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Introduction  
 

Fractional calculus owes its origin to a question of 

whether the meaning of a derivative toan integer 

order n could be extended to still be valid when n is 

not an integer. This question was first raised by 

L’Hospital on September 30th, 1695. On that day, in 

a letter to Leibniz, he posed a question about , 

Leibniz’s notation for the nth derivative . L’Hospital 

curiously asked what the result would be if n = 
1

2
 ?   Leibniz responded prophetically that it would be 

“an apparent paradox, from which one day useful 

consequences will be drawn.  It took about three 

hundred years for this prophecy to be true. In recent 

decades, it has been found useful in various fields 

like differential and integral equations, physics, 

signal processing, fluid mechanics, viscoelasticity, 

mathematical biology, and financial mathematics. 

 

On the other side Hypergeometric functions evolved 

as natural unification of a host of functions discussed 

by analysts from the seventeenth century to the 

present day. Functions of this type may also be 

generalized using the concept of basic number. This 

was first effected systematically by  E. Heine (1898) 

at the end  of nineteenth century in connection with 

what is known as a basic analogue or q-analogue of 

Gauss hypergeometric function 2F1 and was  

 

 

subsequently extended by F.H. Jackson, L.J. Slater, 

G.E. Andrews and others up to the present day.More 

details on this type of calculus can also be found in 

Kac and Cheung’s book [1] entitled “Quantum 

Calculus” provides for the basics of so called q-

calculus.  

  

Let us consider the following expression  
𝑓 𝑥 − 𝑓(𝑥0)

 𝑥 − 𝑥0 
 

 

Now letting 𝑥→𝑥0 ,we get the well - known 

definition of the derivative 
𝑑𝑓

𝑑𝑥
 of a function  𝑓 𝑥 at 

𝑥 =  𝑥0. However ever , if we take 𝑥 =  𝑞𝑥0 or 

𝑥 =  𝑥0+h , where q is a fixed number different from 

1, and h a fixed number different from 0, and don’t 

take the limit , we enter the fascinating world of 

quantum calculus . The corresponding expressions 

are the definitions of the q-derivative  and h- 

derivative  of  𝑓 𝑥 as defined in [1 & 2] . The same 

was latter on introduced by F.H.Jackson  in the 

beginning  of the twentieth century . He was the first 

to develop q- calculus in a systematic way. 
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The basic analogue of Fox-Wright hypergeometric function denoted pψq (z;q)  for z ϵ C is defined in series form as 

[1]  

Pᴪq(z;q) =  
 𝛤𝑞

𝑝
𝑖=1 (𝑎𝑖+𝑘𝐴𝑖 )

 𝛤𝑞 (𝑏𝑗 +𝑘𝐵𝑗  )
𝑞
𝑗 =1

∞
𝑘=0

𝑧𝑘

 𝑞;𝑞 𝑘
 , where |q|< 1.        

        (1) 

Where 𝑎𝑖 , 𝑏𝑗 ϵ C>0 ;𝐴𝑖 > 0 , 𝐵𝑗 > 0 ; 1+ 𝐵𝑗 −  𝐴𝑖
𝑝
𝑖=1

𝑞
𝑗 =1  ≥ 0 ;𝑎 ϵR ,for suitably bounded value of |z|. Moreover in 

view of the relation 

pᴪq(z;q) =  
 𝛤𝑞 (𝑎𝑗 +𝑘𝐴𝑗  )

𝑝
𝑗 =1

 𝛤𝑞 (𝑏𝑗 +𝑘𝐵𝑗  )
𝑞
𝑗 =1

∞
𝑘=0

𝑧𝑘

𝑘!
 =𝐻𝑝,𝑞+1

1,𝑝
 −𝑧; 𝑞|

(1 − 𝑎𝑗 , 𝐴𝑗 )1,𝑝

 0,1 , (1 − 𝑏𝑗 , 𝐵𝑗 )1,𝑞
  

the function Pᴪq (z;q) converges under the convergence conditions of the well-known Fox’s H-function which  are as 

follows, the integral convergesif Re[slog(x) –  log sinπs] < 0 , on the contour C, where 0<|q|< 1, logq = -ω = 

(𝜔1 + 𝑖𝜔2) .𝜔1and𝜔2  𝑏𝑒𝑖𝑛𝑔 𝑟𝑒𝑎𝑙 ,  verified by Saxena, et al [2] . 

Agrawal [3] introduced the basic analogue of the Reimann-Liouville fractional operator as follows. 

