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A long-running transaction is an interactive component of a distributed 

system which must be executed as if it were a single atomic action. In 

principle, it should not be interrupted or fail in the middle, and it must 

not be interleaved with other atomic actions of other concurrently 

executing components of the system. In practice, the illusion of 

atomicity for a long-running transaction is achieved with the aid of 

compensation actions supplied by the original programmer: because the 

transaction is interactive, familiar automatic techniques of check-pointing 

and rollback are no longer adequate. This paper constructs a model of long-

running transactions within the framework of the CSP process algebra, 

showing how the compensations are orchestrated to achieve the illusion of 

atomicity. It introduces a method for declaring that a process is a transaction, 

and for declaring a compensation for it in case it needs to be rolled back after 

it has committed. The familiar operator of sequential composition is 

redefined to ensure that all necessary compensations will be called in the 

right order if a later failure makes this necessary. The techniques are 

designed to work well in a highly concurrent and distributed setting. In 

addition we define an angelic choice operation, implemented by speculative 

execution of alternatives; its judicious use can improve responsiveness of a 

system in the face of the unpredictable latencies of remote communication. 

Many of the familiar properties of process algebra are preserved by these 

new definitions, on reasonable assumptions of the correctness and independence 

of the programmer-declared compensations. 
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1 Introduction 
 
Business transactions involve hierarchies of activities whose execution needs to be  

orchestrated. Business transactions typically involve interactions and coordination  

between multiple partners. Business transactions need to deal with faults that arise  

at any stage of execution. In standard atomic transactions, such as database trans- 

actions, rollback mechanisms are used to protect against faults by providing all or  

nothing atomicity for transactions [7]. In long-running business transactions, roll- 

back is not always possible because parts of a transaction will have been committed  

or because parts of a transaction (e.g., communications with external agents) are  

inherently impossible to undo using any automatic technique. The only solution in  

principle is to ask the system designer to provide ways of compensating actions that  

cannot be undone automatically. A language for long-running transactions can pro- 

vide constructs through which the application developer declares compensations for  

actions. The language will then orchestrate the compensations in the appropriate  

way to achieve the desired effect.  

In the context of business transactions, Gray and Reuter [7] define a compen- 

sation as the action taken to recover from error or cope with a change of plan.  

Consider the following example: a client buys some books in an on-line bookstore  
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and the bookstore debits the client’s account as the payment for the book order.  

The bookstore later realises that one of the books in the client’s order is out of  

print. To compensate the client for this problem, the bookstore can credit the ac- 

count with the amount wrongfully debited and send a letter apologising for their  

mistake. This example shows that compensation is more general than traditional  

rollback in database transactions. Compensation is important when a system cannot  

control everything, such as when interaction with other agents (including humans)  

is involved. Garcia-Molina and Salem  [6] use compensation to define the concept  

of sagas. A saga partitions a long-running transaction into a sequence of several  

smaller subtransactions, where each of the subtransactions has an associated com- 

pensation. If one of the subtransactions in the sequence aborts, the compensation  

associated with those committed subtransactions is executed in reverse order.  

This paper constructs a model of long-running transactions within the framework 

of the CSP process algebra [8], showing how the compensations are orchestrated to 

achieve the illusion of atomicity. Section 2 of this paper gives an introduction to the 

Compensating CSP language. Section 3 provides a description of the standard trace 

semantics of the sequential and the concurrent operators of CSP, slightly adapted 

to the needs of our model. The three following sections put together ideas from the 

standard semantics to construct the transaction processing model, and prove the 

relevant theorems.  

Our compensation constructs are not intended to replace atomic transactions. In- 

stead they extend transaction mechanisms to a higher level of granularity. The goal  

of our design is that shorter-running transactions should be nested inside longer- 

running transactions, so as to deal with many levels of granularity, from milliseconds  

to (say) months. Backtracking will be minimised, by use of compensations at the ap- 

propriate level of granularity, so as to preserve as much progress-to-date as possible.  

Where possible, basic activities of a long-running transaction could be implemented  

as atomic transactions with automatic rollback rather than explicit compensation.  

The inspiration of this paper derives from the transaction processing features of 

Microsoft Biztalk [11], IBMs WSFL [10], IBM’s Business Process Beans [4], 

Structured Activity Compensation [3] and the OASIS draft standard for BPEL4WS 

[5]. However no attempt has been made to model the particular semantics of any of 

these languages.  

 

2 Compensating CSP 
 
The behaviour of an interactive process (typically denoted P , Q , . . . ) can be recorded  

as a sequential trace (typically denoted p, q , . . .) of all its environmentally observ- 

able actions (typically denoted A, B , . . .), and of certain special internal actions (like  

✓, indicating successful termination of a process). For example, the trace 〈A, B , ✓〉  

is a behaviour of the process A;B that executes action A, then action B and then  

terminates successfully. In the CSP process algebra, processes are modelled using  

such traces [8]. The traces of composite processes, such as a sequential composition  

(P ;Q ) or a parallel composition (P || Q ), are defined in terms of the traces of their  

constituent processes. The trace model means that each action that occurs cannot  
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be anything but atomic in the two usual senses: (1) it either occurs as a whole, or it  

does not occur at all; (2) it occurs either wholly before or wholly after every other  

action.  

