.      |          | 0.003158666 |    |              | 8 | .6 | 6.      |        | 0.00722861 |
|    |       |   |     | 4       |          | 45068       |    |              |   |    | 3       |        | 401261     |
|    | Nov   | 3 | 43  | 3.      | 1465.0   | 0.002577984 |    | Nov          | 9 | 57 | 2.      | 1138.5 | 0.00222262 |
|    |       | 9 | .7  | 8       |          | 92266       |    |              | 9 | .4 | 5       |        | 336921     |
|    | Dec   | 4 | 47  | -       | 1412.3   | -           |    | Dec          | 1 | 59 | -       | 1037.1 | -          |
|    |       | 0 | .5  | 2.      |          | 0.001821515 |    |              | 0 | .9 | 3.      |        | 0.00333175 |
|    |       |   |     | 6       |          | 97267       |    |              | 0 |    | 5       |        | 072013     |
| 20 | Jan   | 4 | 44  | -       | 1451.3   | -           | 20 | Jan          | 1 | 56 | -       | 1172.4 | -          |
| 11 |       | 1 | .9  | 5.      |          | 0.003907765 | 16 |              | 0 | .5 | 7.      |        | 0.00604922 |
|    |       |   |     | 7       |          | 91422       |    |              | 1 |    | 1       |        | 331750     |
|    | Feb   | 4 | 39  | 11      | 1490.5   | 0.007656662 |    | Feb          | 1 | 49 | 6.      | 1375.2 | 0.00438141 |
|    |       | 2 | .2  | .4      |          | 42794       |    |              | 0 | .4 | 0       |        | 027673     |
|    |       |   |     |         |          |             | _  |              | 2 |    |         |        |            |
|    | Mar   | 4 | 50  | -       | 1346.1   | -           |    | Mar          | 1 | 55 | -       | 1209.3 | -          |
|    |       | 3 | .6  | 3.      |          | 0.002872833 |    |              | 0 | .4 | 3.      |        | 0.00256481 |
|    |       |   | 1.5 | 9       | 1 10 1 0 | 24519       |    |              | 3 |    | 1       | 1000.0 | 846298     |
|    | Apr   | 4 | 46  | -       | 1424.2   | -           |    | Apr          | 1 | 52 | 4.      | 1303.8 | 0.00335040 |
|    |       | 4 | .8  | 0.      |          | 0.000121961 |    |              | 0 | .3 | 4       |        | 024089     |
|    | M     | 4 | 10  | 2       | 1427.0   | 29451       |    | M            | 4 | 50 | 4       | 1165.0 | 0.00266622 |
|    | May   | 4 | 40  | з.<br>7 | 1427.0   | 0.002018390 |    | May          | 1 | 20 | 4.      | 1105.2 | 0.00300022 |
|    |       | 3 | .0  | /       |          | 21078       |    |              | 5 | ./ | 3       |        | 030142     |
|    | Iuno  | Λ | 50  |         | 1353 /   | + +         |    | Juno         | 1 | 60 |         | 0027   |            |
|    | Julie | 4 | 2   | 0       | 1555.4   | 0.000/12622 |    | June         | 0 | 00 | 3       | 774.1  | -          |
|    |       | 0 |     | 6       |          | 0.000+15055 |    |              | 6 | .7 | ).<br>0 |        | 460668     |
|    | Inty  | Δ | 40  | -       | 1366.2   | 00202       | -  | Inty         | 1 | 57 | 1       | 1117 2 | 0.00101063 |
|    | July  | 7 | 8   | 2       | 1300.2   | 0.001633533 |    | July         | 0 | 9  | 1.      | 1117.2 | 571009     |
|    |       | , | .0  | 2.      |          | 19691       |    |              | 7 | ., | 1       |        | 571005     |
|    | Αιισ  | 4 | 47  | 1       | 1411.0   | 0.001058868 |    | <b>Α</b> 11σ | 1 | 59 | 1       | 1072.3 | 0.00130533 |
|    | Thug  | 8 | 5   | 5       | 1111.0   | 56649       |    | mug          | 0 | 1  | 1.<br>4 | 1072.5 | 474154     |
|    |       | Ŭ |     | 5       |          | 50015       |    |              | 8 |    |         |        | 171101     |
|    | Sept  | 4 | 49  | - 1     | 1382.1   | -           |    | Sept         | 1 | 60 | -       | 1013.1 | -          |
|    | ~~P'  | 9 | .0  | 0.      | 1002.1   | 0.000074836 |    | ~~pt         | 0 | .5 | 1.      | 1010.1 | 0.00101929 |