I𝑞,𝑥
𝛼 f(x) = 

1

𝛤𝑞 𝛼 
 (𝑥 − 𝑞𝑡)𝛼−1

𝑥

0
f(t) 𝑑𝑞 (𝑡)  ; Re(α) > 0.                                  (2)   

In particular, for f(x) = 𝑥𝑝  ; we have  

I𝑞,𝑥
𝛼 (𝑥𝑝) = 

𝛤𝑞 (𝑝+1)

𝛤𝑞 (𝑝+𝛼+1)
𝑥𝑝+𝛼 ; Re(α) > 0.         (3) 

Also q-analogue of the Reimann-Liouville fractional derivative defined as [3] 

D𝑞,𝑥
𝛼 𝑓 𝑥 =  D𝑞  

𝑛 (I𝑞,𝑥
𝑛−𝛼 f ) x ; ;  Re(α) < 0,|q|<1        (4) 

In particular, for f(x) = 𝑥𝑝  ; we have        

D𝑞,𝑥
𝛼 (𝑥𝑝) = 

𝛤𝑞 (𝑝+1)

𝛤𝑞 (𝑝−𝛼+1)
𝑥𝑝−𝛼 ;  Re(α) < 0,|q|<1.                       (5) 

 

Main Results 

Theorem(1.1): Let α >0 ,β>0 , γ > 0 and aϵR, let I𝑞,𝑥
𝛼  be the Riemann- Liouville fractional integral operator, then 

I𝑞
𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞

 
(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽 ; 𝑞  𝑥  =  𝑥 γ+α−1 ᴪ𝑝+1 𝑞+1

 
 𝑎𝑖 , 𝐴𝑖 1,𝐴;  (𝛾, 𝛽)

 𝑏𝑗  ,𝐵𝑗  1,𝐵
;  (𝛼 + 𝛾, 𝛽

 𝑎𝑥𝛽 ; 𝑞  

Proof : To prove theorem(1.1) we apply equations   (1) and (2) to the left side oftheorem(1.1) we get 

I𝑞
𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞

 
(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽 ; 𝑞  (𝑥)= I𝑞

𝛼  𝑡𝛾−1  
 𝛤𝑞

𝐴
𝑖=1 (𝑎𝑖+𝑘𝐴𝑖 )

 𝛤𝑞 (𝑏𝑗 +𝑘𝐵𝑗  )
𝐵
𝑗 =1

∞
𝑘=0

(𝑎𝑡𝛽 )𝑘

 𝑞;𝑞 𝑘
 (𝑥) 

I𝑞
𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞

 
(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽 ; 𝑞  (𝑥) =I𝑞

𝛼   
 𝛤𝑞

𝐴
𝑖=1 (𝑎𝑖+𝑘𝐴𝑖  )

 𝛤𝑞 (𝑏𝑗 +𝑘𝐵𝑗  )
𝐵
𝑗 =1

∞
𝑘=0

𝑎𝑘 𝑡𝛽𝑘 +𝛾−1

 𝑞;𝑞 𝑘
 (𝑥) 

I𝑞
𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞

 
 𝑎𝑖 , 𝐴𝑖 1,𝐴

 𝑏𝑗  ,𝐵𝑗  1,𝐵

 𝑎𝑡𝛽 ; 𝑞   𝑥 =    
 𝛤𝑞

𝐴
𝑖=1 (𝑎𝑖+𝑘𝐴𝑖 )

 𝛤𝑞 (𝑏𝑗 +𝑘𝐵𝑗  )
𝐵
𝑗 =1

∞
𝑘=0

𝑎𝑘

 𝑞;𝑞 𝑘
 I𝑞

𝛼(𝑡𝛽𝑘 +𝛾−1) (𝑥). 
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Making the use of equation (3) we get 
I 𝑞

𝛼

 𝑡𝛾−1 ᴪ𝑝 𝑞
 
 𝑎𝑖 , 𝐴𝑖 1,𝐴

 𝑏𝑗  ,𝐵𝑗  1,𝐵

 𝑎𝑡𝛽 ; 𝑞   𝑥  

=  
 𝛤𝑞

𝐴
𝑖=1  𝑎𝑖 + 𝑘𝐴𝑖  𝛤𝑞 𝛾 + 𝑘𝛽 

 𝛤𝑞 𝑏𝑗 + 𝑘𝐵𝑗   
𝐵
𝑗 =1 𝛤𝑞 𝛾 + 𝛼 + 𝑘𝛽 

∞

𝑘=0

𝑎𝑘𝑥𝛽𝑘 +𝛾+𝛼−1

 𝑞; 𝑞 𝑘

 

I 𝑞

𝛼

 𝑡𝛾−1 ᴪ𝑝 𝑞
 
 𝑎𝑖 , 𝐴𝑖 1,𝐴

 𝑏𝑗  ,𝐵𝑗  1,𝐵

 𝑎𝑡𝛽 ; 𝑞   𝑥               = 𝑥𝛾+𝛼−1  
 𝛤𝑞

𝐴
𝑖=1 (𝑎𝑖 + 𝑘𝐴𝑖 )𝛤𝑞 (𝛾 + 𝑘𝛽)

