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Dirichlet averages The authors making the use of Riemann —

Riemann-Liouvilleintegrals. Liouville integrals andDirichletintegrals which is a multivariate integral

and the generalization of a beta integral.

Finally, the authors deduce representations for the Dirichlet averages
R, (B, B";x,y) of the generalized Fox-Wright function with the fractional
integrals in particular Riemann — Liouville integrals.Special cases of the
established results associated with generalized Fox-Wright functions have

been discussed.
Copy Right, IJAR, 2013,. All rights reserved.

Introduction

The Dirichletaverages of a function are a certain kind integral average with respect to Dirichlet
measure. The concept of Dirichlet average was introduced by Carlson in 1977. It is studied
among others by Carlson [1,2,4], Zu Castell [5], Massopust and Forster[6], Neuman and
Vanfleet[7] and others . A detailed and comprehensive account of various types of Dirichlet
averages hasbeen given by Carlson in his monographs [3].In this paper Dirichlet averages of the
generalized Fox-Wright due to Wright[9,10] have been studied by the authors.

This paper is devoted to investigation of the generalized Fox- Wright functions (also known as
Fox-Wright psi function or just Wright function) is a generalization of the generalized
hypergeometric function ,F4(z) based on an idea of E. Maitland Wright (1935).

(a;; A1) (az; 42) -+ (ap;Ap)
pVa : z
(b1; B1)(b2;B2) =+ (bg; By)

w Tlai+ndq )I"(a2+nA2)...F(ap +nAp) i (1)
n=0 I'(by+nB)I (by+nBy)..I (bg+nB,) n!

Where 1+2]‘.’=1 B; - j.’zlAjz O(equality only holds for appropriately bounded z. The Fox-Wright

function is a special case of the Fox- H-function (Srivastava 1984)[12].
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(ay;A1)(az A2) - (ap;4p)
Vg Pz =
(b1; B1)(bz; B2) -+ (bg; By)
(1 —ay;A)(1 —az; 4z) (I =ay;4p)
Hy o1 i |-z) @
(01)(1 = by; B1)(X = by;By) -+ (1= by;By)

It follows from (2) that generalized Mittag- Leffler function Ezﬁ (z) can be represented in terms
of the Wright function as

, . ;1)
Eyp(2) = ——11 iz
rwy) (B: @)
Ly - (1-ay; A1)
Ea'ﬁ (2)= 11 z )= Hllz1 ‘-z
Bra) - (0,1)(1 = by; By)

Definitions: We give below some definitions which are necessary in this paper.
Standard simplex in R*,n > 1: Wedenote the standard simplex in R",n > 1 by

E=E, =y, uy,..uy);u; =0,u, =>0,...,u,=0andu; + u, +ug +
u, £ 1},

Dirichlet Measures: let b ec*>; K > 2 and letE = E,_; be the standard simplex in R*=1 . The
complex measure u; defined by [1]

-1 bi-1,,  by—1,  b3—1 br-1—1
dﬂb(u)—%ul 1Ty 27y T (-, 1wy, 1 —

Weeq VP61, dy,dy,...d

Uy _q-

_ T(bI(by)..I(by)

C>={zec:z#0 }

Dirichlet average: let ©@be aconvex setin C and let z=(z; , 7z, ...2,) €2", n>2, and let fbe a
measurable function on QQ .Define

Fb;2) = [, _ f(uoz) dy, (u).where d,,, (u) is a Dirichlet Measure.

_ _ I(b)r(by)..r(by) .
B(b)=B(b, , b,..b,) = ETRTRTREE R(b)>0,j=1,23...n,
and uoz= ;‘z_llujzj +(1—-u o—uyp )z,

Forn=1, f(b;z) =f(z), forn=2, we have
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()= 28D B-10q gy A-lg(u).

Mg gl r(er(g')

Carlson [3] investigated the average for
f(z) = 7% KkeR,
Re(bi2) = f, (uoz)*d,,(u), (keR).

And for n= 2, Carlson proved that []

Ri(B,B'%Y) = 5o JyTux + (1= wylu P71 (1 —w) #7Md(u),

')

Where B, BleC , min [R(8),R(BN] >0, x, yeR.
Our paper is devoted to the study of theDirichlet averages of the generalized Fox- Wright
function (1) in the form

(a;; A1) (az; A7) - (ap' p)
pMq '

. (ﬁ,ﬁ':x,y)ﬂ:f& pva(uor)d, (U) 3).
(b1 B (B2 By) -+ (b By)

Where R(8) >0, R(B!) >0 ; x, yeR and B, B'e C.
Reimann-Liouville fractional integral of order ae C, R(a)> 0 [13].

(&, f)x = ﬁf (x —t)* L f(t)dt, (x > a,aeR ). 4)
Representation of R, and pMq in terms of Reimann-Liouville Fractional Integrals

In this section we deduced representations for the Dirichlet averages R, (B,f!,x,y)
andpMq(B, '; x, y)with fractional integral operators.