If a long-running transaction actually fails before successfully completing, the  

effect must be as if it had not occurred at all. In a conventional  (short running)  

transaction system, the effect of the transaction can be undone at any time by  

restoring a checkpoint of local state that has been taken before its start. But a  

long-running transaction may have interacted with the real world before failing,  

2 
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and the real world cannot be check-pointed. To solve this problem, the program- 

mer of the original transaction is asked to provide for each fine-grained action A a  

compensation action (often called A◦ ); its occurrence after the action A will restore  

the world to a state which is an acceptable approximation to the state that it had  

before the start of the transaction. Thus the primitive component of a long-running  

transaction can be written A ÷ A◦ , where A is a fine-grained atomic action, and A◦  

is its compensation, which will be invoked if a failure later in the transaction makes  

it necessary. Since a complete transaction P is an atomic action at a coarser level  

of granularity, it too may be declared to have its own compensation, for example  

P ÷ Q . The coarse-grained compensation Q over-rides the fine-grained compensa- 

tions declared inside P .  

An  implementation  of  a  transaction  processing  system  must  ensure  that  on  

failure of a transaction, all the necessary atomic compensations are performed in  

an appropriate order to compensate for the effect of everything that has actually  

happened so far. For example, if a failure occurs after sequential execution of the  

two fine-grained actions 〈A, B 〉, the compensations should occur in the reverse or- 

der  〈B ◦ , A◦ 〉. To model this strategy, we distinguish between standard processes  

P , Q , . . .),  and  compensable  processes  (PP , QQ , . . .).  We  represent  a  behaviour  

(pp, qq , . . .) of a compensable process using a pair of sequential traces with a forward  

part and a compensation part. For example, the trace pair (〈A, B , ✓〉, 〈B ◦ , A◦ , ✓〉)  

is a behaviour of the process (A÷A◦ );  (B ÷B ◦ ). Sequential composition of compens- 

able processes is redefined in a non-standard way to ensure that the compensations  

for all actions performed will be accumulated in the reverse order to their origi- 

nal performance. Parallel composition of compensable processes is defined so that  

compensations for performed actions will be accumulated in parallel.  

Failure of a transaction is signified by another special symbol  ! , which appears  

like ✓ at the end of a trace. The intended effect of the  ! event is to throw an inter- 

rupt. For example, the primitive process THROW which fails immediately contains  

the trace 〈 ! 〉. In a purely sequential process, the exception causes an immediate dis- 

ruption to the flow of control. An interrupt handler may be used to catch interrupts:  

in P ✄ Q , an interrupt raised by P triggers execution of the handler Q . In parallel  

processes, the whole group of parallel processes may fail when one of the processes  

throws an exception and all the other processes are willing to disrupt their flow of  

control and yield to the exception. A process that is ready to terminate (indicated  

by ✓) is also willing to yield to an interrupt. A process may also yield at mid points  

in its execution, indicated by the special symbol  ?  which again appears at the end  

of a trace. Parallel composition is defined so that !  in one process synchronises  

with  ! , ✓ or  ?  in another process and the combined event is  ! . A compensation 

pair P ÷ Q  is always willing to yield to an interrupt either before starting P  or 

immediately after completing P . For example, A ÷ A◦  will contain the compensable 

behaviours (〈 ? 〉, 〈✓〉) and (〈A, ✓〉, 〈A◦ , ✓〉).  

A complete transaction is formed from a compensable process PP by enclosing  

PP  in a transaction block  [PP ]. This converts PP  back into a standard process.  

The standard behaviours of a transaction block  [PP ] are defined in terms of the  

compensable behaviours of PP . Successful forward traces of PP represent success- 

ful completion of the whole transaction. The compensations are no longer needed,  
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and they are discarded. The failed traces of PP need to involve actual execution of  

the compensations. The intention in forming a complete transaction from a com- 

pensable process is that, in the case of failure, the compensations will cancel all the  

forward actions, leaving only a trace containing no observable actions as a result. We  

introduce a framework for proving that a transaction either does nothing, because  

its forward actions will have been cancelled, or completes successfully. This is the  

fundamental principle for a process algebra that models long-running transactions.  

In these proofs, we will assume that any trace is equivalent to one in which any  

3 
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Standard processes: 

P , Q  ::= A 

|   P  ; Q 

|   P ✷ Q 

|   P ∥ Q 

|   SKIP 

|   THROW 

|   YIELD 

|   P ✄ Q 

| [PP ] 

 

Compensable processes:  

 PP , QQ  ::= P ÷ Q 

|   PP  ; QQ 

|   PP ✷ QQ 

|   PP ∥ QQ 

|   SKIPP 

|   THROWW 

|   YIELDD 

(atomic action) 

(sequential composition) 

(choice) 

(parallel composition)  

(normal termination)  

(throw an interrupt) 

(yield to an interrupt)  

(interrupt handler)  

(transaction block) 
 
 

(compensation pair)  

 

Fig. 1. Syntax of Compensating CSP  

 

 

action and its following compensation have been cancelled. The unrealism of this 

abstraction should be mitigated in engineering practice, by ensuring that failures 

with less desirable compensations are adequately rare.  