|    |       |   |     | 1       |          | 61962       |    |              | 9 |    | 0       |        | 124669     |
|    | Oct   | 5 | 48  | -       | 1384.3   | -           | 1  | Oct          | 1 | 59 | 4.      | 1057.2 | 0.00412298 |
|    |       | 0 | .9  | 1.      |          | 0.001142982 |    |              | 1 | .4 | 4       |        | 145804     |
|    |       |   |     | 6       |          | 74668       |    |              | 0 |    |         |        |            |
|    | Nov   | 5 | 47  | 5.      | 1414.4   | 0.003601054 |    | Nov          | 1 | 63 | 3.      | 856.6  | 0.00354422 |

|    |      | 1 | .4 | 1  |        | 89203       |    |      | 1 | .8 | 0  |         | 603793     |
|----|------|---|----|----|--------|-------------|----|------|---|----|----|---------|------------|
|    |      |   |    |    |        |             |    |      | 1 |    |    |         |            |
|    | Dec  | 5 | 52 | -  | 1299.4 | -           |    | Dec  | 1 | 66 | -  | 694.5   | -          |
|    |      | 2 | .5 | 6. |        | 0.004734321 |    |      | 1 | .8 | 1. |         | 0.00187773 |
|    |      |   |    | 2  |        | 27875       |    |      | 2 |    | 3  |         | 225703     |
| 20 | Jan  | 5 | 46 | 0. | 1431.8 | -           | 20 | Jan  | 1 | 65 | -  | 766.4   | -          |
| 12 |      | 3 | .3 | 0  |        | 0.000012755 | 17 |      | 1 | .5 | 2. |         | 0.00322118 |
|    |      |   |    |    |        | 24025       |    |      | 3 |    | 5  |         | 965442     |
|    | Feb  | 5 | 46 | 5. | 1432.1 | 0.003526506 |    | Feb  | 1 | 63 | 14 | 893.2   | 0.01585765 |
|    |      | 4 | .3 | 1  |        | 74202       |    |      | 1 | .1 | .2 |         | 590939     |
|    |      |   |    |    |        |             |    |      | 4 |    |    |         |            |
|    | Mar  | 5 | 51 | -  | 1329.1 | -           |    | Mar  | 1 | 77 | -  | 0.0     | -          |
|    |      | 5 | .3 | 1. |        | 0.000834077 |    |      | 1 | .2 | 12 |         |            |
|    |      |   |    | 1  |        | 64642       |    |      | 5 |    | .0 |         |            |
|    | Apr  | 5 | 50 | 3. | 1356.1 | 0.002908136 |    | Apr  | 1 | 65 | 8. | 783.3   | 0.01109676 |
|    | _    | 6 | .2 | 9  |        | 12727       |    | _    | 1 | .2 | 7  |         | 377313     |
|    |      |   |    |    |        |             |    |      | 6 |    |    |         |            |
|    | May  | 5 | 54 | -  | 1249.0 | -           |    | May  | 1 | 73 | -  | 245.3   | -          |
|    |      | 7 | .2 | 2. |        | 0.001918410 |    |      | 1 | .9 | 10 |         | 0.04364126 |
|    |      |   |    | 4  |        | 68989       |    |      | 7 |    | .7 |         | 532600     |
|    | June | 5 | 51 | 2. | 1317.8 | 0.002074505 |    | June | 1 | 63 | 7. | 886.4   | 0.00834878 |
|    |      | 8 | .8 | 7  |        | 50424       |    |      | 1 | .2 | 4  |         | 372031     |
|    |      |   |    |    |        |             |    |      | 8 |    |    |         |            |
|    | July | 5 | 54 | -  | 1238.4 | -           |    | July | 1 | 70 | -  | 467.7   | -          |
|    | -    | 9 | .5 | 5. |        | 0.004548494 |    | -    | 1 | .6 |    |         |            |
|    |      |   |    | 6  |        | 35200       |    |      | 9 |    |    |         |            |
|    |      |   |    |    |        |             |    |      |   |    |    | Approxi | -          |
|    |      |   |    |    |        |             |    |      |   |    |    | mate    | 0.00009275 |
|    |      |   |    |    |        |             |    |      |   |    |    | Constan | 811907     |
|    |      |   |    |    |        |             |    |      |   |    |    | t, k =  |            |

Appendix B:-The actual data and predicted data.

