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Considering the Robertson-Walker metric the problem of cosmological 

viscous fluid model in presence of electromagnetic field and zero-mass scalar 

field are discussed subject to various physical conditions. It has been shown 

that an electromagnetic field survived in the Robertson-Walker universe in 

presence of viscous fluid provided a scalar field is a function of radial co-

ordinate. Exact solutions have been obtained by considering the cases of dust 

distribution, stiff fluid distribution and disordered distribution of radiation 

and their results are also discussed. 

 
Copy Right, IJAR, 2013,. All rights reserved.

 

Introduction  
 

Several authors have already studied the 

cosmological problems involving viscous fluid 

interacting with massive scalar field. The solutions 

obtained in general relativity have been conveniently 

used for the study of present state of the universe as 

well as the initial stages of the formation of the 

universe. Some of them are Charanch [1,2], Manihar 

[5,6,7,8] and Rao et al [12]. It has been shown by Das 

and Agarwal [4] that  the  electromagnetic  field  

cannot  survive  in  presence  of  perfect fluid in the 

Friedmann universe. Mehra and Bohra [9] have 

studied the cosmological problems involving 

electromagnetic field in presence of perfect fluid by 

considering a modified form of the Robertson-

Walker metric. 

The cosmological problems involving scalar 

fields and electromagnetic fields in presence of 

gravitational fields have been studied by Charach and 

Malin [3] thereby showing that the matter fields have 

become a cause of evolution in a manner quite 

different from those of the vacuum models. It is 

further observed that the modified Robertson-Walker 

metric suggested by Mehra and Bohra [9] is not 

always necessary for the survival of electromagnetic 

field due to the presence of scalar field. Tarachand 

and Ibotombi [11] have also studied the cosmological 

problems involving viscous fluid in presence of 

electromagnetic field and zero-mass scalar field. 

Here we studied the problem of cosmological viscous 

fluid model in presence of electromagnetic field and 

zero-mass scalar field subject to various physical 

conditions by considering Robertson-Walker metric. 

It has been shown that an electromagnetic field 

survived in the Robertson-Walker universe in 

presence of viscous fluid provided a scalar field is a 

function of radial co-ordinate. Exact solutions have 

been obtained by considering the cases of dust 

distribution, stiff fluid distribution and disordered 

distribution of radiation and their results are also 

discussed. 

 

1 Mathematical Formulation 

The Maxwell field equations for viscous fluid in the presence of zero-mass scalar field are  
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where are the energy-momentum tensors of viscous fluid, electromagnetic field and zero-mass 

scalar field respectively given by  

 (2) 

 (3) 

 

and 

 .                                                                      (4) 

Here are respectively the density, pressure, four-velocity vector, expansion 

factor, shear tensor, and shear and bulk viscosity co-efficients. 

The scalar field V(r,t) satisfies the wave equation 

  (5) 

where for notation comma and semi-colon followed by index denote partial and covariant differentiation. 

The metric taken for the present problem is 

 (6) 

wheret is the cosmic time ; R(t), the radius of the universe ; and K, the curvature index which takes up the values +1, 

0, and -1. 

The electromagnetic field tensor Fij is defined in terms of a four-potential Ai (r,t) as 

  (7) 

Since we are using comoving co-ordinates defined by u
1
 = u

2
 = u

3
 = 0 and u

4
 = 1 and because of a spherically-

symmetry, the only surviving component of the electromagnetic field is the radial electric field F
41

 given by 

 

or 

 (8) 

From equation (8), we obtain 

 (9) 

where Q(r, t) is the charge given by 
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The non-vanishing components of the electromagnetic energy-momentum tensor are 

 (11) 

 

 

 

 

 

2 Field Equations and their Solutions 

The Einstein's field equations (1) for the line element (6) reduce to          

 (12) 

 (13) 

 (14) 

and 

  (15) 

where the dots and dashes denote the usual partial derivatives with respect to t and r respectively. 

Equation (5) reduces to  

 (16) 

From equations (12) and (13), we obtain 

  (17) 

or 

 

From equations (15) and (17), we obtain 

.                                                                                                                (18) 

Using equation (18) in (16), we get 

  (19) 

Integrating (19), we obtain 

  (20) 
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where d and co are arbitrary constants. 

From equations (12), (13) and (18), we obtain 

 (21) 

From equations (14), (18) and (20), we obtain 

 (22) 

Case 1. 

Charged dust viscous fluid in presence of zero-mass scalar field with   = 0: 

Equation (21) becomes 

  (23) 

Case 1(a) 

We assume that R = at, where a is positive non-zero constant. 

From equation (23), we obtain 

  (24) 

Then we have 

  (25) 

  (26) 

  (27) 

and 

 (28) 

 

Case 1(b) 

We assume that R = A e
t

 , where A and  are constants. 

From equation (23), we obtain 
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  (31) 

and 

 .                                                                                                        (32) 

The scalar field V remains the same as given by (28). 

 

Case 2. 

Charged dust viscous fluid in presence of zero-mass scalar field with  0, K = 0 : 

Equation (21) becomes 

  (33) 

Case 2(a) 

We assume that R = at, where a is positive non-zero constant. 

