
ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

468

 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL

 OF ADVANCED RESEARCH

RESEARCH ARTICLE

A TRACE SEMANTICS FOR LONG-RUNNING TRANSACTIONS

Dr V.Khanaa
1
, Dr Krishna Mohanta

 2

1. Dean Information Technology, Bharath University, Chennai,Tamilnadu,India.

2. Professor in Dept of Computer Science,Sri Lakshmi Ammal Engineering College,Chennai.

Manuscript Info Abstract

Manuscript History:

Received: 15 July 2013

Final Accepted: 19 September 2013

Published Online: October 2013

Key words:
Breeding season,

Buffaloe,
Post- partum anoestrus,

A long-running transaction is an interactive component of a distributed

system which must be executed as if it were a single atomic action. In

principle, it should not be interrupted or fail in the middle, and it must

not be interleaved with other atomic actions of other concurrently

executing components of the system. In practice, the illusion of

atomicity for a long-running transaction is achieved with the aid of

compensation actions supplied by the original programmer: because the

transaction is interactive, familiar automatic techniques of check-pointing

and rollback are no longer adequate. This paper constructs a model of long-

running transactions within the framework of the CSP process algebra,

showing how the compensations are orchestrated to achieve the illusion of

atomicity. It introduces a method for declaring that a process is a transaction,

and for declaring a compensation for it in case it needs to be rolled back after

it has committed. The familiar operator of sequential composition is

redefined to ensure that all necessary compensations will be called in the

right order if a later failure makes this necessary. The techniques are

designed to work well in a highly concurrent and distributed setting. In

addition we define an angelic choice operation, implemented by speculative

execution of alternatives; its judicious use can improve responsiveness of a

system in the face of the unpredictable latencies of remote communication.

Many of the familiar properties of process algebra are preserved by these

new definitions, on reasonable assumptions of the correctness and independence

of the programmer-declared compensations.

.

 Copy Right, IJAR, 2013,. All rights reserved.

http://www.journalijar.com/

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

469

1 Introduction

Business transactions involve hierarchies of activities whose execution needs to be

orchestrated. Business transactions typically involve interactions and coordination

between multiple partners. Business transactions need to deal with faults that arise

at any stage of execution. In standard atomic transactions, such as database trans-

actions, rollback mechanisms are used to protect against faults by providing all or

nothing atomicity for transactions [7]. In long-running business transactions, roll-

back is not always possible because parts of a transaction will have been committed

or because parts of a transaction (e.g., communications with external agents) are

inherently impossible to undo using any automatic technique. The only solution in

principle is to ask the system designer to provide ways of compensating actions that

cannot be undone automatically. A language for long-running transactions can pro-

vide constructs through which the application developer declares compensations for

actions. The language will then orchestrate the compensations in the appropriate

way to achieve the desired effect.

In the context of business transactions, Gray and Reuter [7] define a compen-

sation as the action taken to recover from error or cope with a change of plan.

Consider the following example: a client buys some books in an on-line bookstore

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

470

and the bookstore debits the client’s account as the payment for the book order.

The bookstore later realises that one of the books in the client’s order is out of

print. To compensate the client for this problem, the bookstore can credit the ac-

count with the amount wrongfully debited and send a letter apologising for their

mistake. This example shows that compensation is more general than traditional

rollback in database transactions. Compensation is important when a system cannot

control everything, such as when interaction with other agents (including humans)

is involved. Garcia-Molina and Salem [6] use compensation to define the concept

of sagas. A saga partitions a long-running transaction into a sequence of several

smaller subtransactions, where each of the subtransactions has an associated com-

pensation. If one of the subtransactions in the sequence aborts, the compensation

associated with those committed subtransactions is executed in reverse order.

This paper constructs a model of long-running transactions within the framework

of the CSP process algebra [8], showing how the compensations are orchestrated to

achieve the illusion of atomicity. Section 2 of this paper gives an introduction to the

Compensating CSP language. Section 3 provides a description of the standard trace

semantics of the sequential and the concurrent operators of CSP, slightly adapted

to the needs of our model. The three following sections put together ideas from the

standard semantics to construct the transaction processing model, and prove the

relevant theorems.

Our compensation constructs are not intended to replace atomic transactions. In-

stead they extend transaction mechanisms to a higher level of granularity. The goal

of our design is that shorter-running transactions should be nested inside longer-

running transactions, so as to deal with many levels of granularity, from milliseconds

to (say) months. Backtracking will be minimised, by use of compensations at the ap-

propriate level of granularity, so as to preserve as much progress-to-date as possible.

Where possible, basic activities of a long-running transaction could be implemented

as atomic transactions with automatic rollback rather than explicit compensation.

The inspiration of this paper derives from the transaction processing features of

Microsoft Biztalk [11], IBMs WSFL [10], IBM’s Business Process Beans [4],

Structured Activity Compensation [3] and the OASIS draft standard for BPEL4WS

[5]. However no attempt has been made to model the particular semantics of any of

these languages.