| x | Actual  | Predicte | d Value | x | Actual  | al Predicted Value<br>e Logistic Least |        |   | x       | Actual  | Predicte | d Value |
|---|---------|----------|---------|---|---------|----------------------------------------|--------|---|---------|---------|----------|---------|
|   | Value   | Logistic | Least   |   | Value   | Logistic                               | Least  |   |         | Value   | Logistic | Least   |
|   |         | S        | Square  |   |         | S                                      | Square |   |         |         | S        | Square  |
|   |         | Growth   | Model   |   |         | Growth                                 | Model  |   |         |         | Growth   | Model   |
|   |         | Model    |         |   |         | Model                                  |        |   |         |         | Model    |         |
| 0 | 44.5908 | 44.5909  | 41.471  | 2 | 32.9962 | 41.7296 41.808                         |        | 4 | 39.2325 | 38.8327 | 45.212   |         |
|   | 7       |          | 8       | 1 | 2       | 5                                      |        | 2 | 6       |         | 7        |         |
| 1 | 42.5307 | 44.4559  | 41.400  | 2 | 35.9805 | 41.5922 41.910                         |        | 4 | 50.6450 | 38.6944 | 45.430   |         |
|   | 6       |          | 3       | 2 | 4       |                                        | 7      |   | 3       | 2       |          | 6       |
| 2 | 45.3746 | 44.3208  | 41.338  | 2 | 40.9888 | 41.4547                                | 42.019 |   | 4       | 46.7778 | 38.5561  | 45.652  |
|   | 3       |          | 4       | 3 | 7       |                                        | 7      |   | 4       | 2       |          | 6       |
| 3 | 43.9487 | 44.1855  | 41.286  | 2 | 38.2550 | 41.3172                                | 42.135 |   | 4       | 46.6041 | 38.4178  | 45.878  |
|   | 5       |          |         | 4 | 5       |                                        | 4      |   | 5       | 2       |          | 6       |
| 4 | 44.2638 | 44.0501  | 41.242  | 2 | 37.9597 | 41.1796                                | 42.257 |   | 4       | 50.3406 | 38.2795  | 46.108  |
|   | 0       |          | 9       | 5 | 3       |                                        | 6      |   | 6       | 8       |          | 3       |
| 5 | 43.2094 | 43.9145  | 41.209  | 2 | 42.8034 | 41.0419                                | 42.386 |   | 4       | 49.7808 | 38.1412  | 46.341  |
|   | 0       |          |         | 6 | 0       |                                        | 3      |   | 7       | 9       |          | 7       |
| 6 | 37.9029 | 43.7788  | 41.184  | 2 | 41.1156 | 40.9042                                | 42.521 |   | 4       | 47.5492 | 38.003   | 46.578  |
|   | 6       |          | 1       | 7 | 3       |                                        | 3      |   | 8       | 0       |          | 7       |
| 7 | 43.6129 | 43.643   | 41.168  | 2 | 42.5127 | 40.7663 42.662                         |        |   | 4       | 49.0433 | 37.8647  | 46.819  |
|   | 8       |          | 2       | 8 | 8       | 4                                      |        |   | 9       | 1       |          | 1       |
| 8 | 43.2307 | 43.5071  | 41.161  | 2 | 39.4459 | 40.6285 42.809                         |        |   | 5       | 48.9398 | 37.7265  | 47.062  |
|   | 1       |          | 1       | 9 | 3       | 6                                      |        |   | 0       | 8       |          | 8       |

| 9 | 45.4036      | 43.371              | 41.16        | 2    | 3             | 35.  | 104  | 18       | 40.4906      | 42.962      |         | 5          | 47. | 357  | 7 37       | .5882 | 47.309   |
|---|--------------|---------------------|--------------|------|---------------|------|------|----------|--------------|-------------|---------|------------|-----|------|------------|-------|----------|
|   | 8            |                     |              | 6    | 0             |      |      | 6        |              | 7           |         | 1          |     | (    | 0          |       | 6        |
| 1 | 45.1019      | 43.2348             | 41.17        | 2    | 3             | 45.0 | )61  | 5        | 40.3526      | 43.121      |         | 5          | 52. | 451  | 1          | 37.45 | 47.559   |
| 0 | 9            | 12 0005             | 41.10        | 6    | 1             | 10.0 | 70.4 | 3        | 10.01.1.6    | 6           |         | 2          | 1.0 | 200  | 4          | 2110  | 4        |
| 1 | 48.7274      | 43.0985             | 41.19        | 1    | 3             | 42.  | /06  | 6        | 40.2146      | 43.286      |         | 5          | 46. | 299  | 3 37       | .3119 | 47.812   |
| 1 | 16 8566      | 42 0621             | 41.21        | 1    | 2             | 44 ( | 103  | 20       | 40.0765      | 13 156      |         | 5          | 16  | 201  | /          | 1737  | 18 067   |
| 2 | 40.8500      | 42.9021             | 41.21        | 8    | 3             | 44.0 | 192  | 200<br>2 | 40.0703      | 45.450      |         | 3<br>4     | 40. | 201  | 1 37       | .1757 | 40.007   |
| 1 | 47 4006      | 42,8255             | 41.25        | 2    | 3             | 46   | 743  | 37       | 39 9384      | 43 631      |         | 5          | 51  | 3314 | 4 37       | 0356  | 48 325   |
| 3 | 9            | 12.0200             | 11.20        | 6    | 4             | 10.  | , 12 | 1        | 57.7501      | 5           |         | 5          | 01  |      | 2          | .0220 | 7        |
| 1 | 43.7085      | 42.6889             | 41.29        | 5    | 3             | 48.3 | 386  | 51       | 39.8003      | 43.812      |         | 5          | 50. | 222  | 8 36       | .8976 | 48.586   |
| 4 | 7            |                     |              | 5    | 5             |      |      | 4        |              | 1           |         | 6          |     | -    | 2          |       | 3        |
| 1 | 40.2119      | 42.5521             | 41.34        | 6    | 3             | 44.5 | 522  | 29       | 39.6621      | 43.997      |         | 5          | 54. | 166  | 5 36       | .7595 | 48.849   |
| 5 | 0            |                     |              | 2    | 6             |      |      | 1        |              | 9           |         | 7          |     | (    | 6          |       | 3        |
| I | 34.4373      | 42.4153             | 41.40        | 4    | 3             | 43.4 | 462  | 27       | 39.5239      | 44.188      |         | 5          | 51. | //0  | 5 36       | .6216 | 49.114   |
| 0 | 20.0705      | 42 2792             | 41.47        | 0    | /             | 10   | 100  | 0        | 20 2957      | /           | _       | 8          | 54  | 504  | 1          | 1926  | <u> </u> |