From equation (33), we obtain 

  (34) 

Then we have 

 (35) 

and 

  (36) 

 

The charge Q and the expansion factor  remain the same as given by (26) and (27) respectively. 

Case 2(b) 

We assume that R = A e
t

 , where A and  are constants. 

From equation (33), we obtain 

  (37) 

 

 

 

Then we have 
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The charge Q, the expansion factor  and the scalar field V in this case remain the same as given by (31), (32) and 
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Equation (21) becomes 

.                          (39) 

Case 3(a) 

We assume that R = a t, where a is positive non-zero constant. 

From equation (39), we obtain  

.                                                                           (40) 

Then we have 

.                                                        (41) 

The charge Q, the expansion factor  and the scalar field V in this case remain the same as given by (26), (27) and 

(28) respectively. 

Case 3 (b) 

We assume that R = A e
t

 , where A and  are constants. 

From equation (39), we obtain 

 ,                                                                                          (42) 
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                            3 
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Then we have 

.                                                                             (44) 

The charge Q, the expansion factor  and the scalar field V remain the same as given by (31), (32) and (28) 

respectively. 

Case 4 

Charged stiff viscous fluid in presence of zero-mass scalar field. 

From Equation (21) and (22), we obtain 
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Case 4(a) 
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.                                                         (46) 

Then we  have 

.                                         (47) 

The charge Q, the expansion factor  and the scalar field V remain the same as given by (26), (27) and (28) 

respectively. 

Case 4(b) 

We assume that R = A e
 t

, where A and  are constants. 

From equation (45), we obtain 
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2
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Then we have 
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The charge Q, the expansion factor  and the scalar field V in this case  remain the same as given by (31), (32) and 

(28) respectively. 

Case 5 

Charged disordered distribution of radiation of viscous fluid in presence of zero-mass scalar field. 

From equations (21) and (22), we obtain 
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We assume that R = at, where a is a positive non-zero constant. 

From  equation (51), we obtain 

.                                          (52) 

Then we have 

 

 (53) 

and 

 42
0

222

2
)(2

12

1 


 rctaaK
ta

  










 42

0

2

22
rc2)aK(3

ta

1

8

1
p



























t22

42

0

eA

K2rc

12

1













 









t22

42

02

eA

K3rc2

8

1
p

4

2

022

r

c
R2K3R3RR3RR36  













4

2

0222

2 r

c
ta2)Ka(3

ta36

1











 

















 

3
t

ar3

c2

a

K
1

8

1
p 2

24

2

0

2



ISSN NO 2320-5407                        International Journal of Advanced Research (2013), Volume 1, Issue 6, 218-227 
 

225 

 

 (54)                                                                    

The charge Q, the expansion factor  and the scalar field V remain the same as given by (26), (27) and (28) 

respectively. 

 

Case 5 (b) 

We assume that    R  =  A e
 t

, where A and  are constants. 

From equation (51), we obtain 
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where 

 .                                                                                                     (56) 

Then we have 
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The charge Q, the expansion factor  and the scalar field V remain the same as given by (31), (32) and (28) 

respectively. 

3. Results and Discussions 

In case 1(a), the bulk viscosity  is found to be inversely proportional to time t and it tends to zero as t  

and the mass density  varies inversely as the square of the time co-ordinate t at a fixed point. However, the reality 

condition for the matter distribution is given by 
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In case 1(b), the bulk viscosity  becomes a constant for a flat model of the universe while it decreases as 

time t increases for the closed model of the universe and it increases as time t increases for the open model of the 

universe. The solution for the mass density  is physically realistic provided 

 

The scalar expansion has a constant value corresponding to each model of the universe. 

In case 2(a), the solution for the mass density  is physically realistic provided 

 

which shows that the solution remains valid for a very small  finite range of time. The radius of the universe R(t), 

the charge Q increase with time and vanish at t = 0, while the expansion factor  decreases with time. 

In case 2(b), the corresponding mass density  tends to a constant as t . The solution is physically 

realistic for all values of time t provided 
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a physically realistic solution, the solution will remain physically realistic as t  provided the cosmological 

constant  = 0. In case 4(b), it is observed that the bulk viscosity  tends to a constant as t . The mass density  

also tends to a constant as t  and the solution for  at any time t is physically realistic provided A
2


2
 e 

2  t
 + 3 K 

> 2 C
2
0 r

-4
. This solution is found to be physically realistic only for closed model of the universe in the case where  

= 0. 

 In case 5(a), the bulk viscosity , the pressure p and the mass density  tend to zero as t  when   = 0. 

At t = 0,  is infinite and so there is an occurrence of big-bang at the initial stage as in case 4(a). 

 In case 5(b), as time t increases, the radius of the universe R(t) and the charge Q increase. At t = 0, the 

radius R(t), the charge Q, the pressure p and the density  are finite. So, this expanding model avoids the big-bang at 

the initial epoch. It is also observed that the mass density  is found to be negative corresponding to the values of the 

curvature index K = 0, -1. Hence, for a physically realistic solution for all values of time in this case we shall take 

the value of the curvature index K = +1 thereby showing that the model under consideration must be a closed one. 
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