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In this review, we discussed mainly on fabrication of polymer brushes by 

using controlled radical polymerization technique. Controlled radical 

polymerization (CRP) techniques provide enormous possibilities for 

synthesizing well-defined polymers with controlled architectures and molar 

masses, high graft density with well-distributed polymeric brushes. In fact, 

we also discussed the atom transfer radical (ATRP) and Reversible 

fragmentation chain transfer (RAFT) radical polymerization. Also, we had 

discussed the general characterization techniques of polymer brushes. 

 

Review could be more useful for researchers in general to understand the 

polymer brush preparation and its characterization. 
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Introduction:- 
Polymer brushes (PBs) can be defined as long-chain macromolecules that are attached with an anchor site to a 

surface.[1] An interesting class of smart macromolecular brushes consist of stimuli-responsive polymer brushes 

because their assemble and properties can be tuned in an accurate and predictable manner by using an external 

stimulus.[2] Such type of smart PBs have attracted substantial research interest in the latest years since they play an 

important role in a wide range of applications in several areas of materials science research and technology.[3-5] 

Physicochemical properties and shape of polymers usually show rapid and reversible changes in response to small 

changes in the environment (e.g., solvent, ionic strength, electrochemistry and pH).[6-9][5, 10] 

 

In the past decade, the limitations of FRP have been overcome as several procedures for CRP have evolved based on 

an understanding and integration of chemistry developed over the past 60 years in the fields of organic chemistry, 

conventional radical polymerization, and living ionic polymerizations. Controlled radical polymerization (CRP) 

techniques provides enormous possibilities for synthesizing well-defined polymers with controlled architectures and 

molar masses.[8, 11-14] 

 

For instance, reversible addition fragmentation chain transfer (RAFT) polymerization allows the use of acidic 

monomers and also the use of polar solvents like ethanol. Therefore, this technique is most widely employed method 

to prepare water soluble polymers.[1]However, the chain transfer agent (CTA) has to be carefully selected 

depending on the nature of the monomer.[12, 13, 15] Alternatively, transition metal-catalyzed controlled radical 

polymerization techniques provide good control over the polymerization of several monomers.[16] 
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Figure 1.  Development of CRP by integration of advances in several fields of chemistry.[14] 

 

Unfortunately, these techniques, namely atom transfer radical polymerization (ATRP) and single electron transfer 

controlled radical polymerization  (SET-LRP), are based on the oxidation reduction equilibrium of the transition 

metal and ligand complex which can be disturbed in the presence of acidic monomers. As a consequence, protected 

monomers have to be used during the polymerization.[12, 13, 16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The three main CRP methods. 

 

 

Synthetic strategies for preparing polymer thin films made up of polymer brushes use the “grafting-from” and “graft 

to” techniques.[17] The grafting from strategy normally yields a higher graft density of polymers with controllable 
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coverage on the surface than “graft to” approach.[18] In the grafting-from approach, an initiator bound to the 

substrate enables an easy control on the thickness and density of the polymer brushes using a wide range of 

polymeric techniques such as living ring-opening metathesis polymerization (ROMP),[19] anionic polymerization or 

controlled radical polymerization (CRP) i.e. nitroxide-mediated polymerization (NMP),[16] atom-transfer radical 

polymerization (ATRP)[20] and reversible addition fragmentation chain transfer polymerization (RAFT).[11, 21] 

 

Atom Transfer Radical Polymerization and Brush Synthesis:- 

An attractive feature of ATRP and other controlled/living radical processes is the ability to simultaneously grow 

chains from multifunctional cores, or surfaces (Scheme 1). An advantage of ATRP systems is the facile 

functionaliza- tion of target substrates using commercially available a-haloesters, or benzyl halides, circumventing 

the multi- step synthesis necessary for functional alkoxyamines and dithioesters. ATRP initiator groups have been 

successfully coated onto both organic and inorganic materials, with either flat or curved surfaces. From this 

approach, polymer brushes of varying composition and dimensions have been prepared by surface-initiated growth 

from macroscopic wafers or particles, (sub) micron-sized colloids and polymer backbones.  

Ideally, in using efficient multifunctional initiators for ATRP, the number of functional initiating sites translates into 

stars or brushes possessing the exact number of tethered polymer chains. However, termination reactions at either 

low or high conversion may alter the functionality and molar mass distribution of tethered chains. An additional 

consideration in using multifunctional initiators is that termination can occur either by intermolecular coupling of 

growing radicals or in an intramolecular fashion by neighboring surface-immobilized chains.  