External choice (P  ✷ Q ) is defined in our model as the union of the traces of  

the alternatives P  and Q , just as in CSP. In implementation, the choice is made  

between P and Q according to whichever of them is the first to be able to start. This  

choice operation is often used to mitigate the unpredictable variations in latency  

that are characteristic of remote interactions on the world wide web. In a transaction  

processing system, further improvement is possible, by delaying the choice until the  

first of P and Q have not only started but completed; the actions of the other are  

then just compensated. This strategy is a kind of speculative execution; it has been  

called optimistic scheduling in distributed system simulation. Its definition is the  

final achievement of this paper.  

To keep the semantic definitions simple in this paper, we have avoided supporting  

synchronised communication between parallel processes. Synchronisation in parallel  

process blocks is limited to joint execution of compensations, joint termination and  

joint interruption. Dealing with synchronised communication is a desirable longer  

term aim.  

The syntax of compensating CSP is summarised in Figure 1. Figure 2 presents  

a transaction for processing of customer orders in the compensating CSP language.  

The first step in the transaction is a compensation pair. The primary action of  

this pair is to accept the order and deduct the order quantity from the inventory  

database. The compensation action simply adds the order quantity back to the  
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total in the inventory database. After an order is received from a customer, the  

order is packed for shipment, and a courier is booked to deliver the goods to the  

customer. The P ackOrder process packs each of the items in the order in parallel.  

Each  P ackItem  activity  can  be  compensated  by  a  corresponding  UnpackItem.  

Simultaneously with the packing of the order, a credit check is performed on the  

customer. The credit check is performed in parallel because it normally succeeds,  

and in this normal case the company does not wish to delay the order unnecessarily.  

In the case that a credit check fails, an interrupt is thrown causing the transaction to  

4 
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OrderTransaction = [ ProcessOrder ]  

ProcessOrder  = (AcceptOrder ÷ RestockOrder ) ; FulfillOrder 

FulfillOrder  = BookCourier ÷ CancelCourier ∥  

PackOrder ∥ 

CreditCheck  ; (  Ok ; SKIPP  

✷ NotOk ; THROWW )  

PackOrder  = ∥i ∈ Items  •  (PackItem (i ) ÷ UnpackItem (i ))  
 

Fig. 2. Order transaction example  

 

stop its execution, with the courier possibly having been booked and possibly some of 

the items having being packed. In case of failure, the semantics of the transaction block 

will ensure that the appropriate compensation activities will be invoked for those 

activities that did take place.  

 

3  Trace semantics for standard processes  

We assume a process has an alphabet of actions Σ  which does not include any of 

the special events in Ω  =  {✓, ! , ? }. For traces s  and t , we write st  for their 

concatenation. Standard processes are defined as non-empty sets of traces each of the 

form s 〈ω〉 where s ∈ Σ∗  and ω ∈ Ω. Thus all traces of standard processes are of one 

of the following forms:  

-  s 〈✓〉 trace leading to normal termination  

-  s 〈 ! 〉 trace leading to interrupt throw  

-  s 〈 ? 〉 trace leading to interrupt yield  

Unlike the traces model for CSP in [8], we include only completed traces in our traces 

model, not prefixes of traces. This simplifies many definitions since the nature of a 

trace is indicated by its final symbol.  
 

3.1 Sequential operators 

The process that performs a single atomic event and terminates successfully consists of 

a single complete trace:  

Definition 1  (Atomic action). For A ∈ Σ,  A  =  { 〈A, ✓〉 }  

As in CSP the choice between two process is defined as the union of their traces:  

Definition 2  (Choice). P ✷ Q  =  P ∪ Q 

With sequential composition P ;Q , execution of Q commences when P has 

completed successfully; thus successful traces of P are extended with traces of Q , 

while other traces of P remain unchanged. We define a sequential operator on traces 

and then lift it to processes in the following way:  
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Definition 3  (Sequential composition).  

p〈✓〉 ; q =  pq 

p〈ω〉 ; q =  p〈ω〉,  where  ω = ✓ 
 

P ; Q =  { p ; q  | p ∈ P  ∧ q ∈ Q } 

5 



ISSN NO 2320-5407                        International Journal of Advanced Research (2013), Volume 1, Issue 8, 468-497 
 

478 

 

 
 
 
 
 
 
 
 

The process SKIP immediately terminates successfully:  

Definition 4  (Skip). SKIP  =  { 〈✓〉 } 

THROW  is the process that immediately raises an interrupt. YIELD  is the 

process that yields or terminates. These processes are defined as follows:  

Definition 5  (Throw and yield).  