2 Compensating CSP

The behaviour of an interactive process (typically denoted P , Q , . . .) can be recorded

as a sequential trace (typically denoted p, q , . . .) of all its environmentally observ-

able actions (typically denoted A, B , . . .), and of certain special internal actions (like

✓, indicating successful termination of a process). For example, the trace 〈A, B , ✓〉

is a behaviour of the process A;B that executes action A, then action B and then

terminates successfully. In the CSP process algebra, processes are modelled using

such traces [8]. The traces of composite processes, such as a sequential composition

(P ;Q) or a parallel composition (P || Q), are defined in terms of the traces of their

constituent processes. The trace model means that each action that occurs cannot

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

471

be anything but atomic in the two usual senses: (1) it either occurs as a whole, or it

does not occur at all; (2) it occurs either wholly before or wholly after every other

action.

If a long-running transaction actually fails before successfully completing, the

effect must be as if it had not occurred at all. In a conventional (short running)

transaction system, the effect of the transaction can be undone at any time by

restoring a checkpoint of local state that has been taken before its start. But a

long-running transaction may have interacted with the real world before failing,

2

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

472

and the real world cannot be check-pointed. To solve this problem, the program-

mer of the original transaction is asked to provide for each fine-grained action A a

compensation action (often called A◦); its occurrence after the action A will restore

the world to a state which is an acceptable approximation to the state that it had

before the start of the transaction. Thus the primitive component of a long-running

transaction can be written A ÷ A◦ , where A is a fine-grained atomic action, and A◦

is its compensation, which will be invoked if a failure later in the transaction makes

it necessary. Since a complete transaction P is an atomic action at a coarser level

of granularity, it too may be declared to have its own compensation, for example

P ÷ Q . The coarse-grained compensation Q over-rides the fine-grained compensa-

tions declared inside P .

An implementation of a transaction processing system must ensure that on

failure of a transaction, all the necessary atomic compensations are performed in

an appropriate order to compensate for the effect of everything that has actually

happened so far. For example, if a failure occurs after sequential execution of the

two fine-grained actions 〈A, B 〉, the compensations should occur in the reverse or-

der 〈B ◦ , A◦ 〉. To model this strategy, we distinguish between standard processes

P , Q , . . .), and compensable processes (PP , QQ , . . .). We represent a behaviour

(pp, qq , . . .) of a compensable process using a pair of sequential traces with a forward

part and a compensation part. For example, the trace pair (〈A, B , ✓〉, 〈B ◦ , A◦ , ✓〉)

is a behaviour of the process (A÷A◦); (B ÷B ◦). Sequential composition of compens-

able processes is redefined in a non-standard way to ensure that the compensations

for all actions performed will be accumulated in the reverse order to their origi-

nal performance. Parallel composition of compensable processes is defined so that

compensations for performed actions will be accumulated in parallel.

Failure of a transaction is signified by another special symbol ! , which appears

like ✓ at the end of a trace. The intended effect of the ! event is to throw an inter-

rupt. For example, the primitive process THROW which fails immediately contains

the trace 〈 ! 〉. In a purely sequential process, the exception causes an immediate dis-

ruption to the flow of control. An interrupt handler may be used to catch interrupts:

in P ✄ Q , an interrupt raised by P triggers execution of the handler Q . In parallel

processes, the whole group of parallel processes may fail when one of the processes

throws an exception and all the other processes are willing to disrupt their flow of

control and yield to the exception. A process that is ready to terminate (indicated

by ✓) is also willing to yield to an interrupt. A process may also yield at mid points

in its execution, indicated by the special symbol ? which again appears at the end

of a trace. Parallel composition is defined so that ! in one process synchronises

with ! , ✓ or ? in another process and the combined event is ! . A compensation

pair P ÷ Q is always willing to yield to an interrupt either before starting P or

immediately after completing P . For example, A ÷ A◦ will contain the compensable

behaviours (〈 ? 〉, 〈✓〉) and (〈A, ✓〉, 〈A◦ , ✓〉).

A complete transaction is formed from a compensable process PP by enclosing

PP in a transaction block [PP]. This converts PP back into a standard process.

The standard behaviours of a transaction block [PP] are defined in terms of the

compensable behaviours of PP . Successful forward traces of PP represent success-

ful completion of the whole transaction. The compensations are no longer needed,

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

473

and they are discarded. The failed traces of PP need to involve actual execution of

the compensations. The intention in forming a complete transaction from a com-

pensable process is that, in the case of failure, the compensations will cancel all the

forward actions, leaving only a trace containing no observable actions as a result. We

introduce a framework for proving that a transaction either does nothing, because

its forward actions will have been cancelled, or completes successfully. This is the

fundamental principle for a process algebra that models long-running transactions.

