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In all vertebrate and most of invertebrate animal‟s brain serves as the area of 

sensation. The growth of abnormal cells in the brain may leads to the tumor. 

This tumor can be either cancerous or non-cancerous. The earlier stage of 
detection and the necessary treatment of tumor may prevent from the human 

death.The process of segmenting the brain tumor is an important task in the 

area of medical field. The process of collecting or extracting the pixel values 

from the MRI brain image based on their intensity values is defined as the 

brain tumor segmentation. There are many ways available in which the 

segmentation is achieved. This includes contours, region growing method 

and the water shed method. The drawbacks of previous segmentation process 

are overcome by the thresholding method. In order to extract the features of 

the tissues first the non-specific parts are removed that are not constitutes to 

the region. Then the filtering process is applied to eliminate the noise from 

the MRI images. For the process of segmentation Self Organising Map is 
used along with the class labeling method.We developed an algorithm for 

clustering instead of using an additional network.Input feature vector is 

constructed with the features obtained from stationary wavelet transform 

coefficients.The experimental results show us the higherprecision value and 

dependability of the proposed tumor segmentation algorithm. This method is 

highly helpful to estimate the location of the tumor. 
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Introduction:-  

An important phenomenon in the medical field research is considered to be the brain tumor segmentation 

process.The growth of abnormal cells in the brain may leads to the tumor. This tumor can be either cancerous or 

non-cancerous.Based on the growth of the abnormal cells the tumor can be classified into Malignant Tumor or else 

Benign Tumor. In order to prevent from the various complications earlier stage of identification and diagnosis is 
recommended. So that it may prevent the human from the death and various complexities of disorders.The 

traditional way of segmenting the brain tumor process takes the multimodal MRI images and they process it 

simultaneously. The analysts and clinical researchutilizes the multimodal MRI images because itmay providethe 

various complexities of information regarding the tumor area.Though they provide complex and various knowledge 

of the tumor area, the process of segmenting the tumor is still defined to be the tedious task.The reason for this is 

due to their heterogeneity of tumor area.This all problems were overcome by the proposed method in which it 

provides the better segmentation results. 

 

Tumor Types:- 

Brain tumor is mainly divided into two types, namely: 

 Primary tumor 

 Secondary tumor 
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Primary tumors are further classified into:- 

 Benign Tumor 

 Malignant Tumor 

 

Background:- 
An important process in the tumor diagnosis and the radiotherapy planning is defined as the brain tumor 

segmentation. Since there are finite tumor segmentations have been in presented, the process of elevating the tumor 

segmentation method is still demanding because they are having diverse characteristics, which includes high 

miscellany in the tumor appearance and they exhibit equivocal boundaries. In order to resolve this problem, an 

automatic tumor segmentation method for the MRI images has been defined. In this, the solution is addressed by the 

classification problem. In addition to this, to differentiate among the voxels Local Independent Projection-based 

Classification (LIPC) method has been utilized. The main technique behind the local independent projection-based 

classification (LIPC) method is to identify the locality. Locality is also considered in determining whether local 
anchor embedding is more applicable in solving linear projection weights compared with other coding methods. In 

LIPC, the distribution of the data among different classes (i.e., tumor, edema, and brain tissue) may widely vary. 

Therefore, the data distribution of each class should be considered when segmenting brain tumors. This is addressed 

by the sofftmax regression model.3
 

 

Toward brain tumor segmentation:- 
In this research, machine learning and computer vision techniques are used to develop some approaches to 

automatically segment brain tumors and lesions in MR images. A method of dividing or segmenting image in to 

homogeneous regions is termed as Image segmentation. This phenomenon‟s needs a measure in order to define the 

homogeneity. The image segmentation task defined in this workutilizes an anatomic objective measure in order to 

assess segmentation quality, in contrast to methods that use an image-based objective measure.This mainly focuses 

on the goal to segment the image in order to classify the regions of the image based on the homogeneous (and 

known) anatomic properties, and the regions that have similar intensities or textures. The importance of this study is 
obvious, since brain tumors are among first five leading causes of deaths. It is said that the Tumor management is 

considered to be a critical phase because the exact detection and segmentation of brain tumor and lesions in medical 

images have a great influence on clinical diagnosis, predicting prognosis, and treatment of these ailments. In 

addition to this, it‟s an advantage of designing the brain atlases. The vast knowledge regarding the location and 

volume of brain lesions is essential to number of researches in this field, which includes the functionalities and 

defects of the brain. Typical medical imaging techniques are ultrasonography, computed tomography (CT), positron 

emission tomography (PET), and magnetic resonance images (MRI). Apart, from this MRI has been widely 

employed. One reason is being highly sensitive to local changes in tissue water since changes in tissue water reflect 

physiologic alterations that can be visualized by MRI.  