THROW  =  { 〈 ! 〉 }     YIELD  =  { 〈 ? 〉, 〈✓〉 }  

The process P ;YIELD ;Q  may yield to an interrupt from the environment after 

executing P and before executing Q .  

Sequential processes satisfy the following laws:  

P ; (Q ✷ R) = (P ;Q )  ✷  (P ;R) (P 

✷ Q );R = (P ;R)  ✷  (Q ;R) P ; 

(Q ;R) = (P ;Q );R  

P ;SKIP = P  

SKIP ;P = P  

THROW ;P = THROW  

YIELD ;YIELD = YIELD  

We look now at defining an operator for handling interrupts. For processes P  

and Q , P  ✄ Q represents a process that behaves as P until an interrupt is raised  

by P , at which point it behaves as Q . The interrupt handling operator is defined  

as follows:  

Definition 6  (Interrupt handler).  

p〈 ! 〉 ✄ q =  pq 

p〈ω〉 ✄ q =  p〈ω〉,  where  ω = ! 
 

P ✄ Q   =  { p ✄ q  | p ∈ P  ∧ q ∈ Q }  

Laws for interrupt handling:  

(P ✄ Q ) ✄ R = P ✄ (Q ✄ R)  

 SKIP ✄ P = SKIP  

YIELD ✄ P = YIELD 

THROW  ✄ P = P  

 

3.2 Concurrency 

In this paper we do not support synchronous execution of observable actions. A  

parallel block of processes will synchronise only on joint termination or joint in- 
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terruption. We represent this by defining a synchronisation operator on the special  

terminal events from the set Ω. If ω and ω′  are terminal events of distinct con- 

current processes, we denote by ω&ω′  the joint terminal event of their concurrent  

execution. Evaluations of this operator are enumerated in Table 1. The first three  

rows of the table show that the synchronisation of an interrupt throw with any other  

terminal event results in an interrupt throw. The next two rows show that the syn- 

chronisation of a yield with either a yield or a successful termination result in a  

yield. The first five rows are motivated by our decision that if a process is willing to  

6 
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ω ω′  ω&ω′  

! ! ! 

! ? ! 

! ✓ ! 

? ? ? 

?  ✓ ? 

✓ ✓ ✓ 

Table 1. Synchronisation of terminal events  

 

 

 

terminate (in any of the three ways), then it is willing to yield to an interrupt from  
its environment. The last row of Table 1 shows that a pair of parallel processes may  

terminate successfully when both processes are willing to terminate successfully.  

We also define the synchronisation operator to be commutative; from this and from  

Table 1 it can be seen that the operator is well-defined for all operands in the set  

Ω. Case analysis shows the synchronisation operator to be associative.  

As usual in process algebra, we model asynchronous execution of actions in 

separate processes as occurring in an interleaved fashion. Asynchronous actions can 
lead to different interleavings; for example, A  ∥ B  can execute A followed by B or B  

followed by A. For traces p and q , we write p  ||| q  to denote the set of all 

interleaving of p and q :  
 

p  |||  〈〉 =  {p} 

〈〉  ||| q =  {q } 

〈x 〉p  |||  〈y 〉q =  { 〈x 〉r  | r ∈ (p  |||  〈y 〉q ) }  ∪  { 〈y 〉r  | r ∈ (〈x 〉p  ||| q ) } 

 

We define parallel composition of traces to be the set of interleavings of their 

observable part followed by the synchronisation of their terminal events. This is 

then lifted to sets of traces to define parallel composition of processes:  
 

Definition 7  (Parallel composition).  
 

p〈ω〉 ∥ q 〈ω′ 〉 =  { r 〈ω&ω′ 〉  | r ∈ (p ||| q ) } 
 

P ∥ Q =  { r  | r ∈ (p ∥ q )  ∧ p ∈ P  ∧ q ∈ Q } 
 

Parallel composition is commutative and associative:  
 

P ∥ Q = Q ∥ P  

(P ∥ Q ) ∥ R = P ∥ (Q ∥ R)  

 

If P does not contain any yields, then YIELD ; P is only willing to yield to an 

interrupt either before P commences or when P terminates. This is shown in the 

following law (for P not containing any yields):  
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THROW  ∥  (YIELD ;P ) = THROW  ✷ P ;THROW  

 

This law shows that interrupt does not  have priority over other events. This is  

what we would expect in a distributed setting where we cannot expect an entire  

distributed system to respond immediately to an attempt by one party to raise an  

exception.  

7 
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4 Compensable processes 
 
A compensable process contains forward behaviour and compensation behaviour.  

The intention is that the compensation can be executed to compensate for the for- 

ward action, if necessary (e.g., when an error or interrupt occurs later). Compens- 

able behaviour is modelled by pairs of traces of the form (p〈ω〉, p′ 〈ω′ 〉), where p〈ω〉  

represents a forward trace and p′ 〈ω′ 〉 represents the corresponding compensation  

trace. A compensable process is modelled by a non-empty set of such pairs.  

The choice of compensable processes is as for standard processes:  

Definition 8  (Compensable choice).  
 