In these proofs, we will assume that any trace is equivalent to one in which any

3

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

474

Standard processes:

P , Q ::= A

| P ; Q

| P ✷ Q

| P ∥ Q

| SKIP

| THROW

| YIELD

| P ✄ Q

| [PP]

Compensable processes:

 PP , QQ ::= P ÷ Q

| PP ; QQ

| PP ✷ QQ

| PP ∥ QQ

| SKIPP

| THROWW

| YIELDD

(atomic action)

(sequential composition)

(choice)

(parallel composition)

(normal termination)

(throw an interrupt)

(yield to an interrupt)

(interrupt handler)

(transaction block)

(compensation pair)

Fig. 1. Syntax of Compensating CSP

action and its following compensation have been cancelled. The unrealism of this

abstraction should be mitigated in engineering practice, by ensuring that failures

with less desirable compensations are adequately rare.

External choice (P ✷ Q) is defined in our model as the union of the traces of

the alternatives P and Q , just as in CSP. In implementation, the choice is made

between P and Q according to whichever of them is the first to be able to start. This

choice operation is often used to mitigate the unpredictable variations in latency

that are characteristic of remote interactions on the world wide web. In a transaction

processing system, further improvement is possible, by delaying the choice until the

first of P and Q have not only started but completed; the actions of the other are

then just compensated. This strategy is a kind of speculative execution; it has been

called optimistic scheduling in distributed system simulation. Its definition is the

final achievement of this paper.

To keep the semantic definitions simple in this paper, we have avoided supporting

synchronised communication between parallel processes. Synchronisation in parallel

process blocks is limited to joint execution of compensations, joint termination and

joint interruption. Dealing with synchronised communication is a desirable longer

term aim.

The syntax of compensating CSP is summarised in Figure 1. Figure 2 presents

a transaction for processing of customer orders in the compensating CSP language.

The first step in the transaction is a compensation pair. The primary action of

this pair is to accept the order and deduct the order quantity from the inventory

database. The compensation action simply adds the order quantity back to the

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

475

total in the inventory database. After an order is received from a customer, the

order is packed for shipment, and a courier is booked to deliver the goods to the

customer. The P ackOrder process packs each of the items in the order in parallel.

Each P ackItem activity can be compensated by a corresponding UnpackItem.

Simultaneously with the packing of the order, a credit check is performed on the

customer. The credit check is performed in parallel because it normally succeeds,

and in this normal case the company does not wish to delay the order unnecessarily.

In the case that a credit check fails, an interrupt is thrown causing the transaction to

4

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

476

OrderTransaction = [ProcessOrder]

ProcessOrder = (AcceptOrder ÷ RestockOrder) ; FulfillOrder

FulfillOrder = BookCourier ÷ CancelCourier ∥

PackOrder ∥

CreditCheck ; (Ok ; SKIPP

✷ NotOk ; THROWW)

PackOrder = ∥i ∈ Items • (PackItem (i) ÷ UnpackItem (i))

Fig. 2. Order transaction example

stop its execution, with the courier possibly having been booked and possibly some of

the items having being packed. In case of failure, the semantics of the transaction block

will ensure that the appropriate compensation activities will be invoked for those

activities that did take place.

3 Trace semantics for standard processes

We assume a process has an alphabet of actions Σ which does not include any of

the special events in Ω = {✓, ! , ? }. For traces s and t , we write st for their

concatenation. Standard processes are defined as non-empty sets of traces each of the

form s 〈ω〉 where s ∈ Σ∗ and ω ∈ Ω. Thus all traces of standard processes are of one

of the following forms:

- s 〈✓〉 trace leading to normal termination

- s 〈 ! 〉 trace leading to interrupt throw

- s 〈 ? 〉 trace leading to interrupt yield

Unlike the traces model for CSP in [8], we include only completed traces in our traces

model, not prefixes of traces. This simplifies many definitions since the nature of a

trace is indicated by its final symbol.

3.1 Sequential operators

The process that performs a single atomic event and terminates successfully consists of

a single complete trace:

Definition 1 (Atomic action). For A ∈ Σ, A = { 〈A, ✓〉 }

As in CSP the choice between two process is defined as the union of their traces:

Definition 2 (Choice). P ✷ Q = P ∪ Q

With sequential composition P ;Q , execution of Q commences when P has

completed successfully; thus successful traces of P are extended with traces of Q ,

while other traces of P remain unchanged. We define a sequential operator on traces

and then lift it to processes in the following way:

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

477

Definition 3 (Sequential composition).

p〈✓〉 ; q = pq

p〈ω〉 ; q = p〈ω〉, where ω = ✓

P ; Q = { p ; q | p ∈ P ∧ q ∈ Q }

5

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

478

The process SKIP immediately terminates successfully:

Definition 4 (Skip). SKIP = { 〈✓〉 }

THROW is the process that immediately raises an interrupt. YIELD is the

process that yields or terminates. These processes are defined as follows:

Definition 5 (Throw and yield).

THROW = { 〈 ! 〉 } YIELD = { 〈 ? 〉, 〈✓〉 }

The process P ;YIELD ;Q may yield to an interrupt from the environment after

executing P and before executing Q .