 

A. MRI Imaging  
One of the benefited imaging techniques among the technological innovation is termed to be MRI. The advancement 

in imaging has led to the accuracies in quality and improvements in speed. The main purpose of MRI in medical 

imaging technique is mainly to study about the detailed internal structures. MRI utilizes the mechanism of nuclear 

magnetic resonance (NMR) in order to image nuclei of atoms inside the body. As one among the visualization 

technique, Magnetic Resonance Imaging (MRI) allows images of internal anatomy to be acquired in a safe and non-

invasive way. It is mainly based on the principles of Nuclear Magnetic Resonance (NMR). The main idea behind 

this principle of NMR is to allow the different type of visualizations to perform.The main usage of this medium is to 

deliver the images of the brain because of the ability of MRI to record signals, where it helps us to differentiate 

among the different „soft‟ tissues (such as gray matter and white matter).In imaging the brain, two of the most 

commonly used MRI visualizations are T1-weighted and T2-weighted images. Here the weightings defined as the 

dominant signal (whether it be the T1 time or the T2 time) measured to produce the contrast observed in the image.  

The areas with thehigh fat content have a short T1 time due to the water;T1-weighted images can be thought of as 
visualizinglocations of fat. In contrast, since areas with high water content have a short T2 time relative to areas of 

high fat content, T2-weighted images can be thought of as visualizing locations of water. 
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Figure 3.1.T1-weighted and T2-weighted signal properties. Top left: T1-weighted image (light regions evoke the 

locations of fat). Top right: T2-weighted image (light regions evokes the locations of water). Bottom left: White 

matter (high fat) locations. Bottom right: Cerebrospinal fluid (high water) locations. 

 

Figure 1.1 demonstrates an example T1- and T2-weighted image, and the locations of two normal tissue types in 

these modalities. In visualizing brain tumors, a second T1-weighted image is often acquired after the injection of a 

„contrast agent‟. These „contrast agent‟ compounds generally consists of the element whose composition causes a 

decrease in the T1 time of nearby tissue (gadolinium is one example). From the results, the brighter regions in the 

image tell us the image contains the leaky blood cells (where blood moves through the brain-blood barrier). Hence 
the „enhancing‟ area can visualizes the presence of a tumor. 

 
Figure 3.2 Effects of contrast enhancement on T1-weighted image data. Left: T1-weighted image prior to the 

injection of a contrast enhancement. Right: T1-weighted image after the injection of a contrast agent 

 

Figure 1.2 illustrates a T1-weighted image before and after the injection of a contrast agent. Here the enhancement 
present in the image depicts the presence of tumor, hence there are different types of tumor available in which they 

appearance may vary. It is said that some of them are fully „enhancing‟ (ie. appear hyper-intense after the injection 

of a contrast agent) or some of it may have an „enhancing‟ boundary, since only some of the tumors shows partial 

enhancement or no enhancement. Edema (swelling) can also be observed in many types of primary tumors, and 

appears as hyper-intense in T2 images. Treatment to the tumor mainly includes a combination of surgical resection, 

radiation therapy, and chemotherapy. MRI is used in tumor diagnosis, monitoring tumor progression, planning 

treatments, and monitoring responses to treatment. 

 

B.Multi-spectral MR images  

It is one of varieties of MRI Imaging for lesion identification. There are four main difficulties when we are moving 

to multi spectral MR images. As first, the knowledge of gaining the information is not always feasible because of 
patient condition severity and time shortage. Next, the process of gathering multi-spectral MR images is considered 

to be quiet expensive. Thirdly, they can bring a lot of redundant information which is considered to the time 

consuming process and in some cases it gives the segmentation errors. And finally, multi-spectral MRI data is 

mainly affected by the criteria‟s of inconsistency and misalignment, which requires image registration and bias 
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correction prior to applying the segmentation algorithm [3]. Note that, any 5 inaccuracy in registration or bias 

correction stages will directly affect the precision of the lesion segmentation. Owing to these limitations, detection 

and segmentation of the brain lesion based on single contrast mechanism MR images is desirable. 

C.Benefits of MRI 

It is a non-Invasive Procedure which enables the differentiation of soft tissues with high resolution  

MRI is that it produces multiple images of the same tissue with different contrast visualization via the application of 
different image acquisition protocols and parameters.  

These multiple MR images provide additional useful anatomical information for the same tissue. Complementary 

information from multiple contrast mechanisms helps researchers study the brain pathology more precisely. Brain 

lesion detection and segmentation can be carried out either manually or automatically. In manual segmentation, the 

lesion areas are manually located on all contiguous slices in which the lesion is considered to exist. It provides 

various data on the tumor region as it reveals different parts in tumor area. 