PP ✷ QQ =  PP ∪ QQ 
 

Parallel composition of compensable processes is similar to the standard case:  

Definition 9  (Compensable parallel composition). 
 

(p, p′ ) ∥ (q , q ′ ) =  { (r , r ′ )  | r ∈ (p ∥ q )  ∧  r ′  ∈ (p′  ∥ q ′ ) } 
 

PP ∥ QQ =  { rr  | rr ∈ (pp ∥ qq )  ∧ pp ∈ PP  ∧ qq ∈ QQ } 

 

 

We redefine the sequential composition operator so that the compensation be- 

haviour of the first process is made to happen after that of the second process.  

Behaviours of PP where the forward trace is unsuccessful remain unchanged.  

Definition 10  (Compensable sequential composition).  
 

(p〈✓〉, p′ ) ;  (q , q ′ ) =  (pq , q ′ ; p′ ) 

(p〈ω〉, p′ ) ;  (q , q ′ ) =  (p〈ω〉, p′ ),  where ω = ✓ 
 

PP  ; QQ =  { pp ; qq  | pp ∈ PP  ∧ qq ∈ QQ } 

A compensation pair is a compensable process constructed from two standard 

processes. In the pair P ÷ Q , successfully terminating forward behaviour of P  is 

augmented by compensation behaviour from Q resulting in a compensable process. If 

P throws or yields, the compensation is empty. The rationale for our definition is that 

a compensation is intended to be used to compensate, at a later stage, for a 

successfully completed forward unit of work and not for an interrupted unit of work. 

As before we define the pairing operator on compensable behaviours and then lift it to 

processes. When lifting to processes, we include an extra behaviour which allows the 

compensation pair to yield immediately with the empty compensation. The operator 

is defined as follows:  

Definition 11  (Compensation pair).  
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p〈✓〉 ÷ q =  (p〈✓〉, q ) 

p〈ω〉 ÷ q =  (p〈ω〉, 〈✓〉),   where ω = ✓ 
 

P ÷ Q   =  { (〈 ? 〉, 〈✓〉) }  ∪  

{ p ÷ q  | p ∈ P  ∧ q ∈ Q }  

8 
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The operators on compensable processes are designed to ensure the correct 

compensation is accummulated even when an interrupt is yielded to. For example, 

consider the traces of the following process:  

A ÷ A′ ; B ÷ B ′  =  { (〈 ? 〉, 〈✓〉),  

(〈A, ? 〉, 〈A′ , ✓〉),  

(〈A, B , ✓〉, 〈B ′ , A′ , ✓〉)  }  

If  this  process  yields  immediately,  the  compensation  is  empty.  If  it  yields  after 

executing A, the compensation is A′ . If it completes successfully, the compensation is 

B ′  followed by A′ .  
 

Definition 12  (Compensable basic processes).  

SKIPP = SKIP ÷ SKIP  

THROWW  = THROW ÷ SKIP  

 YIELDD = YIELD ÷ SKIP  

Laws:  

PP ∥ QQ = QQ ∥ PP  

(PP ∥ QQ ) ∥ RR = PP ∥ (QQ ∥ RR) 

(PP ;QQ ) ;RR = PP ; (QQ ;RR)  

 PP ;SKIPP = PP  

SKIPP ;PP = PP  

THROWW ;PP = THROWW  

YIELDD ; (P ÷ Q ) = P ÷ Q  

A transaction block involves running the compensation part of interrupted 

forward traces, discarding the compensation parts of terminating forward traces and 

completely removing traces whose forward parts are yielding. A transaction block 

converts a compensable process into a standard process:  

Definition 13  (Transaction block).  

[PP ]  =  { pp′  |  (p〈 ! 〉, p′ ) ∈ PP  }  ∪  

{ p〈✓〉  |  (p〈✓〉, p′ ) ∈ PP  }  

Note that non-emptiness of PP is not sufficient to ensure non-emptiness of [PP ].  

If PP only contained yielding behaviours, then [PP ] would be empty. The follow- 

ing healthiness conditions, declaring that all processes P  and PP  consist of some  

terminating or interrupting behaviour, will ensure that [PP ] is non-empty:  

-  p〈✓〉 ∈ P  or  p〈 ! 〉 ∈ P , for some p  
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-  (p〈✓〉, p′ ) ∈ PP  or  (p〈 ! 〉, p′ ) ∈ PP , for some p, p′  

These conditions are true of the basic processes and are preserved by all the oper- 
ators.  