Sequential processes satisfy the following laws:

P ; (Q ✷ R) = (P ;Q) ✷ (P ;R) (P

✷ Q);R = (P ;R) ✷ (Q ;R) P ;

(Q ;R) = (P ;Q);R

P ;SKIP = P

SKIP ;P = P

THROW ;P = THROW

YIELD ;YIELD = YIELD

We look now at defining an operator for handling interrupts. For processes P

and Q , P ✄ Q represents a process that behaves as P until an interrupt is raised

by P , at which point it behaves as Q . The interrupt handling operator is defined

as follows:

Definition 6 (Interrupt handler).

p〈 ! 〉 ✄ q = pq

p〈ω〉 ✄ q = p〈ω〉, where ω = !

P ✄ Q = { p ✄ q | p ∈ P ∧ q ∈ Q }

Laws for interrupt handling:

(P ✄ Q) ✄ R = P ✄ (Q ✄ R)

 SKIP ✄ P = SKIP

YIELD ✄ P = YIELD

THROW ✄ P = P

3.2 Concurrency

In this paper we do not support synchronous execution of observable actions. A

parallel block of processes will synchronise only on joint termination or joint in-

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

479

terruption. We represent this by defining a synchronisation operator on the special

terminal events from the set Ω. If ω and ω′ are terminal events of distinct con-

current processes, we denote by ω&ω′ the joint terminal event of their concurrent

execution. Evaluations of this operator are enumerated in Table 1. The first three

rows of the table show that the synchronisation of an interrupt throw with any other

terminal event results in an interrupt throw. The next two rows show that the syn-

chronisation of a yield with either a yield or a successful termination result in a

yield. The first five rows are motivated by our decision that if a process is willing to

6

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

480

ω ω′ ω&ω′

! ! !

! ? !

! ✓ !

? ? ?

? ✓ ?

✓ ✓ ✓

Table 1. Synchronisation of terminal events

terminate (in any of the three ways), then it is willing to yield to an interrupt from
its environment. The last row of Table 1 shows that a pair of parallel processes may

terminate successfully when both processes are willing to terminate successfully.

We also define the synchronisation operator to be commutative; from this and from

Table 1 it can be seen that the operator is well-defined for all operands in the set

Ω. Case analysis shows the synchronisation operator to be associative.

As usual in process algebra, we model asynchronous execution of actions in

separate processes as occurring in an interleaved fashion. Asynchronous actions can
lead to different interleavings; for example, A ∥ B can execute A followed by B or B

followed by A. For traces p and q , we write p ||| q to denote the set of all

interleaving of p and q :

p ||| 〈〉 = {p}

〈〉 ||| q = {q }

〈x 〉p ||| 〈y 〉q = { 〈x 〉r | r ∈ (p ||| 〈y 〉q) } ∪ { 〈y 〉r | r ∈ (〈x 〉p ||| q) }

We define parallel composition of traces to be the set of interleavings of their

observable part followed by the synchronisation of their terminal events. This is

then lifted to sets of traces to define parallel composition of processes:

Definition 7 (Parallel composition).

p〈ω〉 ∥ q 〈ω′ 〉 = { r 〈ω&ω′ 〉 | r ∈ (p ||| q) }

P ∥ Q = { r | r ∈ (p ∥ q) ∧ p ∈ P ∧ q ∈ Q }

Parallel composition is commutative and associative:

P ∥ Q = Q ∥ P

(P ∥ Q) ∥ R = P ∥ (Q ∥ R)

If P does not contain any yields, then YIELD ; P is only willing to yield to an

interrupt either before P commences or when P terminates. This is shown in the

following law (for P not containing any yields):

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

481

THROW ∥ (YIELD ;P) = THROW ✷ P ;THROW

This law shows that interrupt does not have priority over other events. This is

what we would expect in a distributed setting where we cannot expect an entire

distributed system to respond immediately to an attempt by one party to raise an

exception.

7

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

482

4 Compensable processes

A compensable process contains forward behaviour and compensation behaviour.

The intention is that the compensation can be executed to compensate for the for-

ward action, if necessary (e.g., when an error or interrupt occurs later). Compens-

able behaviour is modelled by pairs of traces of the form (p〈ω〉, p′ 〈ω′ 〉), where p〈ω〉

represents a forward trace and p′ 〈ω′ 〉 represents the corresponding compensation

trace. A compensable process is modelled by a non-empty set of such pairs.

The choice of compensable processes is as for standard processes:

Definition 8 (Compensable choice).

PP ✷ QQ = PP ∪ QQ

Parallel composition of compensable processes is similar to the standard case:

Definition 9 (Compensable parallel composition).

(p, p′) ∥ (q , q ′) = { (r , r ′) | r ∈ (p ∥ q) ∧ r ′ ∈ (p′ ∥ q ′) }

PP ∥ QQ = { rr | rr ∈ (pp ∥ qq) ∧ pp ∈ PP ∧ qq ∈ QQ }

We redefine the sequential composition operator so that the compensation be-

haviour of the first process is made to happen after that of the second process.

Behaviours of PP where the forward trace is unsuccessful remain unchanged.

Definition 10 (Compensable sequential composition).