 

Materials and methods:- 

A.  Dataset Description: 

 Brain tumor MRI images are taken testing data for tumor segmentation with division like tumor core and edema 

part. These data is taken for evaluation with fivefold cross validation.  

 

B.  Overview of the Proposed Method 

In order to extract the features of the tissues first the non-specific parts are removed that are not constitutes to the 

region. Then the filtering process is applied to eliminate the noise from the MRI images. For the process of 

classifying voxels, a classifier called Self Organising Map (SOM) is used.  Self-Organizing Map (SOM) includes the 

unsupervised learning algorithm and class labeling method with high diversity data like tumor appearance and its 

contour deformation. On comparing with other techniques, Instead of using Multimodal MRI images for clustering 
of voxels Self Organising Map has been used. A feature vector has been constructed in which the features for 

constructing vector have been gained from the Wavelet Transform coefficients. This has been constructed mainly 

for identifying tissue types which includes White Matter (WM), Grey Matter (GM), Cerebrospinal Fluid (CSF) and 

sometimes pathological tissues. The accuracies and the performance are provided in terms of training performance 

and the classification accuracies.  

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 4.1 Architecture diagram  
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Results and discussions:- 

A. Removal of Noise 

Noise is an important criterion in all images i.e., here we have considered the MRI image of the brain which makes 

the brain image to blur. This is because of presence of noise in the MRI image. It is important that to eliminate the 

noise in the brain because the noise in the image increases the probability of complexity when we are moving to the 

segmentation process. There are many ways are advised to handle the noises in the MRI image. In earlier days noise 

can be removed through the simple process acquired by morphological operations. Here the noise removal process is 

handled by the filtering process. There are many filters currently available to filter the noises in the affected pixels. 

In this work we are going for anisotropic filtering technique to eliminate the noise and the blur contained in the 

image.Hence this noise removal approachis regarded as theimportant approach in image processing techniques. 

` 

 

B. Segmentation of White and Grey Matters 
Segmentation in the image processing is defined as the segmenting the image in to homogeneous regions. Therefore 

it needs a measure to elaborate the homogeneity of regions. The main principle of using image segmentation in this 

work is that it takes an anatomic objective which asses the segmentation quality of the brain MRI. Depending upon 

the anatomic properties of the brain image, the image is divided in to similar homogeneous regions. There are 

various algorithms used in the segmentation process. In this work Thresholding algorithms are used to segment the 

grey matters and the white matters of the brain. It is a technique which converts the grey-scale image in to the 

monochrome image in which the two levels of 0 and 1 are defined to the pixels .Therefore all the pixels are assigns 

either 0 or 1 based on the thresholding condition. If the pixel value is higher than threshold value means it holds the 

value of 0 else it holds the value of 1.It is said that the brain MRI image has contradictory lightning conditions. For 

these contradictory type of lightning conditions it uses the algorithm of adaptive thresholding where that algorithms 

evaluates the value of threshold for the regions. From these processes we obtained the best results for the for the 
brain image with the different lighting conditions.  

 

 
Figure 5.1. Pre-processing of the MRI image 

 

 
Figure 5.2.Image Segmentation based on grey matters 
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Figure 5.3. Image Segmentation of White Matters 

 
C. Bounding box method 

The fast bounding box technique is mainly based on the phenomenon of symmetrical areas defined in the brain, 

which means the lobes of the brain. It is said that the two lobes of the brain are almost similar. In simple words, the 

right and the left lobe have almost the similar pixel values. This statement is true until and unless any abnormalities 

that happen to be occur either in right lobe or left lobe of the brain. As a first step, the skull is identified in order to 

define the bounding box. A straight line is drawn on the brain image in order to discriminate between the right lobe 

and the left lobe of the brain. One lobe act as the testing image whiles the other lobe act as the training image. Both 

regions were scanned horizontally and vertically in order to find the abnormalities in the lobes.Fromthe abnormality 

regions a graph can be constructed. Based on the abnormality values a plot function has been obtained which we 

mark it as „E‟. From the graph the points of minimum and maximumpoints are obtained. Among all the pairs, the 

pair (a, b) is found for which difference (E (a)-E (b)) is maximum.This provides the boundary of  thebounding box. 

This bounding box method utilizes the probability mass function. The bounding box of abrain image is defined by 
using the effective approaches of binary test and a decision tree. From the fig 5.4 we provided this technique reduces 

the miss detections when the scanning grid spacing is increased. 

