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1.  INTRODUCTION 

 The AR (p), or autoregressive (AR) model of order p, for a time series {xt} is defined by 

                      𝑥𝑡 = ∅1𝑥𝑡−1 + ⋯ + ∅𝑝𝑥𝑡−𝑝 + 𝜀𝑡,                            (1) 

Where  𝜀1, 𝜀2, … . .   is a sequence of independent 𝑁 0, 𝜍𝜀
2  random variables.This model is useful for the forecasting 

and control of time series, as well as for the estimation of functional such as the spectrum or the amount of energy in 

a given frequency band.To use this model, a value for p must be specified.  Because there is rarely a direct physical 

motivation for the AR(p) model (1), this choice must be based on the data.  There has been much work on ways of 

making this choice (e.g., de Gooijer, Abraham, Gould, and Robinson 1985), with particular emphasis on automatic 

model selection criteria such as the Akaike information criterion (AIC; Akaike 1973) and the Bayes information 

criterion (BIC; Schwarz 1978). Let 𝑦𝑡 = 𝑥𝑡 + 𝑣𝑡where 𝑣𝑡 is an iid with variance 𝜍𝑣
2 and 𝑥𝑡  has variance 𝜍𝑥

2.  Then 

the lag-l correlations of the processes  𝑦𝑡  and   𝑥𝑡   denoted by 𝜌𝑙
𝑌  and 𝜌𝑙

𝑋 , satisfy  

                                               𝜌𝑙
𝑌 = 𝜌𝑙

𝑋 1 − 𝑅 ,   𝑙 = 1,2, ………. 

    where 𝑅 =
𝜍𝑣

2

 𝜍𝑋
2 +𝜍𝑉

2 
.  Therefore, as 𝜍𝑉

2 increases to ∞ (i.e., as R increases to 1), 𝜌𝑙
𝑌  decreases to zero.  Thus model 

selection based on the empirical autocorrelation and partial autocorrelation functions. Both AIC and BIC are 

monotone functions of the prediction error variance 𝜍𝜀
2, usually estimated by the maximum likelihood estimate 

(MLE) 𝜍 𝜖
2
 . Here we propose a new approach to the comparison of AR models that attempts to overcome the 

difficulties associated with model uncertainty.  This consists of calculating the posterior probabilities of the 

competing AR(p) models in a way that is Empirical to outliers and then obtaining the predictive distributions of 

quantities of interest, such as future observations or characteristics of the spectrum, as a weighted average of the 
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conditional predictive distribution given each of the models. To obtain the posterior probabilities, we calculate the 

Bayes factors, or ratios of posterior to prior odds, for each of a set of pairwise model comparisons.  The basic idea is 

explained in Section 2 in the context of AR models.  In Section 3 we introduce the idea of Empirical Bayes factors, 

obtained by replacing the likelihood for model (1) by a Empirical likelihood following Martin (1981).  This 

Empirical likelihood has two key ingredients.  The first is a Empirical dictor that provides Empirical location or 

centering for the predictive distribution, along with an associated Empirical scale.  The Empirical predictor and 

associated scale are obtained using the Empirical filtering algorithm of Masreliez (1975) and Martin (1979).  The 

second ingredient is a bounded and continuous likelihood-type loss function that replaces the non-Empirical sum of 

squared residuals in the Gaussian likelihood.  Here Empirical refers to Empirical of the Bayes factors against the 

outliers in the observed data, not against the prior distribution as often referred to in the literature.  Computation of 

the Bayes factors using the Empirical likelihood requires integration over the parameter space.  Because this is 

analytically difficult, we follow Raftery (1988) and use the Laplace method for integrals (Tierney and Kadane 

1986).  In doing so, we reparameterize the model (1) in terms of the partial autocorrelation coefficients and modify 

the Laplace method to take into account the finiteness of the parameter space.   

2.  BAYES FACTORS FOR TIME SERIES 

2.1  Bayes Factors and Accounting for Model Uncertainty : 

 Fruitful approaches to statistical problems often involve postulating a class of probability models and 

comparing these models on the basis of how well they predict the observed data.  The Bayesian approach to the 

problem of inference in the presence of several competing models is based on posterior model probabilities.  If the 

class consists of the (p + 1) models M0,,….Mp, then the posterior probability of the model 𝑀𝑝  given data D is  

                                       𝑝 𝑀𝑝  𝐷 =
𝑝 𝐷 𝑀𝑝  𝑝 𝑀𝑝  

 𝑝 𝐷 𝑀𝑙 𝑝 𝑀𝑙 
𝐾
𝑙=0

                                      (2) 

In Equation (2), 𝑝 𝑀𝑝  is the prior probability of model 𝑀𝑝  and 𝑝 𝐷 𝑀𝑝  is its integrated likelihood, defined by 

                   𝑝 𝐷 𝑀𝑝 =  𝑝 𝐷 𝜃𝑝 , 𝑀𝑝 𝑝 𝜃𝑝  𝑀𝑝 𝑑𝜃𝑝⊖𝑝
                                   (3) 

where 𝜃𝑝  is the (vector) parameter of model 𝑀𝑝 , 𝑝 𝜃𝑝  𝑀𝑝  is its prior distribution, 𝑝 𝐷 𝜃𝑝 , 𝑀𝑝  is the likelihood, 

and 𝜃𝑝  is the parameter space. Pairwise comparisons are based on the posterior odds ratio 

𝑝 𝑀𝑝  𝐷 

𝑝 𝑀𝑙 𝐷 
=  

𝑝 𝐷 𝑀𝑝  

𝑝 𝐷 𝑀𝑙 
  

𝑝 𝑀𝑝  

𝑝 𝑀𝑙 
 = 𝐵𝑝𝑙 𝜆𝑝𝑙 , 

where 𝐵𝑝𝑙  is the Bayes factor for 𝑀𝑝  against 𝑀𝑙  and 𝜆𝑝𝑙  is the corresponding prior odds.  If  𝑀𝑝  is nested within 𝑀𝑙 , 

then the data D favor 𝑀𝑝  if 𝐵𝑝𝑙 > 1, whereas they provide evidence for 𝑀𝑙  if 𝐵𝑝𝑙 < 1,  Jeffreys (1961, app. B) 

suggested that the evidence for the larger model be considered strong if 𝐵𝑝𝑙 < 10−1, and conclusive if 𝐵𝑝𝑙 < 10−2. 

The posterior probabilities can be recovered using the equation. 𝑝 𝑀𝑝  𝐷 =  𝐵0𝑝𝜆0𝑝 1 +   𝐵0𝑙𝜆0𝑙 
−1𝑝

𝑙=1   
−1

 This framework yields solutions to the estimation, prediction, and decision-making problems that take into 

account uncertainty about the order of the AR, unlike model selection methods that condition on a single selected 

model.  If ∆ is a quantity of interest, such as a property of the spectrum, the next observation, or the utility of a 

course of action, then its posterior distribution given the data D is evaluated by combining all models considered; 

that is,  
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𝑃 ∆∣ 𝐷 =  𝑝 ∆∣ 𝑀𝑝,𝐷 𝑝 𝑀𝑝 ∣ 𝐷 

𝑛

𝑝=0

                                                (4) 

This equation was first given by Leamer (1978, p.117) and was proposed explicitly as a solution to the decision-

making problem in the time series context in equation (5.1) of Poskitt (1988).A simple approximation for  

𝑝 𝐷 ∣ 𝑀𝑝 , introduced by Schwarz (1978), is  

          Log 𝑝 𝐷 ∣ 𝑀𝑝 ≈ log 𝑝 𝐷 ∣ 𝑀𝑝 , 𝜃𝑝 −
1

2
d log n,             (5) 

where is the MLE of 𝜃 𝑝  and d and n are the numbers of parameters and observations. We refer to Equation (5) as the 

BIC approximation; its error is O(1) (Kass and Raftery 1995). Choosing the order that maximizes the right side of 

Equation (5) is the much-used BIC model selection procedure. Akaike (1983) wrote that, asymptotically,  

          Log 𝑝 𝐷 ∣ 𝑀𝑝 ≈ log 𝑝 𝐷 ∣ 𝑀𝑝 , 𝜃𝑝 − 𝑑,                     (6) 

which we call the AIC approximation.  This is true only if prior information increases at the same rate as the 

information in the data, which is unrealistic in most applications.  Nevertheless, the procedure of choosing the order 

that maximizes the right side of Equation (6) has been much used, and so we including it in our comparison and 

examples.  (For a review of Bayes factors, see Kass and Raftery 1995).  

2.2.  Bayes Factors for Autoregressive Processes : 

 We now apply the Bayesian framework to the model comparison problem where the data 𝑦𝑇= 

 𝑥1, … 𝑥𝑇  are from a stationary Gaussion AR(p) process defined by (1); Let 𝑀𝑝denote the Gaussian AR(p) model. 

To obtain the posterior probabilities, we need to evaluate the integrated likelihood, p 𝑦𝑇 ∣ 𝑀𝑝 , p=0,…P, which is 

given by Equation (3).  The log-likelihood  function of the data given the model and its parameters is  

           Log p 𝑦𝑇 ∣ 𝜃𝑝,𝑀𝑝   = −
𝑇

2
𝑙𝑜𝑔 2𝜋 −

1

2
 log 𝑓𝑡

2 − 
1

2
  

𝑥
𝑡−𝑥 𝑡

𝑡−1

𝑓𝑡
 

2

. 

where 𝑥 𝑡
𝑡−1 = E 𝑥𝑡/𝑦𝑡−1 , 𝑦𝑡−1 = (𝑥𝑡−1, 𝑥𝑡−2,…,𝑥1) and 𝑓𝑡

2 = 𝐸 𝑥𝑡 − 𝑥 𝑡
𝑡−1 2 Thus 𝑥 𝑡

𝑡−1 is the conditional mean of 

𝑥𝑡  given the data up to time  𝑡 − 1  and 𝑓𝑡
2 is the corresponding conditional variance; both can be found using the 

Kalman filter (Harvey 1981). There are several difficulties with the evaluation of the integral (3).  The constraints on 

the parameters  ∅1 , … ∅𝑝  that ensure stationarity are complicated.  We avoid this difficulty by reparameterizing in 

terms of the first p partial autocorrelations 𝜃𝑝 =   𝜋1 , … . , 𝜋𝑝 . The parameter space 𝜃𝑝  is then just the hypercube 

 −1, 1 𝑝   and the mapping that transforms the  ∅1, … , ∅𝑝  such that the process is stationary to  𝜋1 , … , 𝜋𝑝  is one-

to-one and onto ⊖𝑝  and both it and its inverse are continuously differentiable (Barndorff-Nielsen and Schou 1973; 

Ramsey 1974). The integral (3) cannot be evaluated analytically, and so we approximate it using the Laplace method 

for integrals (Tierney and Kadane 1986). The Laplace method was applied to Bayes factors by Raftery (1988) in the 

context of generalized linear models.  The Laplace method is modified here to take into account the finiteness of the 

parameter space, as follows.  Let g 𝜃  be a real-valued function from 𝑅𝑝  to 𝑅, where 𝜃 is a p-dimensional vector. A 

Taylor series expansion of 𝑔 𝜃  at 𝜃0 yields 

     𝑔 𝜃  ≈ 𝑔 𝜃0) + (𝜃 − 𝜃0 ′ ∇𝑔𝜃0
  + 

1

2
  𝜃 − 𝜃0 ′ ∇

2
𝑔𝜃0

  𝜃 − 𝜃0   

where  ∇𝑔𝜃0
  and  ∇2

𝑔𝜃0
  are the gradient and Hessian of 𝑔 𝜃  evaluated at 𝜃 0. Let 𝜃 0 be the mode of 𝑔  𝜃  . Then  
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⊖

𝑒𝑥𝑝  𝑔  𝜃   𝑑𝜃  

                    ≈  
⊖

exp 𝑔  𝜃 0 +
1

2
 𝜃 − 𝜃 0 ′ ∇

2𝑔𝜃 0  𝜃 − 𝜃 0  𝑑𝜃  

                  = exp 𝑔  𝜃 0   𝜃 𝑒𝑥𝑝  
1

2
 𝜃 − 𝜃 0 ′ ∇

2𝑔𝜃 0  𝜃 − 𝜃 0  𝑑𝜃  

                  = exp 𝑔  𝜃 0  ∣ ⎯ ∇2𝑔𝜃 0 ∣1/2  2𝜋 𝑝 /2  
⊖

∅ 𝜃  𝑑𝜃 ,                         (7) 

where ∅ 𝜃   is the p-dimensional multivariate normal density with mean  𝜃 0  and variance-covariance matrix 

  −∇2𝑔𝜃 0 
−1 

 Applying the approximation (7) to the integral (3), with 𝜃 𝑝 =  𝜋 1, … 𝜋 𝑝   as the k-dimensional vector of 

partial autocorrelations and with  

𝑔  𝜃 𝑝   = log 𝑝  𝑦 𝑇 ∣ 𝜃 𝑝 , 𝑀𝑝  𝑝  𝜃 𝑝 ∣ 𝑀𝑝   , 

𝑝  𝑦 𝑇 ∣ 𝑀𝑝  ≈  2𝜋  
𝑝
2 ∣ ∇2𝑔𝜃 𝑝

∗ ∣
1
2 𝑝  𝑦 𝑇  ∣ 𝜃 𝑝 ,

∗ 𝑀𝑝 )𝑝  𝜃 𝑝
∗ ∣ 𝑀𝑝    

                                                                                    ×  
(−1,1)𝑝

∅ 𝜃 𝑝  𝑑 𝜃 𝑝 ,        (8) 

where 𝜃 𝑝
∗  is the value of 𝜃 𝑝  that maximizes 𝑔  𝜃 𝑝  . The integral on the right side of Equation (8) is evaluated by 

Monte Carlo integration.  Arguments similar to those of Tierney and Kadane (1986) show that the error of the 

approximation (8) is 𝑂 𝑇 −1 .Thus for a good approximation of the integrated like-lihood 𝑝  𝑦 𝑇 ∣ 𝑀𝑝  , all we need 

are the posterior mode of 𝜃 𝑝  and the Hessian of the log-likelihood function, log 𝑝  𝑦 𝑇 ∣ 𝜃 𝑝 , 𝑀𝑝    at that point.  A 

natural parameterization for AR models is in terms of the partial autocorrelations, when the parameter space is the 

hypercube  −1, 1 𝑝 .  When little prior information is available, a reasonable “noninformative” prior is uniform in 

the partial autocorrelations; this is proper, and so difficulties with improper priors do not arise.  With this prior, the 

posterior mode is equal to the MLE.  

3.  Empirical Bayes Factors for Autoregressive Models 

3.1.  A Empirical Likelihood for Autoregressive Models : 

 We now consider the model comparison problem for AR processes with additive outliers.  Suppose that the 

data 𝑦 𝑇 = 𝑦 1, … 𝑦 𝑇   are generated by the model.  

                                     𝑦 𝑡 =  𝑥 𝑡 + 𝑍 𝑡 𝑊𝑡 ,                                                             (9) 

where  𝑥 𝑡   follows Equation (1),  𝑊𝑡   is a sequence of observations from a generating distribution whose variance 

is much larger than 𝜍 𝜖
2  and  𝑍 𝑡   is a 0 – 1 process with P 𝑍 𝑡 = 1 = 𝛾  being the fraction of outliers in the data.  

When 𝑍 𝑡 = 1, 𝑦 𝑡  is called an additive outlier.  

Our approach to the comparison of different AR orders in the model (9) is to use a Empirical likelihood that 

approximates the likelihood of the (unobserved) series 𝑥 𝑡  .   Following Martin (1981), this is defined as  

   Log 𝑝  𝑦 𝑇 ∣ 𝑀𝑝 , 𝜃 𝑝  = −
𝑇

2
𝑙𝑜𝑔  2𝜋  −

1

2
 log 𝑆 𝑡

2𝑇
𝑡 =1 −

1

2
 𝜌  

𝑦
𝑡 −𝑥 𝑡

𝑡 −1

𝑆 𝑡
 𝑇

𝑡 =1      (10) 

In Equation (10), 𝑥 𝑡
𝑡 −1

 and 𝑆 𝑡  are Empirical estimates of the conditional mean and standard deviation of 𝑥 𝑡  given 

𝑥 1, … 𝑥 𝑡 −1, found by Empirical filtering as described in Section 3.2. The function is chosen to be bounded and 

continuous so as to ensure that one observation does not have a large influence on the likelihood function and that 

small changes do not produce large changes in the likelihood function.  Here we use the function.  
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𝜌  𝑥  = 𝑥 2 𝑖𝑓   𝑥  ≤ 𝑎 . 

            =  𝑎 2 𝑖𝑓   𝑥  > 𝑎 . 

The observations whose prediction residuals 𝑦 𝑡 =  𝑥 𝑡
𝑡 −1

are large compared to their predictive standard deviations 

𝑠 𝑡 . Here we use a = 2.5 as the tuning constant, so that an observation is censored once its prediction residual is 

more than 2.5 times its predictive standard deviation.  A Empirical integrated likelihood  𝑝  𝑦 𝑇 ∣ 𝑀𝑝   is defined by 

replacing 𝑝  𝑦 𝑇 ∣ 𝑀𝑝 , 𝜃 𝑝   with 𝑝  𝑦 𝑇 ∣ 𝑀𝑝 , 𝜃 𝑝   in (8).  

3.2. Empirical Filtering : 

` To calculate the robust Bayes factors, we need the prediction location and scale of the observations, 

𝑥 𝑡 ∣𝑡 −1 and 𝑆 𝑡  .We obtain these using the robust filter of Maserliez (1975) and Martin (1979). The model (1) and 

(9) can be written in state-space form as  

                                                           𝑋 𝑡 = 𝛤𝑥 𝑡 −1+𝜀 𝑡  

              And                                      𝑦 𝑡 = 𝐻𝑋 𝑡 + 𝑣 𝑡 ,                                       (11) 

Where 𝑣 𝑡 ≡ 𝑍 𝑡 𝑊𝑡  denotes the outlier-generating component, 𝑋 𝑡  and 𝜀 𝑡  have dimesion p, Γ is a p × p matrix, 

and H is a 1 × p matrix, defined by  

Γ=

 

 
 

∅1 ∅2 ⋯ ∅𝑝 −1 ∅𝑝

1 0 … 0 0

0 1 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0  

 
 

 

𝑥 𝑡
𝑇 =  𝑥 𝑡 , 𝑥 𝑡 −1, … , 𝑥 𝑡 −𝑝 +1  

H = (1, 0, ...0) 

𝜀 𝑡
𝑇 =  𝜀 𝑡 , 0, … 0 . 

We denote the state prediction density by 𝑓  𝑋 𝑡 ∣ 𝑦 𝑡 −1  ; this is assumed to exist for t ≥ 1.  The observation 

prediction density is 𝑓  𝑦 𝑡 ∣ 𝑦 𝑡 −1 . The conditional mean of 𝑋 𝑡  given 𝑦 𝑡  is denoted by 𝑋 𝑡 = 𝐸  
𝑥 𝑡

𝑦 𝑡   . 

 When 𝜀 𝑡  and 𝑣 𝑡  in (11) are Gaussian the computation of𝑋 𝑡 = 𝐸  
𝑥 𝑡

𝑦 𝑡  yields the kalman filter recursion 

equation.  Unfortunately, 𝑋 𝑡  is hard to calculate exactly when 𝑣 𝑦  is non-gaussian, except in a few special cases 

such as that of stable random variables (stuck1976). But there is a simplifying assumption that does allow 

calculation of 𝑋 𝑡  (Marseliez 1975) –that the state predictor density is Gaussian, namely. 

𝑓  𝑋 𝑡 ∣ 𝑦 𝑡 −1 = 𝑁  𝑋 𝑡 ; 𝑋 𝑡
𝑡 −1

, 𝑀𝑡  , 

Where  𝑁 ¨, 𝜇 ,    denotes the multivariate normal density with mean 𝜇  and covariance matrix ∑ and  

𝑀𝑡 = 𝐸   𝑋 𝑡 − 𝑋 𝑡
𝑡 −1

  𝑋 𝑡 − 𝑋 𝑡
𝑡 −1

 
𝑇

∣ 𝑦 𝑡 −1  

Is the conditional covariance matrix for the state prediction error. given this, satisfies the recursion  

                                             𝑋 𝑡 = 𝑋 𝑡
𝑡 −1

+ 𝑀𝑡 𝐻𝑇 𝜓𝑡  𝑦 𝑡  ,                             (12) 

                                                𝑀𝑡 +1 = 𝛤𝑃 𝑡 𝛤 𝑇 + 𝑄,                                          (13) 

                 and                          𝑃 𝑡 = 𝑀𝑡 − 𝑀𝑡 𝐻𝑡 𝜓 ′𝑡  𝑦 𝑡  𝐻𝑀𝑡 ,                     (14)                 
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𝜓𝑡  𝑦 𝑡  = − 
𝜕

𝜕 𝑦 𝑡
 𝑙𝑜𝑔 𝑓 𝑦  𝑦 𝑡 ∣ 𝑦 𝑡 −1  

is the score function for the observation prediction density 𝑓 𝑦  𝑦 𝑡 ∣ 𝑦 𝑡 −1 . The matrix Q is the covariance matrix 

of ∈𝑡  that is equal to 𝜍 𝜖
2  at the (1,1) position and to zero every where else, 𝑋 𝑡

𝑡 −1
= 𝛤𝑋 𝑡 −1 and 

ψ′
t
 y

t
 = − 

∂

∂yt
 ψ

t
 y

t
 . 

The density 𝑓 𝑦  𝑦 𝑡 ∣ 𝑦 𝑡 −1  is generally intractable when outliners are present. Thus it is difficult to 

obtain the 𝜓  function. But, as noted by martin (1979) 𝜓  and 𝜓 ′ can be well appropriately chosen bounded 

continuous functions. Boundedness ensures that 𝑦 𝑡  does not have an un bounded influence on 𝑋 𝑡  and continuity 

ensures  that small changes in 𝑦 𝑡  do not produce large changes in 𝑋 𝑡  that hampel’s two- part redescending function 

caused little bias in outlier- free situations while providing good robustness towards outliers. thus here we use 

hampel’s two –part  redescending function,  

𝜓 𝑦  = 𝑦 ,            ∣ 𝑦 ∣≤ 𝛼𝑐 , 

       =  𝛼  𝑐 − 𝑦  / 1 − 𝛼  ,      𝛼𝑐 < 𝑦 ≤ 𝑐 , 

       =  −𝛼 (𝑐 + 𝑦 )/(1 − 𝛼 ),      −𝑐 ≤ 𝑦 < −𝛼𝑐 , 

        =  0,     ∣ 𝑦 ∣> 𝑐 , 

with 𝛼𝑐  = 2.5 and c = 4.0. That is, observation with prediction residuals (divided by their predictive standard 

deviations) in the interval are downweighted linearly , and those with prediction residuals greater than 4 are given 

zero weight. To ensure boundedness and continuity of 𝜓 ′ martin and su (1985) also recommended that 𝜓 ′ be 

replaced by the weight function 𝑤 𝑧  = 𝜓(𝑧 )/𝑧 . 

Let 𝑆 𝑡
2  be the (1,1) element of 𝑀𝑡 .  Then the recursions (12) –( 14) may be replaced by   

𝑋 𝑡 = 𝛤𝑋 𝑡 −1 +
𝑚𝑡

𝑠 𝑡
2 𝑆 𝑡 𝜓  

𝑟 𝑡

𝑠 𝑡
 , 

𝑀𝑡 +1 = 𝛤𝑃 𝑡 𝛤 𝑇 + 𝑄, 

𝑃 𝑡 = 𝑀𝑡 − 𝜔  
𝑟 𝑡

𝑠 𝑡
 
𝑚𝑡 𝑚𝑡

𝑇

𝑠 𝑡
2

 

and where 𝑚𝑡  is the first column of 𝑀𝑡   and 𝑟 𝑡  is the observation prediction residual 

𝑟 𝑡 = 𝑦 𝑡 − 𝐻𝑋 𝑡
𝑡 −1

. 
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