| 7 | 30.0703      | 42.2765             | 41.47        | 7    | 8             | 40.  | 12.  | 3        | 37.3637      | 44.384      |         | 9          | 54  | 504. | 2 50       | .4850 | 49.301   |
| 1 | 27.3623      | 42.1413             | 41.54        | 4    | 3             | 43.0 | 599  | 97       | 39.2475      | 44.584      |         | 6          | 48  | 871: | 5 36       | .3458 | 49.651   |
| 8 | 2            |                     |              | 3    | 9             |      |      | 7        |              | 6           |         | 0          |     |      | 8          |       | 1        |
| 1 | 30.9093      | 42.0041             | 41.62        | 5    | 4             | 47.4 | 176  | 55       | 39.1092      | 44.789      |         | 6          | 53. | 142' | 7 36       | .2079 | 49.922   |
| 9 | 6            |                     |              | 2    | 0             |      |      | 9        |              | 6           |         | 1          |     | ,    | 3          |       | 2        |
| 2 | 33.7154      | 41.8669             | 41.71        | 3    | 4             | 44.9 | 904  | 40       | 38.971       | 44.999      |         | 6          | 51. | 686. | 3 36       | .0702 | 50.195   |
| 0 | 0            |                     |              | 3    | 1             |      |      | 0        | 1            |             |         | 2          |     | (    | 0          |       |          |
| x | Actual       | Pr                  | redicted     | Valu | e             |      |      | x        | Actua        | Predi       | cted    | l          | x   | ŀ    | Actua      | Prec  | licted   |
|   | Value        | T                   | •            | T    |               |      |      |          | l<br>Volue   | Val         | ue      |            | _   | ×    | l          | Va    | alue     |
|   |              | Logisti<br>Growth N | ics<br>Aodel | Leas | st Sqi<br>101 | lare |      |          | value        | Logis       |         | ast        |     |      | value      | Logis | Least    |
|   |              | Glowin N            | louel        | WIOC | 101           |      |      |          |              | Grow        | sy<br>r | e<br>e     |     |      |            | Grow  | re       |
|   |              |                     |              |      |               |      |      |          |              | th          | M       | od         |     |      |            | th    | Mod      |
|   |              |                     |              |      |               |      |      |          |              | Mode        | e       | el         |     |      |            | Mode  | el       |
|   |              |                     |              |      |               |      |      |          |              | 1           |         |            |     |      |            | 1     |          |
| 6 | 49.3776      | 35                  | 5.9325       |      | 50.4          | 694  |      | 86       | 63.90        | 32.79       | 5       | 6.9        | 10  | )    | 60.47      | 29.72 | 62.5     |
| 3 | 0            |                     |              |      |               |      |      |          | 366          | 09          | 1       | 44         | 9   | )    | 162        | 53    | 284      |
| 6 | 49.0227      | 35                  | 5.7949       |      | 50.7          | 453  |      | 87       | 52.59        | 32.65       | 5       | 7.1        | 1   |      | 59.43      | 29.59 | 62.7     |
| 4 | 52 7245      | 25                  | 6572         |      | 51 (          | 1225 |      | 00       | 910          | 22.52       | ح<br>'ح | 7 4        | 1   | )    | <u>899</u> | 20.46 | 62.0     |
| 5 | 33.7243<br>Q | 5.                  | 5.0575       |      | 51.0          | 1223 |      | 00       | 58.45<br>719 | 52.52<br>07 | 5       | 7.4<br>(85 | 1   |      | 764        | 29.40 | 248      |
| 6 | 44.2548      | 34                  | 5.5198       |      | 51.3          | 3008 | -    | 89       | 54.64        | 32.38       | 5       | 7.7        | 1   |      | 66.83      | 29.33 | 63.1     |
| 6 | 0            | 5.                  |              |      | 21.0          |      |      |          | 129          | 59          | 2       | 279        |     | 2    | 366        | 31    | 158      |
| 6 | 55.1115      | 35                  | 5.3824       |      | 51.5          | 5802 |      | 90       | 48.64        | 32.25       | 5       | 7.9        | 1   |      | 65.52      | 29.20 | 63.3     |
| 7 | 1            |                     |              |      |               |      |      |          | 397          | 12          | 9       | 953        |     | 3    | 964        | 28    | 019      |
| 6 | 54.7712      | 35                  | 5.2451       |      | 51.8          | 3605 |      | 91       | 58.60        | 32.11       | 5       | 8.2        | 1   |      | 63.06      | 29.07 | 63.4     |
| 8 | 6            |                     |              |      |               |      |      |          | 709          | 66          | - 6     | 506        | 4   | ŀ    | 102        | 27    | 828      |
| 6 | 52.9224      | 35                  | 5.1079       |      | 52.1          | 416  |      | 92       | 53.70        | 31.98       | 5       | 8.5        |     |      | 17.22      | 28.94 | 63.6     |
| 9 | 52 4222      | 2                   | 1 0707       |      | 50            | 1224 |      | 02       | 55.07        | 23          | 2       | 231<br>07  | 1   | ,    | 403        | 29    | 584      |
| 0 | 32.4232<br>2 | 34                  | +.9707       |      | 32.4          | +234 |      | 93       | 55.07<br>689 | 51.84<br>8  | 5       | 0.7<br>344 |     | 5    | 347        | 20.01 | 287      |
| 7 | 57.8639      | 34                  | 1.8336       |      | 52.7          | 7057 | -    | 94       | 56.49        | 31.71       | 5       | 9.0        | 1   | ,    | 73.90      | 28.68 | 63.9     |
| 1 | 7            | 5                   |              |      | 22.1          |      |      |          | 896          | 4           | 4       | 27         | ,   | 7    | 545        | 38    | 935      |
| 7 | 55.7887      | 34                  | 1.6967       |      | 52.9          | 9884 |      | 95       | 60.83        | 31.58       | 5       | 9.2        | 1   |      | 63.20      | 28.55 | 64.1     |
| 2 | 7            |                     |              |      |               |      |      |          | 035          | 01          | 9       | 983        | 8   | 3    | 000        | 47    | 527      |
| 7 | 54.5992      | 34                  | 4.5598       |      | 53.2          | 2714 |      | 96       | 56.33        | 31.44       | 5       | 9.5        | 1   |      | 70.60      | 28.42 | 64.3     |