 

 
 

Scheme 1. Examples of polymer brushes synthesized by ATRP using „„grafting from‟‟ approach from various 

functional substrates, such as flat wafers, particles, colloids and polymers (X-halogen). [20] 
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Reversible addition-fragmentation chain transfer (RAFT):- 

The “livingness” of this polymerization process can be ascertained from a linear first-order kinetic plot, 

accompanied by a linear increase in polymer molecular weight with conversion, with the value of the number-

average degree of polymerization (DPn) determined by the ratio of reacted monomer to initially introduced initiator 

(i.e., DPn = D[M]/[RX]0).[12, 13, 22] 

 

RAFT polymerization begins when radicals are generated by decomposition of a peroxide or azo type free radical 

initiator. The initiating radical species reacts with the monomer and in what has been termed as the pre-equilibrium, 

the radicals on the ends of the propagating chains quickly attack the reactive C=S bonds of the CTA to produce a 

carbon centered intermediate radical. This species may undergo a β-scission reaction which can either yield the 

reactants back, or release the R group as a radical fragment and leave the polymeric chain capped with the 

dithioester. The R radical released is free to initiate new chains by attacking monomer or they may attack back on 

the dithioester capped chain.[12] 

 

The dithioester capped state comprises the dormant species in a RAFT reaction. It is critical to note the general form 

and function of the dormant dithioester adduct is the same as that of the original CTA, dormant polymer chain takes 

place of the R group.This species is referred to as a macro chain-transfer agent (macro-CTA). [13, 14, 23] The 

preequilibrium continues until all initiator is consumed and all R groups are released as radicals to initiate more 

chains. At this point, main equilibrium begins and is governed by the same mechanism of radical attack on the C=S 

bond followed by β-scission of the resulting intermediate radical. However, in the main equilibrium stage this 

process takes place solely between propagating chains and macro CTAs, resulting in a rapid exchange of the 

dithioester cap. This rapid exchange ensures each chain has the same probability of growth and minimizes 

termination reactions leading to the living characteristics observed. 

 

 
Figure 3. (a) Mechanism of RAFT and (B) flow chart RAFT addition. 

 

RAFT polymerization[11] has been successfully applied to grow well-controlled brushes on substrates to alter the 

surface properties of the materials. This polymerization technique has also been used to obtain inorganic particles 

with controlled polymer hair size including gold, silica/silicon as well as glass surfaces.[18, 23-25] The RAFT agent 

can be immobilized on the substrate, then initiator and monomer are added together to start the radical 

polymerization or radicals can be generated on the surface itself by covalent attachment of an initiator and RAFT 

agent is added in a second stage, while monomer is introduced in the reaction mixture at the very latest stage.[20] 

Two methods are available for immobilization, the RAFT agent can either be attached via its R-group (anchoring 

side) or Z-group, the macroiniziator site, where reaction propagates (for a better understanding of the RAFT method 

a graphical representation of this approach can be found in in Figure 3). 

 

Growing polymer brushes with schematic diagram:- 
RAFT agents can be immobilized on the surfaceor radicals can be generated on the surface by covalent attachment 

of a Raft agent while the RAFT agent has been added to the solution.[25-28] 

“Grafting from” methods using RAFT-initiator-immobilized or vinyl zed surfaces to grow polymers from surfaces 

with conventional radical polymerizations can yield functional polymer brushes, although it is difficult to regulate 
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grafted polymer chain lengths under these reaction conditions.To overcome these problems, polymer brushes 

prepared by the “grafting from” method were proposed using controlled living radical polymerization [30-34]that 

more readily provides polymer chains with predetermined molecular weights and narrow polydispersities, 

controlling reaction times at appropriate monomer concentrations and temperature. Graft thickness for grafted 

surfaces is obtained by varying concentration of monomer feeding ratio with time. 

 

 

 
 

Figure 4. Concept for the synthesis of covalently attached polymer monolayers via radical graft polymerization 

(“grafting from” technique) using immobilized initiators. 

 

Characterization of polymer brushes:- 

The characterization of polymer brushes can be a challenging task since many of theanalytical tools in polymer 

science are solution-based techniques. Table 1 provides anoverview of the different techniques that have been used 

to characterize polymer brushes. For a broad variety of polymer brush properties, Table 1 lists the analytical 

methods that are available to study that particular property. Instead of discussing the technical details of all the 

analytical techniques, this section will highlight how some of the most prominent properties of a polymer brush can 

be studied with the analytical tools that are currently available.  
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Property Methods 
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 x    [28

] 

Thickness [29, 
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[31]  x       [10

, 

32] 
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Molecular 
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           [36
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 x   
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[39
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[40, 

41] 

 

 

 

[10

, 

32] 

[42

] 

x  

Topography and 

surface structure 

Stiffness x       x       

Conformation 

and  swelling 

[43, 

44] 

 [45, 

46] 

[47, 

48] 

x x [43, 

49] 

 [50, 

51] 

    [52

] 

Polymerization 

kinetics 

x   x     [53, 

54] 

     

Electronic and 

electrochemical 

properties 

  [55]            

Table 1.  Overview of analytical techniques that are available for the characterization of polymer brushes.SPM: 

scanning probe microscopy; SPR: surface plasmon resonance; TOF-SIMS: time-of-flight secondary ion mass 

spectroscopy; QCM(-D): quartz crystal microbalance (with dissipation monitoring); XPS: X-ray photoelectron 

spectroscopy; XRR: X-ray reflectivity; TGA: thermogravimetric analysis; NR: neutron reflectivity; GPC: gel 

permeation chromatography; NEXAFS: near edge X-ray absorption fine structure analysis. 
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Conclusions:- 
In this review, we presented the polymer brushes synthesis by control radical polymerization method. In particular, 

we explain the advantages of the ATRP and RAFT initiated polymerization. This could more useful information for 

the investigator to understand for the preparation of polymer brushes. 
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