Theorem :Letg, Ble Complex numbers ,R(B) >0, R(8")>0,and x,y be real numbers such
that x > yand 1+Z;?=1 ] _14;=0, and pMgand IZ, be given by (3) and (4) respectively .
Then the Dirichlet average of the generalized Fox- erght functions is given by

(a;41)(az;42) - (ap;Ap)
pMq ( I (ﬁ,ﬁ;x,y)>]
(b1; B1)(b2; By) -+ (bg; By)
r(s+8") (al;Al)(aZ;AZ) (ap' p)
T @y | L0 PV ‘
(b1; B1)(by; By) - (bq' By)

Where B, B'eC , R(8) >0, R(8) >0, x,y ¢R and 1+2?:1 B; - 1_A:>0 (equality only

j=1 J
holds for appropriately bounded z).
Proof : According to equation (1) and (2) we have,
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(b1; B1)(b2; B2)  ++ (b3 By)

(ﬁ»ﬁl:X;Y)>] =
] 1F(a1+nA ) 1

T 0 T T i Y uG =M A w P )

B(B, ﬁ')
(a;41)(az; 42) - (ap' p)
pMq : BBy
(b1; B1)(b2; Bz) -+ (bg; By)
_ r(g+) My I(aj+n4)) 1

0 o= an o)l UG =" P —w P 1d().

Putu(x —y) = tin above equation , we get

(a1;41)(az;42) - (ap;Ap)
pMq : BB xY)
(by; B1)(by; B2) - (bq: q)
_ I+ o Wal(@tn4)) 1 x—y n(t P~ gl—1 dt
_r(ﬁl)r(ﬁ)Z"ZO Hj‘!:lr(bﬁnBj)EfO L+t {E} (1- ) x—y
-84l I'(aj+n4;) 1 .« _ I_
(XB}ZZW) Zn =0 ] 1F(b]+nB)n'f y[ +t]n{t} d 1(36—}/—1) g 1dt

(aJ’A})
(b;:8;),

Lp

_ @ ey s
= 5@ o t" "pva

y—i—t) x—y—1) #dt

=(X—J’)1_ﬂ_ﬂ| Y g1 pyq ( A])lp
“hgan b (5:5),

y+t> x—y-1) ¥ ar.

This proves the theorem.

Special Cases
In this section, we consider some particular cases of the above theorem by setting p=g=1 and
a=v,A=1,b=pand B=a, we get well known result reported in [8] as follows

14 l. — r(g+p") xX=y -1 ¥ o pl-1
M, (BB xy) = ETYEESTTI= " Egp(y+) (x—y—1) dt.

[
My, (68, Blsxy) = e (Ut B0+ D))
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Further, by setting y= 0 in above equations, we get well- known result reported in [11] like as

14 . _ I(g+p") (v, D, 8, 1)
Ma,a(ﬁ,ﬁ",x, 0) = roHre) 2y2 l(ﬁ +ﬁ|,1), 6.1) ,xl.

In particular, when g + B! =1,

_ 8,1)
MY (87— Bix0) = =1yl | o x|

References
[1] B.C. Carlson, Lauricella’shypergeometric function Fp, J. Math. Anal.Appl. 7(1963), pp. 452-470.

[2] B.C. Carlson, A connection between elementary and higher transcendental functions, SIAM J. Appl. Math.
17(1969), No. 1 pp. 116-148.

[3]B.C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.

[4] B.C. Carlson, B-splines, hypergeometric functions and Dirichlet average, J. Approx. Theory 67(1991), pp. 311-
325.

[5] W. zu Castell, Dirichlet splines as fractional integrals of B-splines, Rocky Mountain J. Math. 32 (2002), No. 2,
pp. 545-559.

[6] P. Massopust, B. Forster, Multivariate complex B-splines and Dirichlet averages, J. Approx. Theory 162 (2010),
No. 2, pp. 252-269.

[7] E. Neuman, P. J. Van Fleet, Moments of Dirichlet splines and their applications to hypergeometric functions, J.
Comput. Appl. Math. 53 (1994), No. 2, pp. 225-241.

[8] R.K. Saxena , T.K. Pogany ,J.Ram and J. Daiya, Dirichlet averages of generalized multi-index Mittag-Leffler
functions.Armenian journal of Mathematics VVol(3) No.4 (2010), pp 174-187.

[9] E.M. Wright. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans.Roy.Soc.
London, Ser.A 238 (1940), pp. 423-451.

[10] E.M.Wright, The asymptotic expansion of the generalized hypergeometricfunction .Proc.LondonMath .Soc .(2)
46 (1940), pp. 389-408.

[11] Anatolgy A. Kilbas and Anithakattuveettil, Representations of the Dirichlet averages of the generalized Mittag-
Leffler function via fractional integrals and special functions. Fractional Calculus & Applied analysis, Vol(11) —
(2008).

[12] H.M. Srivastava, H.L.Manocha; A treastise on generating functions . ISBN 470-20010-3(1984).

[13] S.G.Samko, A.AKilbas, O.l.Marichev, Fractional integrals and derivatives, theory and applications Gordon
and Brench , New York et al.(1993).

61



