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BIS stands for Breakdown of Integrated System. We have considered our 

universe as an integrated system and it becomes chaotic while dealing with 

these signals with these variant non-stationary signals. We propose the rate 

of spectral dynamics as a possible scheme to categorize sounds in the 

environment. Sound in the natural environment form an important class of 

biologically relevant non-stationary audio signals. We propose a dynamic 

spectral measure to characterize the spectral dynamics of such non-stationary 

sound signals (Audio Waves, VLF & ULF signals) and classify them based 

on rate of change of spectral dynamics. We categorize sounds with slowly 

varying spectral dynamics as simple and those with rapidly changing spectral 

dynamics as complex.  

 
                   Copy Right, IJAR, 2013,. All rights reserved.

 

1. Introduction  
 

The human auditory system is capable of 

discriminating a large variety of complex sounds in 

the natural environment. Interestingly, anatomical 

studies of the adult human brain indicate that 

specialized regions of the brain analyse different 

types of sounds [1]. Music, speech and environment 

noise are processed in areas that are anatomically 

distinct. [2] However, the reasons for this kind of 

functional organization are not clearly identified. We 

study the spectral dynamics of different 

environmental sounds and develop indices to 

quantify rate of change of spectral dynamics. We 

propose rate of change of spectral dynamics to 

explain sound categorization. 

 

The left panel of figure 1 shows examples of sound-

pressure waveforms from the natural environment. A 

striking feature of these different waveforms is that 

the successive disturbances are not equally spaced in 

time and are not of constant shape. In fact, a 

characteristic feature of these waveforms is the 

variation of spectral content as a function of time. 

Such non-stationarity in spectral content, which is a  

 

 

common feature of biological signals 

(electroencephalography, for example) makes it 

difficult to study such signals using standard analysis 

techniques. New methods of analysis, which use joint 

time-frequency representation (TFR) have emerged 

as convenient methods to describe such non-

stationary dynamics. A TFR is obtained by mapping 

a one-dimensional signal (continuous or discrete) is 

the time domain into a two-dimensional time-

frequency representation. It allows a simultaneous 

analysis in the time and frequency domains. TFRs 

provide localization both in time and frequency, 

within limits of resolution allowed by the uncertainly 

principle [3]. We study one such class of TFRs called 

spectrograms. 
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Figure 1. Left panel shows time–amplitude waveforms for some environmental sounds. Tool (saw), page turn, aeroplane 

and laughter show time-varying spectral structure which is shown in the right panels in the spectrographic representation 

using a 45 Hz Hamming window. Frequency (in Hz) is plotted on the y-axis while time (in s) is plotted on the x-axis with 

intensities (in dB) represented in colour. Red indicates maximum power while blue indicates minimum power. The colour 

index is relative to the highest and lowest intensities for each signal. 
 
In the following sections, we identify a data set of 

sounds in the environment and describe them using 

the spectrographic representation. We find that the 

spectral structures, one that has a periodic or 

harmonic spectral distribution and the other that has 

noisy spectral distribution. We identify a measure to 

characterize such spectral structures and propose that 

the spectral dynamics of any sound in the 

environment can be described in terms of these 

spectral structures. We define an index to 

characterize ‘sound complexity’ in terms of the 

number of distinct spectral structures and estimate the 
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complexity of different environmental sounds. We 

suggest that spectral features of sounds in the natural 

environment could be a basis for the evolution of 

specialized auditory processing areas in the human 

brain. 

 

2. Data Analysis 

Sounds are collected from online databases and were 

drawn from several different classes-animal cries 

(e.g. cow moo), environmental sounds (telephone 

ring, airplane noise), and human non-verbal 

vocalizations (e.g. laughter). The sampling frequency 

of all sounds was 22,050 Hz. The sounds were pre-

processed using Goldwave (version 5.10) software 

for noise reduction. Noise reduction is the 

elimination of unwanted noise, such as a background 

hiss or a power hum within a sound. Goldwave was 

also used to ensure that all sounds were matched for 

2-s length. 

 

3. Materials and Methods 

As described earlier, new analysis techniques, which 

use joint time-frequency representation (TFR) within 

the limits of resolution allowed by the uncertainly 

principle [3] have emerged as convenient methods to 

describe non-stationary dynamics. For signals, where 

the dynamics can be considered to be stationary in 

short time windows, the short time Fourier transform 

(STFT) [3], has been found to be extremely useful. A 

display of the sound signal using the STFT in the 

time-frequency representation is called the 

spectrogram. A spectrogram is obtained by first 

partitioning the signal into small overlapping equal 

segments of time t and then carrying out a STFT, for 

each segment [3]. The STFT of a function is defined 

as 

2( , ) ( ) ( ) ,i fS t f e s h t d    





 

 

where s(t) is the signal, f is the frequency and h(t) is 

the window function. For signals where temporal 

resolution is required, h(t) is narrow and spectral 

resolution is poor. On the other hand, for good 

frequency resolution, h(t) is broad and provides poor 

temporal resolution [4]. The energy-density spectrum 

of STFT is defined as a spectrogram (right panel of 

figure 1). The spectro-temporal structure of complex 

sounds viewed in the spectrographic representation 

exhibits essentially two kinds of spectral structures: 

(1) harmonic and (2) noisy. The spectral structure in 

some regions is highly patterned (see the vertical 

stripes in the top right panel) suggesting periodic or 

harmonic structure whereas in other regions the 

underlying spectral distribution is noisy (see the right 

panel, third from top). 