 𝛤𝑞 𝑏𝑗 + 𝑘𝐵𝑗   
𝐵
𝑗 =1 𝛤𝑞 (𝛾 + 𝛼 + 𝑘𝛽)

∞

𝑘=0

𝑎𝑘𝑥𝛽𝑘

 𝑞; 𝑞 𝑘

 

I 𝑞

𝛼

 𝑡𝛾−1 ᴪ𝑝 𝑞
 
 𝑎𝑖 , 𝐴𝑖 1,𝐴

 𝑏𝑗  ,𝐵𝑗  1,𝐵

 𝑎𝑡𝛽 ; 𝑞   𝑥 =  𝑥𝛾+𝛼−1 ᴪ𝑝+1 𝑞+1
 

 𝑎𝑖 , 𝐴𝑖 1,𝐴;  (𝛾, 𝛽)

 𝑏𝑗  ,𝐵𝑗  1,𝐵
;  (𝛼 + 𝛾, 𝛽

 𝑎𝑥𝛽 ; 𝑞  . 

 

This completes proof of the theorem. 

Corollary (1.1.1):For α>0 ,β>0,γ,λ >0 , then 

I 𝑞

𝛼

 𝑡𝛾−1 ᴪ1 1
 

(𝛿, 1)
(𝛾, 𝛽)

 𝑎𝑡𝛽 ; 𝑞   𝑥 = 𝛤𝑞 (𝛿) 𝑥𝛾+𝛼−1

𝐸 𝛽 ,𝛾+𝛼

𝛼+𝛾−1

(𝑎𝑥𝛽 ; 𝑞)   (6) 

Corollary (1.1.2): By setting δ = 1 in equation(6) we get 

I 𝑞

𝛼

 𝑡𝛾−1 ᴪ1 1
 

(1,1)
(𝛾, 𝛽)

 𝑎𝑡𝛽 ; 𝑞   𝑥 =  𝑥𝛾+𝛼−1

𝐸 𝛽,𝛾+𝛼

𝛼+𝛾−1

(𝑎𝑥𝛽 ; 𝑞)     (7) 

Theorem (2.1): Let Re(α) < 0 , β> 0, γ > 0 and 𝑎 ϵ R, let D𝑞,𝑥
𝛼   be the Riemann- Liouville fractional derivative 

operator, then there holds following results 

D𝑞
𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞

 
(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽 ; 𝑞  𝑥  =  𝑥 γ−α−1 ᴪ𝑝+1 𝑞+1

 
 𝑎𝑖 , 𝐴𝑖 1,𝐴;  (𝛾, 𝛽)

 𝑏𝑗  ,𝐵𝑗  1,𝐵
;  (𝛼 + 𝛾, 𝛽

 𝑎𝑥𝛽 ; 𝑞  

 

Proof :To prove theorem (2.1) we apply equations   (1) and (4) to the left side of theorem (2.1) we get, 

D𝑞
𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞

 
(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽 ; 𝑞  (𝑥) = D𝑞

𝛼  𝑡𝛾−1  
 𝛤𝑞

𝐴
𝑖=1 (𝑎𝑖+𝑘𝐴𝑖 )

 𝛤𝑞 (𝑏𝑗 +𝑘𝐵𝑗  )
𝐵
𝑗 =1

∞
𝑘=0

(𝑎𝑡𝛽 )𝑘

 𝑞;𝑞 𝑘
  

D𝑞
𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞

 
(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽 ; 𝑞  (𝑥)  =    

 𝛤𝑞
𝐴
𝑖=1 (𝑎𝑖+𝑘𝐴𝑖 )

 𝛤𝑞 (𝑏𝑗 +𝑘𝐵𝑗  )
𝐵
𝑗 =1

∞
𝑘=0

𝑎𝑘

 𝑞;𝑞 𝑘
 D𝑞

𝛼(𝑡𝛽𝑘 +𝛾−1) (𝑥)  

Making the use of equation (5) we 

get
D 𝑞

𝛼

 𝑡𝛾−1 ᴪ𝑝 𝑞
 
 𝑎𝑖 , 𝐴𝑖 1,𝐴

 𝑏𝑗  ,𝐵𝑗  1,𝐵

 𝑎𝑡𝛽 ; 𝑞   𝑥 =

                                                                           
 𝛤𝑞

𝐴
𝑖=1  𝑎𝑖+𝑘𝐴𝑖   𝛤𝑞  𝛾+𝑘𝛽  

 𝛤𝑞  𝑏𝑗 +𝑘𝐵𝑗   
𝐵
𝑗 =1 𝛤𝑞  𝛾−𝛼+𝑘𝛽  

∞
𝑘=0

𝑎𝑘𝑥𝛽𝑘 +𝛾−𝛼−1

 𝑞;𝑞 𝑘
 . 