The transaction block masks interrupts and yields in forward behaviour:  

[THROWW ]  = SKIP  

 [YIELDD ]  = SKIP  

9 
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Assume P is non-yielding. The following laws show that installed compensation is  

run in the case of an interrupt and discarded in the case of successful termination:  

[ P ÷ P ′ ; THROWW  ]  =  P ;P ′  

[ P ÷ P ′ ] =  P 

Assume P , P ′ , Q , Q ′  terminate successfully, neither raising nor yielding to 

interrupts. The following laws show the effect of the parallel and sequential 

composition operators on the order of compensations:  

[ P ÷ P ′ ; Q ÷ Q ′ ; THROWW  ]  = P ;Q ;Q ′ ;P ′  

[ (P ÷ P ′  ∥ Q ÷ Q ′ ) ; THROWW  ]  =  (P ∥ Q ) ;  (P ′  ∥ Q ′ )  

[ (P ÷ P ′ ; Q ÷ Q ′ )  ∥ THROWW  ]  = SKIP  ✷  (P ;P ′ )  ✷  (P ;Q ;Q ′ ;P ′ )  
 

[ P ÷ P ′  ∥ Q ÷ Q ′  ∥ THROWW ]  =  

SKIP  ✷  (P ;P ′ )  ✷  (Q ;Q ′ )  ✷  (P ∥Q ); (P ′ ∥Q ′ )  

 

5  Cancellation semantics for transactions  

So far we have said very little about the relationship between forward actions and  

their compensations other than the relative order in which they may occur. In this  

section we develop a theory of cancellation for compensable processes in which the  

effect of forward actions is cancelled by compensation actions. We take a very ab- 

stract view of cancellation in which we can declare that an atomic action, say A, is  

compensated by A◦  and that the behaviour exhibited by A followed by A◦  is the  

same as SKIP . We will introduce a cancellation function that removes cancelling  

forward and compensation actions from process traces. We will introduce a correct- 

ness criteria on compensable processes which says they should be self-cancelling. We  

will introduce a rule which says that when the cancellation function is applied to  

a self-cancelling transaction, then the overall effect is either to perform the normal  

forward behaviour of the transaction or to do nothing (SKIP ). We will show under  

what conditions the self-cancellation property is preserved by the operators of our  

language.  

Assume F is a set of forward actions and C is a set of compensation actions with  

F and C being disjoint. We assume that cancel is a relation between F and C so that  

cancel (A, A◦ ) means that A◦ cancels the effect of A. We can also declare that certain  

actions are independent so that they can occur in either order. This would typically  

be the case for compensations of parallel processes. We write independent (A, B ) to  

indicate that A and B may be transposed in a trace as they do not interfere with  

each other. We assume that independent is symmetric (unlike cancel ).  

We now define our cancellation function (C) on traces. If a trace t is of the form 

p〈A〉q 〈A◦ 〉r and if cancel (A, A◦ ) and ∀ B ∈ q · independent (A◦ , B ), then:  

C( p〈A〉q 〈A◦ 〉r )  =  C( pqr )  

If trace t does not satisfy the above conditions then no further cancellation can be 
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applied:  

C(t )  =  t ,  otherwise  

For example, assuming A◦ , B ◦  and C ◦  cancel A, B and C respectively and A◦ 

and B ◦  are independent:  

C( 〈A, B , C , C ◦ , A◦ , B ◦ 〉 )  =  C( 〈A, B , A◦ , B ◦ 〉 )  

10 
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=  C( 〈A, A◦ 〉 ),  since independent (A◦ , B ◦ ) =  C( 

〈〉 )  

=  〈〉  

Cancellation is lifted to processes by mapping the cancellation function to each 

trace. We refer to a transaction block to which cancellation has being applied, C[PP ], as 

being closed.  

A compensation behaviour  (p〈ω〉, p′ 〈ω′ 〉) is self-cancelling if the forward and 

compensation parts together are equivalent to the empty trace and the compensation 

terminates sucessfully:  

self  cancelling (p〈ω〉, p′ 〈ω′ 〉)  =   C(pp′ ) = 〈〉  ∧  ω′  = ✓  

A compensable process PP is self-cancelling, self  cancelling (PP ), when all its  

behaviours are self cancelling. Self-cancelling transactions enjoy some important  

properties. If we force an interrupt, then the closed transaction behaves simply as  

SKIP : 

self  cancelling (PP ) 

C[ PP ;THROWW ]  =  SKIP 

 

(1)  

The closure of  a self-cancelling transaction  either completes a  forward trace  

successfully or, if an exception occurs, terminates immediately with no observable  

effect: 

self  cancelling (PP ) 

C[PP ]  ⊆  PP✓  ✷ SKIP 

Here, PP✓  represents successfully completing executions of PP : 

PP✓   =  { t 〈✓〉  |  (t 〈✓〉, t ′ ) ∈ PP } 

 

(2)  

Inequality arises in rule (2) because PP might not have any successful behaviours or 

might not have interrupted behaviours. This rule is quite powerful as it allows us to 

reason separately about the normal behaviour and the compensation behaviour of a 

closed transaction block. The abstract specification of a transaction block might be 

to achieve a certain goal or to do nothing. We verify this by verifying that PP✓ 

achieves that goal and by verifying that PP is self-cancelling.  