(p〈✓〉, p′) ; (q , q ′) = (pq , q ′ ; p′)

(p〈ω〉, p′) ; (q , q ′) = (p〈ω〉, p′), where ω = ✓

PP ; QQ = { pp ; qq | pp ∈ PP ∧ qq ∈ QQ }

A compensation pair is a compensable process constructed from two standard

processes. In the pair P ÷ Q , successfully terminating forward behaviour of P is

augmented by compensation behaviour from Q resulting in a compensable process. If

P throws or yields, the compensation is empty. The rationale for our definition is that

a compensation is intended to be used to compensate, at a later stage, for a

successfully completed forward unit of work and not for an interrupted unit of work.

As before we define the pairing operator on compensable behaviours and then lift it to

processes. When lifting to processes, we include an extra behaviour which allows the

compensation pair to yield immediately with the empty compensation. The operator

is defined as follows:

Definition 11 (Compensation pair).

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

483

p〈✓〉 ÷ q = (p〈✓〉, q)

p〈ω〉 ÷ q = (p〈ω〉, 〈✓〉), where ω = ✓

P ÷ Q = { (〈 ? 〉, 〈✓〉) } ∪

{ p ÷ q | p ∈ P ∧ q ∈ Q }

8

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

484

The operators on compensable processes are designed to ensure the correct

compensation is accummulated even when an interrupt is yielded to. For example,

consider the traces of the following process:

A ÷ A′ ; B ÷ B ′ = { (〈 ? 〉, 〈✓〉),

(〈A, ? 〉, 〈A′ , ✓〉),

(〈A, B , ✓〉, 〈B ′ , A′ , ✓〉) }

If this process yields immediately, the compensation is empty. If it yields after

executing A, the compensation is A′ . If it completes successfully, the compensation is

B ′ followed by A′ .

Definition 12 (Compensable basic processes).

SKIPP = SKIP ÷ SKIP

THROWW = THROW ÷ SKIP

 YIELDD = YIELD ÷ SKIP

Laws:

PP ∥ QQ = QQ ∥ PP

(PP ∥ QQ) ∥ RR = PP ∥ (QQ ∥ RR)

(PP ;QQ) ;RR = PP ; (QQ ;RR)

 PP ;SKIPP = PP

SKIPP ;PP = PP

THROWW ;PP = THROWW

YIELDD ; (P ÷ Q) = P ÷ Q

A transaction block involves running the compensation part of interrupted

forward traces, discarding the compensation parts of terminating forward traces and

completely removing traces whose forward parts are yielding. A transaction block

converts a compensable process into a standard process:

Definition 13 (Transaction block).

[PP] = { pp′ | (p〈 ! 〉, p′) ∈ PP } ∪

{ p〈✓〉 | (p〈✓〉, p′) ∈ PP }

Note that non-emptiness of PP is not sufficient to ensure non-emptiness of [PP].

If PP only contained yielding behaviours, then [PP] would be empty. The follow-

ing healthiness conditions, declaring that all processes P and PP consist of some

terminating or interrupting behaviour, will ensure that [PP] is non-empty:

- p〈✓〉 ∈ P or p〈 ! 〉 ∈ P , for some p

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

485

- (p〈✓〉, p′) ∈ PP or (p〈 ! 〉, p′) ∈ PP , for some p, p′

These conditions are true of the basic processes and are preserved by all the oper-
ators.

The transaction block masks interrupts and yields in forward behaviour:

[THROWW] = SKIP

 [YIELDD] = SKIP

9

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

486

Assume P is non-yielding. The following laws show that installed compensation is

run in the case of an interrupt and discarded in the case of successful termination:

[P ÷ P ′ ; THROWW] = P ;P ′

[P ÷ P ′] = P

Assume P , P ′ , Q , Q ′ terminate successfully, neither raising nor yielding to

interrupts. The following laws show the effect of the parallel and sequential

composition operators on the order of compensations:

[P ÷ P ′ ; Q ÷ Q ′ ; THROWW] = P ;Q ;Q ′ ;P ′

[(P ÷ P ′ ∥ Q ÷ Q ′) ; THROWW] = (P ∥ Q) ; (P ′ ∥ Q ′)

[(P ÷ P ′ ; Q ÷ Q ′) ∥ THROWW] = SKIP ✷ (P ;P ′) ✷ (P ;Q ;Q ′ ;P ′)

[P ÷ P ′ ∥ Q ÷ Q ′ ∥ THROWW] =

SKIP ✷ (P ;P ′) ✷ (Q ;Q ′) ✷ (P ∥Q); (P ′ ∥Q ′)

5 Cancellation semantics for transactions

So far we have said very little about the relationship between forward actions and

their compensations other than the relative order in which they may occur. In this

section we develop a theory of cancellation for compensable processes in which the

effect of forward actions is cancelled by compensation actions. We take a very ab-

stract view of cancellation in which we can declare that an atomic action, say A, is

compensated by A◦ and that the behaviour exhibited by A followed by A◦ is the

same as SKIP . We will introduce a cancellation function that removes cancelling

forward and compensation actions from process traces. We will introduce a correct-

ness criteria on compensable processes which says they should be self-cancelling. We

will introduce a rule which says that when the cancellation function is applied to

a self-cancelling transaction, then the overall effect is either to perform the normal

forward behaviour of the transaction or to do nothing (SKIP). We will show under

what conditions the self-cancellation property is preserved by the operators of our

language.