| 3 | 5            |                     | 04 -0 -      |      |               |      |      | 65       | 268          | 64          | 5       | 511        | 9   | )    | 000        | 58    | 061      |
| 7 | 58.5616      | 53.                 | 81698        |      | 53.5          | 545  |      | 97       | 60.50        | 57.91       | 5       | 9.8        |     |      |            |       |          |

| 8       |                                                                                                                                                                                                                                                  |                                                        |                                                        |                                                        | 338                                                    | 317                                                    | 011                                                    | 1                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 52.5235 | 53.97939                                                                                                                                                                                                                                         | 53.8376                                                |                                                        | 98                                                     | 63.63                                                  | 58.11                                                  | 60.0                                                   |                                                        |
| 5       |                                                                                                                                                                                                                                                  |                                                        |                                                        |                                                        | 579                                                    | 007                                                    | 481                                                    |                                                        |
| 56.1497 | 54.14311                                                                                                                                                                                                                                         | 54.1205                                                |                                                        | 99                                                     | 57.38                                                  | 58.30                                                  | 60.2                                                   |                                                        |
| 7       |                                                                                                                                                                                                                                                  |                                                        |                                                        |                                                        | 493                                                    | 870                                                    | 919                                                    |                                                        |
| 57.6095 | 34.0133                                                                                                                                                                                                                                          | 54.4033                                                |                                                        | 10                                                     | 59.91                                                  | 30.91                                                  | 60.5                                                   |                                                        |
| 1       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 0                                                      | 539                                                    | 34                                                     | 325                                                    |                                                        |
| 48.4779 | 33.877                                                                                                                                                                                                                                           | 54.6856                                                |                                                        | 10                                                     | 56.46                                                  | 30.78                                                  | 60.7                                                   |                                                        |
| 7       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 1                                                      | 007                                                    | 06                                                     | 696                                                    |                                                        |
| 55.4284 | 33.7408                                                                                                                                                                                                                                          | 54.9674                                                |                                                        | 10                                                     | 49.36                                                  | 30.64                                                  | 61.0                                                   | 1                                                      |
| 1       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 2                                                      | 815                                                    | 8                                                      | 032                                                    |                                                        |