 

 
Figure 5.4. Classification of the Brain in to left lesions and right lesions 

 
 

D. Classification Technique 

The distribution of data among different classes of tumor regions, edema may vary accordingly. While segmenting 

the brain tumor, this distribution of data among different classes has been taken in to account. To extract the features 
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of the image a patch based method is employed. The intensities of pixels „v‟have been constructed and it has been 

allowed to rearrange in order to obtain the feature vector. 

In this work, a classification optimization technique is employed by the method of Softmax regression. This 

optimization technique does not need the explicit regularization. This is because theproposed method provides the 

natural smoothness to the results of segmentation without using the explicit regularization.This patch feature is 

found to be insufficient to differentiate the task of brain tumor Segmentation.This is because of the various complex 
characteristics which includes the accuracy and efficiency. 

 

E.  Skull Segmentation  

It is an essential step to eliminate the tissues of non-cerebral part such as connective tissues, skull, muscle, fat and 

skin, which are not the elements of segmentation part. For this skull segmentation an algorithm is used which 

combines the functionalities of erosion, dilation and the thresholding functions. At first filtering process is applied in 

order to smoothen the image. Here we are using the Gaussian filter for the softening process. After that intensity 

histogram is evaluated in order to find the global value of threshold, in which the pixels with the higher threshold 

value assigns with the value of 0. By using the Otsu‟s method we have obtained the threshold value, in which further 

converted to monochrome image. To remove the brain from the tissues we are using the morphological operations of 

dilation and erosion along with the octagon structuring element. 

    
Figure 5.5 preprocessed image 

 
F. Feature Extraction  

To extract the features from the MRI images we have utilized the Discrete Wavelet Transform in which in turn 

given as the input to the neural networks. The coefficients of Wavelet Transform will not change its value even 

though there is a shift in the signal. In the traditional Wavelet Transform for the decomposition down sampling 

along with the convolution with the filter are applied to the signal. It is an iterative algorithm and it utilizes theover 

complete decomposition that provides a tight frame.Decomposition filter is up sampled and convolved with the 

signal to obtain the coefficients of the subsequent level, unlike the traditional wavelet transform that down samples 

the signal for decomposition of each level. 
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Figure 5.6 Tumor sector Confirmation 

 

 

G. Tumor Segmentation process 

We trained Self Organising Map to map the input image to the corresponding tissue regions according to their 

characteristic features by considering their natural grouping in the input space. This mapping reduces the dimension 

and groups similar regions together that help to understand high dimensional image data. Self Organising Map has 
two layers. There are input nodes in the first layer and output nodes in the second layer. Output nodes are in a form 

of two-dimensional grid. There are adjustable weights between each and every output. A multidimensional 

observation, i.e., a feature vector, is associated with each unit. The map attempts to represent features with optimal 

accuracy using a restricted set of clusters. At the end of training process, the clusters become ordered on the grid so 

that similar clusters are close to and dissimilar clusters are far from each other. SOM clusters the data by having 

output units compete for the current input feature vector during training. The unit closest to the input becomes the 

winning unit or best matching unit (BMU) and weight vectors of this unit and its neighbors are updated. 

               We used hexagonal lattice with random initialization and unsupervised sequential training algorithm with 

Gaussian neighborhood function for training. We clustered the images into five regions corresponding to White 

Matter, Grey Matter, Cerebra Spinal Fluid, tumor, and edema. These clusters are then labeled using the manually 

selected image regions. 
 

H. Linear vector quantization – Class Labeling method  

The supervised Linear Vector Quantization algorithm that utilizes labeled data for the process of fine-tuning the 

weight vectors of the trained and labeled Self Organising Map. The main function of this part is to provide the best 

placement of the neurons. The purpose of Linear Vector Quantization is to define class regions in the input space by 

placing similarly labeled codebook vectors into classes even if there is an overlap of class distributions of the input 

samples at the class borders. It is recommended to start learning with the Linear Vector Quantization1 algorithm, 

which converges very fast, and continue with the Linear Vector Quantization3 algorithm using a low initial value of 

learning to improve recognition accuracy. 
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Figure 5.7 Tumor Display 

 

Conclusion:- 

We designed and implemented a new classifier for brain tumor diagnosis using self-organizing map (SOM) that is 

trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ) with high 

diversity data like tumor appearance and its contour deformation. An Algorithm has been presented for clustering 

the SOM of voxel instead of using an additional process for Multimodal MRI images. Input feature vector is 

constructed with the features obtained from discrete wavelet transform (DWT) coefficients for identifying tissue 

types which includes White Matter (WM), Grey Matter (GM), Cerebrospinal Fluid (CSF) and sometimes 

pathological tissues. The performance of this classifier was evaluated in terms of training performance and 

classification accuracies. The simulated results shown that classifier and segmentation algorithm provides better 

accuracy than previous method. 
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