Assume F is a set of forward actions and C is a set of compensation actions with

F and C being disjoint. We assume that cancel is a relation between F and C so that

cancel (A, A◦) means that A◦ cancels the effect of A. We can also declare that certain

actions are independent so that they can occur in either order. This would typically

be the case for compensations of parallel processes. We write independent (A, B) to

indicate that A and B may be transposed in a trace as they do not interfere with

each other. We assume that independent is symmetric (unlike cancel).

We now define our cancellation function (C) on traces. If a trace t is of the form

p〈A〉q 〈A◦ 〉r and if cancel (A, A◦) and ∀ B ∈ q · independent (A◦ , B), then:

C(p〈A〉q 〈A◦ 〉r) = C(pqr)

If trace t does not satisfy the above conditions then no further cancellation can be

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

487

applied:

C(t) = t , otherwise

For example, assuming A◦ , B ◦ and C ◦ cancel A, B and C respectively and A◦

and B ◦ are independent:

C(〈A, B , C , C ◦ , A◦ , B ◦ 〉) = C(〈A, B , A◦ , B ◦ 〉)

10

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

488

= C(〈A, A◦ 〉), since independent (A◦ , B ◦) = C(

〈〉)

= 〈〉

Cancellation is lifted to processes by mapping the cancellation function to each

trace. We refer to a transaction block to which cancellation has being applied, C[PP], as

being closed.

A compensation behaviour (p〈ω〉, p′ 〈ω′ 〉) is self-cancelling if the forward and

compensation parts together are equivalent to the empty trace and the compensation

terminates sucessfully:

self cancelling (p〈ω〉, p′ 〈ω′ 〉) = C(pp′) = 〈〉 ∧ ω′ = ✓

A compensable process PP is self-cancelling, self cancelling (PP), when all its

behaviours are self cancelling. Self-cancelling transactions enjoy some important

properties. If we force an interrupt, then the closed transaction behaves simply as

SKIP :

self cancelling (PP)

C[PP ;THROWW] = SKIP

(1)

The closure of a self-cancelling transaction either completes a forward trace

successfully or, if an exception occurs, terminates immediately with no observable

effect:

self cancelling (PP)

C[PP] ⊆ PP✓ ✷ SKIP

Here, PP✓ represents successfully completing executions of PP :

PP✓ = { t 〈✓〉 | (t 〈✓〉, t ′) ∈ PP }

(2)

Inequality arises in rule (2) because PP might not have any successful behaviours or

might not have interrupted behaviours. This rule is quite powerful as it allows us to

reason separately about the normal behaviour and the compensation behaviour of a

closed transaction block. The abstract specification of a transaction block might be

to achieve a certain goal or to do nothing. We verify this by verifying that PP✓

achieves that goal and by verifying that PP is self-cancelling.

The following rules allow PP✓ to be derived through simple structural calcula-

tion:

(A ÷ A◦)✓ = A

(PP ✷ QQ)✓ = PP✓ ✷ QQ✓

(PP ∥ QQ)✓ = PP✓ ∥ QQ✓

(PP ; QQ)✓ = PP✓ ; QQ✓

THROWW✓ = NULL

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

489

Here NULL stands for the empty set of traces. NULL does not correspond to a valid

process but is a useful calculational artefact. NULL satisfies the following laws:

NULL ; PP = NULL

PP ; NULL = NULL

NULL ∥ PP = NULL

NULL ✷ PP = PP

11

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

490

ProcessOrder ✓ = AcceptOrder ; FulfillOrder ✓

FulfillOrder ✓ = BookCourier ∥

PackOrder ✓ ∥

CreditCheck ; Ok

PackOrder ✓ = ∥i ∈ Items • PackItem (i)

Fig. 3. Forward behaviour for order transaction example

The final law above shows that NULL is absorbed by choice. This means that

the result of applying cancellation to a self-cancelling transaction block (rule (2)

above) is a well defined process even if PP✓ = NULL. Figure 3 shows the result of

calculating the forward behaviour of the order process example of Figure 2.

We look now at how self cancellation relates to the operators of our language.

cancel (A, A◦) ⇒ self cancelling (A ÷ A◦)

SKIPP , THROWW and YIELDD are all self-cancelling. Self-cancellation is

preserved by sequential composition and choice:

self cancelling (PP) self cancelling (PP)

self cancelling (QQ) self cancelling (QQ)

self cancelling (PP ;QQ) self cancelling (PP ✷ QQ)

Parallel composition preserves self-cancellation provided the compensations from

parallel processes are independent:

self cancelling (PP)
self cancelling (QQ)

∀ A ∈ comp(PP), B ∈ comp(QQ) · independent (A, B)

self cancelling (PP ∥ QQ)

Here, comp(PP) represents the set of compensation actions of PP .

From the above rules, we see the result that, if the programmer of a transaction

ensures

- an action A is directly paired with its compensation A◦ and

- every compensation is independent of compensations in parallel processes,

then the transaction will be self-cancelling under our theory.

6 Speculative choice

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

491

When the goal of a transaction can be achieved in different ways, responsiveness

may be improved by attempting these different means in parallel. When one attempt

succeeds, the other attempts may be abandoned. Compensation can be used to

cancel the effect so far of the abandoned attempts. In this section, we define a form of

speculative choice which can be shown to be equivalent to standard choice under the

right conditions.

We write PP ⊠ QQ for the speculative choice of PP and QQ . The effect of

PP ⊠ QQ is to run the forward behaviour of PP and QQ in parallel until one of

12

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

492

them terminates successfully. If PP terminates successfully, then the compensation

accumulated for QQ is run while the compensation for PP is preserved:

(p〈✓〉, p′) ⊠ (q 〈ω〉, q ′) = { (rq ′ , p′) | r ∈ (p ||| q) }

Here and below we assume ω, ω′ = ✓. Trace r above represents any interleaving of

the forward trace p with the forward trace q . The compensation q ′ is run

immediately, i.e., appended to r , while the compensation trace p′ is preserved. The

case where QQ terminates successfully is similar:

(p〈ω〉, p′) ⊠ (q 〈✓〉, q ′) = { (rp′ , q ′) | r ∈ (p ||| q) }

Behaviours in which both processes terminate successfully result in a choice between

one or the other succeeding:

(p〈✓〉, p′) ⊠ (q 〈✓〉, q ′) = { (rq ′ , p′) | r ∈ (p ||| q) } ∪

{ (rp′ , q ′) | r ∈ (p ||| q) }

Behaviours in which neither terminate successfully are also, in which case the com-

pensations are run in parallel:

(p〈ω〉, p′) ⊠ (q 〈ω′ 〉, q ′) = { (rr ′ , 〈✓〉) | r ∈ (p ||| q) ∧ r ′ ∈ (p′ ∥ q ′) }

The operator on compensable behaviours is lifted to compensable processes:

Definition 14 (Speculative choice).

PP ⊠ QQ = { pp ⊠ qq | pp ∈ PP ∧ qq ∈ QQ }

To illustrate the effect of the operator, consider the following example transaction

block containing speculative choice:

[A ÷ A′ ⊠ B ÷ B ′] = A ✷ B ✷ ((A ∥ B) ; (A′ ✷ B ′))

Here, either A succeeds (because B ÷ B ′ yields immediately) or B succeeds or both
succeed with one of A or B being compensated.

If PP and QQ are self-cancelling and their compensations are independent, then

their speculative choice is self-cancelling:

self cancelling (PP)

self cancelling (QQ)

∀ A ∈ comp(PP), B ∈ comp(QQ) · independent (A, B)

self cancelling (PP ⊠ QQ)

Under the same conditions, a transaction block consisting of PP ⊠ QQ is the same as

one consisting of PP ✷ QQ :

self cancelling (PP)

self cancelling (QQ)

∀ A ∈ comp(PP), B ∈ comp(QQ) · independent (A, B)

C[PP ⊠ QQ] = C[PP ✷ QQ]

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

493

Unlike our other operators, speculative choice is not associative. For example

consider the process (A ÷ A′ ⊠ B ÷ B ′) ⊠ C ÷ C ′ and the case where B succeeds

overall. This case results in the compensations for the non-succeeding branches

being run in the order A′ then C ′ . On the other hand, if B succeeds overall in the

process A ÷A′ ⊠ (B ÷B ′ ⊠ C ÷C ′), then the compensations for the non-succeeding

branches will be run in the order C ′ then A′ . We could get around this problem by

defining an n-ary version of the operator which would select one succeeding branch,

if possible, and run the compensations for the other branches in parallel.

13

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

494

7 Related Work

Korth et al. [9] define compensating transactions as a way to overcome the limita-

tions of atomicity when dealing with long-running transactions. The authors propose

the use of compensating transactions to allow access to uncommitted data and to

undo committed transactions. In their work compensation is formalized in terms

of the properties it has to guarantee. Consider a transaction T , its compensating

transaction CT , and a set of dependent transactions on T (dependent transactions

of T are those transactions that read data values written by T). The authors say

that a compensation is sound when “compensation does not disturb the outcome

of dependent transactions”, i.e., the compensation has to:

- reverse the effects of execution of T , and

- assure the outcome of the dependent transactions after the execution of the CT

 must be the same as if the transaction T did not occur.

As the definition of compensation soundness can be too restrictive the authors

present a definition for weaker forms of soundness. Clearly, there are similarities

between [9] and our cancellation semantics. One main difference is that [9] does not

provide a rich language as the work presented here does. Transaction’s operations

are limited to reading or writing a set of data, as the focus is on transactional

databases.