 

A standard method to measure the amount of spectral 

structure in a stationary signal is the spectral flatness 

measure (SFM) [5]. The SFM estimates the number 

of peaks in the power spectrum as opposed to a flat 

spectrum and is defined as the ratio of the geometric 

mean to the arithmetic mean of the power spectrum. 

A distribution of the power spectrum is expressed as 

        
1/

1

1

( )
log

(1/ ) ( )

N
N

f

N

f

S f
SFM

N S f





 
 



 

 

where S(f) is the magnitude of each frequency 

component in Hz and N is the number of FFT points 

used to estimate the power spectral density of s(t). 

For a pure tone, which has a single peak in the power 

spectrum and has the simplest spectral structure, 

SFM is 0, whereas for white noise, which has infinite 

peaks, SFM is 1. To expand the dynamic range it is 

expressed on a logarithmic scale and thus, for a pure 

tone, SFM is minus infinity whereas for a white noise 

signal, SFM is 0. Low SFM sounds are, therefore, 

tonal while high SFM sounds are noisy. 

 

For non-stationary sounds, we define a time-

dependent SFM(t), which estimates the spectral 

structure in each temporal segment. SFM(t) defined 

in terms of S(t,f) is obtained from the spectrographic 

representation as 
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where S(t, f) is the power associated with each 

frequency component is that particular temporal 

segment. To describe environmental sounds which 

have varying spectral dynamics, we propose an index 

of spectral variability, namely spectral structured 

index (SSI) in terms of the variance of SFM(t) as 
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where N is the number of time frames and SSI is the 

average spectral variance for a given signal. 

  

We calculate SSI for different environmental sounds 

and propose a categorization of environment sounds 
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in terms of SSI. For sounds with spectral distributions 

fluctuating rapidly across time frames, SSI is large 

and we classify them as complex sounds. On the 

other hand, when variation in the spectral distribution 

across time frames is small we classify them as 

simple sounds. We suggest that the SSI defines 

degree of special complexity and can be used to 

categorize sounds into varying levels of complexity. 

 

4. Results 

A total of 15 sounds were analysed. To deal with 

silences in sounds, we extracted epochs in the sound 

signal where power is <1 dB and assigned them an 

SFM value of 0. Narrowband spectrograms were 

obtained using a 45Hz Hamming window for all the 

sounds. Figure 2 shows computed values of SFM (t) 

plotted on a logarithmic scale for some of the sounds. 

As seen in figure 2, SFM (t) does not change much 

across time windows for airplane noises (for 

example), a feature which is also reflected in the 

spectrographic representation (figure 1). On the other 

hand, for laughter, SFM (t) shows fluctuations across 

time windows. Thus SFM(t) follows the spectral 

dynamics in successive time frames. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Plot of SFM(t) vs, time for different 

environmental sounds 

The variation in spectral structure across time 

windows for different environmental sounds, as 

estimated by SSI, is shown in table 1. For signals 

with similar spectral dynamics across time windows 

SI<1 (airplane noise, for example), while for signals 

with varying spectral dynamics across time windows 

SSI > 1 (laughter). We therefore suggest that, based 

on spectral dynamics, sounds in the natural 

environment may at least be classified into two 

categories, namely simple and complex. Signals with 

SSI < 1, can be classified as simple sounds, whereas 

sound signals with SSI > 1 can be classified as 

complex sounds. 

 

Table 1: SSI for various environmental sounds 

(BIS Processes, BIS-communication) 

Complex sounds Simple sounds 

Cow 1.0532 Tool (Saw) 0.219 

Doorbell 1.1103 Breaking glass 0.3525 

Coin drop 1.2509 Phone ring 0.423 

Crow 1.4835 Ox 0.5219 

Laughter 1.8827 Bagpipes 0.5747 

Chickens 2.0167 Aeroplane 0.7471 

Crying 2.3601 Horn 0.8361 

Squirrel 6.9204 Page turn 0.899 
 

5. Conclusions 

We propose a classification of sounds in environment 

in terms of spectral dynamics. Sounds for which the 

spectral structure varies slowly across time windows 

are categorized as simple and sounds with rapidly 

changing spectral dynamics are categorized as 

complex. Based on our results we suggest that the 

auditory system may adopt processing strategies that 

might be similar for sounds with similar spectral 

dynamics, which could be a crude explanation for 

their anatomical organization in different regions of 

the human brain [1]. Functional neuroimaging 

experiments are required to validate our proposal and 

are currently in progress. Our analysis shows that the 

spectrographic representation presents a convenient 

representation to describe the rich spectral dynamics 

of non-stationary signals. The spectral structure index 

(SSI) could emerge as a novel measure to study 

spectral complexity in physical and biological 

systems. 
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