The following rules allow PP✓  to be derived through simple structural calcula- 

tion:  

(A ÷ A◦ )✓  = A  

(PP ✷ QQ )✓  = PP✓  ✷ QQ✓  

(PP ∥ QQ )✓  = PP✓  ∥ QQ✓  

(PP ; QQ )✓  = PP✓  ; QQ✓  

THROWW✓ = NULL  
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Here NULL stands for the empty set of traces. NULL does not correspond to a valid  

process but is a useful calculational artefact. NULL satisfies the following laws:  

NULL ; PP = NULL  

PP ; NULL = NULL  

NULL ∥ PP = NULL  

NULL ✷ PP = PP  

11 
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ProcessOrder ✓  = AcceptOrder ; FulfillOrder ✓  

 

FulfillOrder ✓  = BookCourier  ∥  

PackOrder ✓   ∥  

CreditCheck  ; Ok  
 

PackOrder ✓  = ∥i ∈ Items  •  PackItem (i )  
 

Fig. 3. Forward behaviour for order transaction example  

 

The  final  law  above  shows  that  NULL  is  absorbed  by  choice.  This  means  that  

the result of applying cancellation to a self-cancelling transaction block  (rule  (2)  

above) is a well defined process even if PP✓  = NULL. Figure 3 shows the result of  

calculating the forward behaviour of the order process example of Figure 2.  

We look now at how self cancellation relates to the operators of our language.  

cancel (A, A◦ ) ⇒ self  cancelling ( A ÷ A◦ ) 

SKIPP ,  THROWW  and  YIELDD  are  all  self-cancelling.  Self-cancellation  is 

preserved by sequential composition and choice: 

self  cancelling (PP ) self  cancelling (PP ) 

self  cancelling (QQ ) self  cancelling (QQ ) 

self  cancelling (PP ;QQ ) self  cancelling (PP ✷ QQ ) 

Parallel composition preserves self-cancellation provided the compensations from 

parallel processes are independent:  

self  cancelling (PP )  
self  cancelling (QQ )  

∀ A ∈ comp(PP ), B ∈ comp(QQ ) · independent (A, B )  

self  cancelling (PP ∥ QQ )  

Here, comp(PP ) represents the set of compensation actions of PP .  

From the above rules, we see the result that, if the programmer of a transaction 

ensures  

-  an action A is directly paired with its compensation A◦  and  

-  every compensation is independent of compensations in parallel processes,  

then the transaction will be self-cancelling under our theory.  

 

6 Speculative choice 
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When the goal of a transaction can be achieved in different ways, responsiveness 

may be improved by attempting these different means in parallel. When one attempt 

succeeds, the other attempts may be abandoned. Compensation can be used to 

cancel the effect so far of the abandoned attempts. In this section, we define a form of 

speculative choice which can be shown to be equivalent to standard choice under the 

right conditions.  

We write PP ⊠ QQ  for the speculative choice of PP  and QQ . The effect of  

PP ⊠ QQ is to run the forward behaviour of PP and QQ in parallel until one of  

12 
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them terminates successfully. If PP terminates successfully, then the compensation 

accumulated for QQ is run while the compensation for PP is preserved:  

(p〈✓〉, p′ )  ⊠  (q 〈ω〉, q ′ )  =   { (rq ′ , p′ )  | r ∈ (p ||| q ) }  

Here and below we assume ω, ω′  = ✓. Trace r above represents any interleaving of 

the forward trace p with the forward trace q . The compensation q ′  is run 

immediately, i.e., appended to r , while the compensation trace p′  is preserved. The 

case where QQ terminates successfully is similar:  

(p〈ω〉, p′ ) ⊠ (q 〈✓〉, q ′ )  =   { (rp′ , q ′ )  | r ∈ (p ||| q ) }  

Behaviours in which both processes terminate successfully result in a choice between 

one or the other succeeding:  

(p〈✓〉, p′ )  ⊠  (q 〈✓〉, q ′ )  =   { (rq ′ , p′ )  | r ∈ (p ||| q ) } ∪  

{ (rp′ , q ′ )  | r ∈ (p ||| q ) } 

Behaviours in which neither terminate successfully are also, in which case the com- 

pensations are run in parallel: 

(p〈ω〉, p′ ) ⊠  (q 〈ω′ 〉, q ′ ) =   { (rr ′ , 〈✓〉)  | r ∈ (p ||| q )  ∧ r ′  ∈ (p′  ∥ q ′ ) } 

The operator on compensable behaviours is lifted to compensable processes: 

Definition 14  (Speculative choice). 

PP ⊠ QQ   =  { pp ⊠ qq  | pp ∈ PP  ∧ qq ∈ QQ }  

To illustrate the effect of the operator, consider the following example transaction 

block containing speculative choice:  

[ A ÷ A′  ⊠ B ÷ B ′ ]  =  A  ✷  B  ✷  ( (A ∥ B ) ; (A′  ✷ B ′ ) )  

Here, either A succeeds (because B ÷ B ′  yields immediately) or B succeeds or both 
succeed with one of A or B being compensated.  