Two of the authors (Butler and Ferreira) developed the StAC (Structured Activ-

ity Compensation) language [2, 3] for modelling long-running business transactions

which includes compensation constructs. An important difference between StAC

and the work presented here is that instead of the execution of compensations be-

ing part of the definition of a transaction block, StAC has explicit primitives for

running or discarding installed compensations (reverse and accept respectively).

StAC gives a precise interpretation to the mechanics of compensation, including

the combination of compensation with parallel execution, hierarchy and exceptions.

However, the design of the language does not lend itself to reasoning about the

intended effect of a transaction in a compositional way. In particular the separation

of the accept and reverse operators from compensation scoping prevents the defi-

nition of a compositional semantics: the semantics of the reverse operator cannot

be defined on its own as its behaviour depends on the context in which it is called.

These shortcomings were addressed in the work presented here.

Recently Bruni et al [1] have developed an operational semantics for a language

with similar operators to ours, including compensation pairs and transaction blocks

(or sagas as they call them). Like our work, and unlike StAC, the execution of

compensation is part of the definition of a saga which leads to a neater operational

semantics. They provide a richer form of exception than us whereby whether or not

compensations were run in a saga is visible outside the saga. They also define a

form of speculative choice similar to ours.

8 Conclusions

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

495

The operators of our language are quite powerful in the way they take care of

orchestration of compensation and interrupt handling in a nested way. By working

with a trace semantics we have developed a language that supports compensation

in the desired way and has a compositional semantics supporting modular reasoning

about long-running transactions. Our cancellation semantics is somewhat purist but

we believe it points towards what should be achievable with a language for long-

running transactions that is designed with correctness in mind. In particular, the

way in which the cancellation semantics allows reasoning about normal behaviour

14

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

496

and compensation behaviour to be separated is very powerful. The design of our

proposed structures has been through many iterations, in which we have sought

simpler and simpler formal definitions. We have also tried to make definitions of

each feature logically independent of every other feature, so as to reduce the risk of

complex interaction effects.

Compensating CSP can be regarded as a design pattern for a tightly-disciplined

form of error handling for transactions. The advantage of a special orchestration

language is that the implementation is responsible for avoiding the deadlocks and

race conditions that almost universally accompany a programmer’s attempt to

implement the necessary error recovery protocols.

For this paper we have chosen to use a simple trace semantics making strong

use of the special terminal events. This trace semantics allowed us to develop simple

elegant definitions of the operators which facilitated the proof of the various laws.

However we have avoided modelling several important and well understood features

of process algebras for concurrent and distributed systems. In particular we have

avoided synchronous communication, event hiding and the distinction between in-

ternal and external choice. These will require a richer semantic model and now that

we have achieved a better grasp of compensation through the trace model, we are in

a better position to tackle these other features in combination with compensation.

In our self-cancellation rule for compensation pairs, we have only allowed for pairs

of atomic actions. To deal with the more general case, our current belief is that we

need a semantic model that admits a notion of event refinement where an atomic

event at a course level of granularity is replaced by a whole process at a finer-grained

level.

Acknowledgements

Thanks to Peter Welch, Marc Shapiro, Roberto Bruni, Hernan Melgratti, Peter

Henderson, Mandy Chessell, David Vines and Catherine Griffin for valuable

discussion on compensation and exceptions. Thanks to the anonymous referee for

suggesting improvements in the presentation and thanks to Bertrand Meyer for

pointing out that ‘compensable’ was preferable to ‘compensatable’.

References

1. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations

 in flow composition languages. In POPL 2005, 2005.

2. M. Butler and C. Ferreira. A process compensation language. In Integrated Formal

 Methods(IFM’2000), volume 1945 of LNCS, pages 61 - 76. Springer-Verlag, 2000.

3. M. Butler and C. Ferreira. An operational semantics for StAC, a language for mod-

 elling long-running business transactions. In Coordination 2004, volume 2949 of LNCS.

 Springer-Verlag, 2004.

4. M. Chessell, D. Vines, C. Griffin, V. Green, and K. Warr. Business process beans:

 System design and architecture document. Technical report, Transaction Processing

 Design and New Technology Development Group, IBM UK Laboratories, January

 2001.

ISSN NO 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497

497

5. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-

 awarana. Business process execution language for web services, version 1.1. http:

 //www-106.ibm.com/developerworks/library/ws-bpel/, 2003.

6. H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM SIGMOD, pages

 249-259, 1987.

7. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

 Kaufmann Publishers, 1993.

8. C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

9. H. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by

compen-

 sating transactions. In 16th VLDB Conference,

Brisbane, Australia, 1990.

10. F. Leymann. Web services flow language, version 1.0. http://www-

3.ibm.com/

 software/solutions/webservices/pdf/WSFL.pdf,

2001. IBM.

11. B. Metha, M. Levy, G. Meredith, T. Andrews, B. Beckman, J. Klein, and A.

Mital.

12. BizTalk Server 2000 Business Process Orchestration. IEEE Data Engineering

Bulletin,

 24(1):35-39, 2001.

15