| 57.4883 | 33.6047                                                                                                                                                                                                                                          | 55.2485                                                |                                                        | 10                                                     | 55.39                                                  | 30.51                                                  | 61.2                                                   | 1                                                      |
| 4       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 3                                                      | 357                                                    | 56                                                     | 332                                                    | 1                                                      |
| 59.1628 | 33.4687                                                                                                                                                                                                                                          | 55.5289                                                |                                                        | 10                                                     | 52.29                                                  | 30.38                                                  | 61.4                                                   | 1                                                      |
| 1       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 4                                                      | 193                                                    | 33                                                     | 593                                                    | 1                                                      |
| 57.1203 | 33.3329                                                                                                                                                                                                                                          | 55.8084                                                |                                                        | 10                                                     | 56.66                                                  | 30.25                                                  | 61.6                                                   | 1                                                      |
| 5       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 5                                                      | 011                                                    | 13                                                     | 815                                                    | 1                                                      |
| 57.4765 | 33.1972                                                                                                                                                                                                                                          | 56.0868                                                |                                                        | 10                                                     | 60.93                                                  | 30.11                                                  | 61.8                                                   | 1                                                      |
| 3       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 6                                                      | 195                                                    | 95                                                     | 996                                                    | 1                                                      |
| 60.0197 | 33.0616                                                                                                                                                                                                                                          | 56.364                                                 |                                                        | 10                                                     | 57.94                                                  | 29.98                                                  | 62.1                                                   | 1                                                      |
| 5       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 7                                                      | 275                                                    | 79                                                     | 136                                                    |                                                        |
| 55.1935 | 32.9262                                                                                                                                                                                                                                          | 56.6399                                                |                                                        | 10                                                     | 59.07                                                  | 29.85                                                  | 62.3                                                   |                                                        |
| 2       |                                                                                                                                                                                                                                                  |                                                        |                                                        | 8                                                      | 188                                                    | 65                                                     | 232                                                    |                                                        |
|         | $\begin{array}{r} 8\\ 52.5235\\ 5\\ 5\\ 56.1497\\ 7\\ 5\\ 7\\ 5\\ 5\\ 1\\ 48.4779\\ 7\\ 5\\ 5\\ 5\\ 5\\ 48.4\\ 1\\ 5\\ 7\\ 483\\ 4\\ 5\\ 9\\ 1628\\ 1\\ 5\\ 7.4765\\ 3\\ 5\\ 5\\ 7.4765\\ 3\\ 60.0197\\ 5\\ 5\\ 5\\ 5\\ 5\\ 1935\\ 2\end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |