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The unsteady state mass conservation equation for chlorine concentration 

decay in drinking water in a pipe for axisymmetric flow is solved by using 

Hankel transform for low peclet number. The solution is obtained 

analytically for the model and the numerical values and their graphical 

representations are shown for various values of chlorine consumption rate, 

diffusivity, time and fluid velocity etc by using MATLAB.  
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Introduction  
 

The problem of finding a point of booster 

chlorination in drinking water pipe line network is of 

great importance. Biswass et  al. (1993) considered a 

steady-state  model for chlorine concentration decay 

in pipes. They determine the cup-mixing average 

chlorine concentration at any location decay in pipes. 

The transport of chlorine from the bulk flow to the 

pipe wall (due to concentration decay at wall) was 

not considered in their model. Clark et al. (1994) 

showed how chlorine residuals can vary throughout 

the day at different locations in the distributive 

systems. Clark et al. (1995) used first order kinetics 

and rate of chlorine decay in their model. They 

showed that the fluid velocity and pipe radius affect 

the propagation of chlorine residual levels, 

disinfection efficiency and the formation of 

disinfection by-products. Hoefel et al (2005) in micro 

trial resistant to chlorination has observed both of 

these in lab studies and in full scale chlorine 

disinfection Practice for water and Waste-water 

treatment. Wojcicka et al (2007) in previous studies 

have found that indigenous bacteria are related from 

different environment. Huang et al (2011) studied 

that the influence of chlorination on end toxin 

activities of secondary sewage effluent and Pure 

Cultured Gram-negative bacteria was instigated. 

David and Bryan (1996) developed an adjective 

transport model by neglecting the contribution of 

radials as well as axial diffusion terms. Munavali and 

Mohan (2005) presented a simulation-optimization 

model for water quality parameter estimation in the 

distribution system under dynamic state. Osman, and 

Metin (1999) solved two dimensional convection 

dispersive equation numerically for various boundary 

and initial conditions, considering the decay of 

chlorine in the bulk flow, but they did not consider 

the transfer of chlorine from bulk flow to the pipe 

wall. Jaipal and Bhadula (2012) presented two 

dimensional steady state mathematical model and 

unsteady state model (2013) that accounts for 

transport in the axial direction of diffusion and that 

incorporates chlorine decay within the bulk flow and 

transport of the chlorine from bulk flow to the pipe 

wall to predict the chlorine concentration in a 

drinking water distribution system. Eran et al (2011) 

studied the chlorination and ultraviolet (UV) 

irradiation of rotating biological contractor in treating 

the light-grey water. They examined the ability of 

chlorine and UV to inactive indicator bacteria and 

specific Pathogens. Cherchi and Gu (2011) 

investigated the impact of the cell growth stage on 

chlorine disinfection efficiency and the impact of the 

growth stage on chlorination resistance by comparing 

the inactivation efficiencies of two indicator bacterial 

strains obtained from various growth phases.  
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Material and Methods  

The unsteady state mass conservation equation for dispersion of chlorine in drinking water in a pipe for 

axisymmetric flow considering transport of chlorine from bulk flow to the wall can be written as 
2 2

2 2

( )1
( )

f w

x r b

h

k c cc c c c c
D U D k c

t x x r r r r

    
     

    
                                                (1)     

Where xD   is diffusion coefficient in  x direction , rD is diffusion coefficient in r  direction , U  is initial velocity 

component along  x axes, bk  and fk  are the chlorine decay rate constant for bulk flow(
1s ) and mass transfer 

coefficient (m/s) respectively wc  is the chlorine concentration at wall (
3/kg m ) and hr  is the hydraulic radius of 

the pipe wall. 

Assuming that the reaction of chlorine at the pipe wall is of first order with respect to the wall concentration   and 

that it proceeds at the same rate as chlorine is transported to the wall gives the following mass balance equation for 

the chlorine at the wall.
 

 ( )f w w wk c c k c                                                                                                                   (2)                               

  Substituting the value of  from equation (2) into equation (1).We get 
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The initial and boundary conditions are 

( , , 0) 0c x r t                                                                                                           (4.i)   

0( 0, , )c x r t c                                                                                                 (4.ii) 

Where 0c  is initial concentration 
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c

as x t
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                                                                                               (4.iii) 

and wall condition is 

0
c

r


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
  at     0r r                                                                                                                        (4.iv) 

Introducing the following non dimensional quantities are defined by  
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Where 0r  is the pipe radius (m)              
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The initial and boundary condition become 

( , , ) 0, 0c x r t t   (7.i) 

( , , ) 1, 0c x r t x                   (7.ii) 
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Applying finite Hankel transformation (Sneddon,1972) on equation (6) and equation (7.i) to (7.iv),weget                                                                                                                                                     
2
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                                                                                                        (8) 

Where  

2 2

2

0

r n

x e
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K
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
   , n is finite Hankel transformation parameter as determined by the 

transcendental equation 
0( ( ))

0nd J

dr


 , 0 ( )J   is the zero order Bessel function of the first kind, 

( , , )H nc x t is the second kind finite Hankel transformation of ( , , )c x r t  as defined by the following 

conjugate equation 
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The initial and boundary conditions become 

( , , 0) 0H nc x t                                                                                                                         (10.i) 
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Again introducing following transformation 
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Equation (8) reduced into 
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The initial and boundary condition (10.i) to (10.iii) become 

 , 0, 0, 0P x t x t                                                                                                   (13.i)                                                                                 
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Solving equation (12) together with initial boundary conditions (13.i) to (13.iii) by Laplace 

transformations technique and then putting the value of ( , )P x t  in equation (11), we get 

 
2

1

2

1

4 4( )1
, , exp

2 2 2

4 4( )1
exp

2 2 2

e e e e en
H n

n

e e e e en

n

p p p p x p tJ
c x t x erfc

t

p p p p x p tJ
x erfc

t

 




 



       
    

      

       
    

      

                (14)   



ISSN NO 2320-5407                        International Journal of Advanced Research (2013), Volume 1, Issue 6, 339-345 
 

342 

 

When 0n   

Finally putting equations (14) in equation (9.ii), we get 
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When 0n   

 

RESULTS AND DISCUSSION 

Initially chlorine is supposed to injected at 0, 0x r  .  For large peclet number eP  equation (6) reduces to 

c c
Kc

t x

 
  

 
 which is a simple partial differential equation and we have not consider this case. For small 

peclet number eP  the solution of equation (6) is given by (15). To observe the effect of diffusivity, fluid velocity 

and chlorine consumption rate on the chlorine concentration in the water fig.1 to fig.5 are plotted for various value 

of parameters. 
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Fig.1 Variation of chlorine concentration with axial distance x and radial distance r ( rD =0.1, xD = 0.1, U

=0.5, K = 1.0, t =0.1, L =1.0) 

 

 It is clear from fig.1 that chlorine concentration decreases very fast along the axial distance while slowly along 

radial distance. Chlorine concentration decreases rapidly from 0x   to 0.6x  and after that it becomes constant. 

It appears that   after 0.6x   concentration is zero. In fact it is not zero and 0.6x  , 0.007125c  while at 

0.8x  , 0.000267c  ,and 1.0x  , 0.00000391c  (at 0r  ) which are very near to zero. To maintain the 

safe limit for chlorine concentration we have to inject chlorine again after 0.4x   and before 0.6x  .The 

variation of chlorine concentration along radial direction is very small and is difficult to observe from the figure. But 

we can see the change from the numerical value as at 0.1x  , 0r  , 0.643566c   while at  0.1x  , 1r  (i.e 

at the wall of pipe) 0.469745c  . 
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Fig.2 Variation of chlorine concentration with axial distance x and radial distance r ( rD = 0.1, xD = 0.1  U = 

0.5, K = 10.0, t = 0.1, L = 1.0) 

 

The effect of chlorine consumption rate K (which  depends upon transport of chlorine from bulk flow to the wall, 

chlorine decay rate constant and mass transfer coefficient) can be observed by comparing fig.1 (for K =1) and fig.2 

(for K =10). As the chlorine consumption rate K increases from K =1 to K =10 the more chlorine is transported 

towards the pipe wall and less chlorine remains in the bulk flow. For K =1 (fig.1) the chlorine concentration 

approaches to zero after 0.6x   while for K =10 (fig.2) chlorine concentration approaches to zero before  

0.6x   . 
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Fig.3 Variation of chlorine concentration with axial distance x and radial distance r ( rD =0.1, xD =0.1, U

=1.0, K =1.0, t = 0.1, L = 1.0) 
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Fig.4 Variation of chlorine concentration with axial distance x and radial distance r ( rD =0.2, xD = 0.1, U = 

1.0, K = 1.0, t =0.1, L = 1.0) 

 

The effect of diffusivity on chlorine concentration can be observed by comparing fig.3 ( rD =0.1) 

And fig.4 ( rD =0.2). The nature of chlorine concentration decay profile is very much similar in both the figures. But 

the difference is clear from the numerical values as 0.003011c   for rD =0.1 and 0.002566c   for rD =0.2 

(at r=0 and x=0.5). Thus as diffusivity increases in r  direction then chlorine concentration decreases at the same 

point in x  direction. This is due to fact that when diffusivity increases  then more mixing takes place and so 

chlorine concentration becomes constant at some earlier axial distance. 

 

 

 Fig.5 Variation of chlorine concentration with axial distance x and radial distance r ( rD = 0.1 ,  xD =  0.1, 

U =  0.5,  K = 1.0, t = 0.8, L =1.0) 

As this model is time dependent so to see the dependence of chlorine concentration on time we compare fig.1 and 

fig.5. At 0.1t  , 0.00000391c  (numerical value taken from fig.1 at 1.0 0x and r  ) while at 0.8t  , 
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0.0857123c   (numerical value taken from fig.5 at 1.0 0x and r  ) which is true fact since initially the 

chlorine injected at 0 0x and r   and it takes some time to reach at 1.0x   ( i.e end of the pipe). 

 

 

Conclusion 
The unsteady state mathematical model for 

axisymmetric flow in a pipe for low peclet number 

presented in the paper can be use to locate the 

position for booster chlorination to maintain the safe 

limit of the drinking water. There are some 

limitations of the model as it cannot be use for very 

large peclet number. 
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