D𝑞
𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞

 
(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽 ; 𝑞  𝑥  =  𝑥 γ−α−1 ᴪ𝑝+1 𝑞+1

 
 𝑎𝑖 , 𝐴𝑖 1,𝐴;  (𝛾, 𝛽)

 𝑏𝑗  ,𝐵𝑗  1,𝐵
;  (𝛼 + 𝛾, 𝛽

 𝑎𝑥𝛽 ; 𝑞 . 

 

Corollary (2.1.1):For Re(α) <0 ,β> 0, and γ> 0 , then 

D𝑞
𝛼  𝑡𝛾−1 ᴪ1 1

 
(𝛿, 1)
(𝛾, 𝛽)

 𝑎𝑡𝛽 ; 𝑞   𝑥 = 𝛤𝑞 (𝛿) 𝑥𝛾−𝛼−1

𝐸 𝛽 ,𝛾+𝛼

𝛼+𝛾−1

(𝑎𝑥𝛽 ; 𝑞)   (8) 
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Corollary (2.1.2):By setting δ = 1 in equation (8) we get 

D𝑞
𝛼  𝑡𝛾−1 ᴪ1 1

 
(1,1)
(𝛾, 𝛽)

 𝑎𝑡𝛽 ; 𝑞   𝑥 =  𝑥𝛾−𝛼−1

𝐸 𝛽 ,𝛾+𝛼

𝛼+𝛾−1

(𝑎𝑥𝛽 ; 𝑞)    (9) 

Special cases: 

(1) By setting q = 1 in  the theorems (1.1) and (2.1) , we get well –known results reported in [4] as follows 

I𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞
 

(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽  𝑥  =  

                                                  𝑥 γ+α−1 ᴪ𝑝+1 𝑞+1
 

 𝑎𝑖 , 𝐴𝑖 1,𝐴;  (𝛾, 𝛽)

 𝑏𝑗  ,𝐵𝑗  1,𝐵
;  (𝛼 + 𝛾, 𝛽

 𝑎𝑥𝛽                  (10)                                              

and   

D𝛼  𝑡𝛾−1 ᴪ𝑝 𝑞
 

(𝑎𝑖 , 𝐴𝑖)1,𝐴

(𝑏𝑗  ,𝐵𝑗 )1,𝐵
 𝑎𝑡𝛽  𝑥  =  𝑥 γ−α−1 ᴪ𝑝+1 𝑞+1

 
 𝑎𝑖 , 𝐴𝑖 1,𝐴;  (𝛾, 𝛽)

 𝑏𝑗  ,𝐵𝑗  1,𝐵
;  (𝛼 + 𝛾, 𝛽

 𝑎𝑥𝛽      (11) 

 

 

(2) By setting q = 1 in the equations (6),(7),(8) and (9) we get well-known results established by Saxena and 

Saigo [5] and [6] 

I

𝛼

 𝑡𝛾−1 ᴪ1 1
 

(𝛿, 1)
(𝛾, 𝛽)

 𝑎𝑡𝛽   𝑥 = 𝛤 (𝛿) 𝑥𝛾+𝛼−1

𝐸 𝛽,𝛾+𝛼

𝛼+𝛾−1

(𝑎𝑥𝛽 )                                 (12) 

By setting δ = 1 in equation (12),  we get 

                I

𝛼

 𝑡𝛾−1 ᴪ1 1
 

(1,1)
(𝛾, 𝛽)

 𝑎𝑡𝛽   𝑥 =  𝑥𝛾+𝛼−1

𝐸 𝛽 ,𝛾+𝛼

𝛼+𝛾−1

(𝑎𝑥𝛽 )                                               (13) 

    

D𝛼  𝑡𝛾−1 ᴪ1 1
 

(𝛿, 1)
(𝛾, 𝛽)

 𝑎𝑡𝛽   𝑥 = 𝛤 (𝛿) 𝑥𝛾−𝛼−1

𝐸 𝛽 ,𝛾+𝛼

𝛼+𝛾−1

(𝑎𝑥𝛽 )                                      (14)  

  

By setting δ = 1 in equation (14) we get 

D𝛼  𝑡𝛾−1 ᴪ1 1
 

(1,1)
(𝛾, 𝛽)

 𝑎𝑡𝛽   𝑥 =  𝑥𝛾−𝛼−1

𝐸 𝛽 ,𝛾+𝛼

𝛼+𝛾−1

(𝑎𝑥𝛽 ).              (15) 
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