If PP and QQ are self-cancelling and their compensations are independent, then 

their speculative choice is self-cancelling:  

self  cancelling (PP )  

self  cancelling (QQ )  

∀ A ∈ comp(PP ), B ∈ comp(QQ ) · independent (A, B )  

self  cancelling (PP ⊠ QQ )  

Under the same conditions, a transaction block consisting of PP ⊠ QQ is the same as 

one consisting of PP ✷ QQ :  

self  cancelling (PP )  

self  cancelling (QQ )  

∀ A ∈ comp(PP ), B ∈ comp(QQ ) · independent (A, B )  

C[ PP ⊠ QQ  ]  =  C[ PP ✷ QQ  ]  
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Unlike our other operators, speculative choice is not associative. For example  

consider the process (A ÷ A′  ⊠ B ÷ B ′ ) ⊠ C ÷ C ′  and the case where B succeeds  

overall. This case results in the compensations for the non-succeeding branches  

being run in the order A′  then C ′ . On the other hand, if B succeeds overall in the  

process A ÷A′  ⊠ (B ÷B ′  ⊠ C ÷C ′ ), then the compensations for the non-succeeding  

branches will be run in the order C ′  then A′ . We could get around this problem by  

defining an n-ary version of the operator which would select one succeeding branch,  

if possible, and run the compensations for the other branches in parallel.  

13 
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7 Related Work 

Korth et al. [9] define compensating transactions as a way to overcome the limita- 

tions of atomicity when dealing with long-running transactions. The authors propose  

the use of compensating transactions to allow access to uncommitted data and to  

undo committed transactions. In their work compensation is formalized in terms  

of the properties it has to guarantee. Consider a transaction T , its compensating  

transaction CT , and a set of dependent transactions on T  (dependent transactions  

of T  are those transactions that read data values written by T ). The authors say  

that a compensation is sound when “compensation does not disturb the outcome  

of dependent transactions”, i.e., the compensation has to:  

-  reverse the effects of execution of T , and  

-  assure the outcome of the dependent transactions after the execution of the CT  

 must be the same as if the transaction T did not occur.  

As  the  definition  of  compensation  soundness  can  be  too  restrictive  the  authors  

present a definition for weaker forms of soundness. Clearly, there are similarities  

between [9] and our cancellation semantics. One main difference is that [9] does not  

provide a rich language as the work presented here does. Transaction’s operations  

are limited to reading or writing a set of data, as the focus is on transactional  

databases.  

Two of the authors (Butler and Ferreira) developed the StAC (Structured Activ- 

ity Compensation) language [2, 3] for modelling long-running business transactions  

which includes compensation constructs. An important difference between StAC  

and the work presented here is that instead of the execution of compensations be- 

ing part of the definition of a transaction block, StAC has explicit primitives for  

running or discarding installed compensations  (reverse  and accept  respectively).  

StAC gives a precise interpretation to the mechanics of compensation, including  

the combination of compensation with parallel execution, hierarchy and exceptions.  

However, the design of the language does not lend itself to reasoning about the  

intended effect of a transaction in a compositional way. In particular the separation  

of the accept and reverse operators from compensation scoping prevents the defi- 

nition of a compositional semantics: the semantics of the reverse operator cannot  

be defined on its own as its behaviour depends on the context in which it is called.  

These shortcomings were addressed in the work presented here.  

Recently Bruni et al [1] have developed an operational semantics for a language 

with similar operators to ours, including compensation pairs and transaction blocks 

(or sagas as they call them). Like our work, and unlike StAC, the execution of 

compensation is part of the definition of a saga which leads to a neater operational 

semantics. They provide a richer form of exception than us whereby whether or not 

compensations were run in a saga is visible outside the saga. They also define a 

form of speculative choice similar to ours.  

 

8 Conclusions 
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The operators of our language are quite powerful in the way they take care of  

orchestration of compensation and interrupt handling in a nested way. By working  

with a trace semantics we have developed a language that supports compensation  

in the desired way and has a compositional semantics supporting modular reasoning  

about long-running transactions. Our cancellation semantics is somewhat purist but  

we believe it points towards what should be achievable with a language for long- 

running transactions that is designed with correctness in mind. In particular, the  

way in which the cancellation semantics allows reasoning about normal behaviour  

14 
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and compensation behaviour to be separated is very powerful. The design of our 

proposed structures has been through many iterations, in which we have sought 

simpler and simpler formal definitions. We have also tried to make definitions of 

each feature logically independent of every other feature, so as to reduce the risk of 

complex interaction effects.  

Compensating CSP can be regarded as a design pattern for a tightly-disciplined 

form of error handling for transactions. The advantage of a special orchestration 

language is that the implementation is responsible for avoiding the deadlocks and 

race conditions that almost universally accompany a programmer’s attempt to 

implement the necessary error recovery protocols.  

For this paper we have chosen to use a simple trace semantics making strong  

use of the special terminal events. This trace semantics allowed us to develop simple  

elegant definitions of the operators which facilitated the proof of the various laws.  

However we have avoided modelling several important and well understood features  

of process algebras for concurrent and distributed systems. In particular we have  

avoided synchronous communication, event hiding and the distinction between in- 

ternal and external choice. These will require a richer semantic model and now that  

we have achieved a better grasp of compensation through the trace model, we are in  

a better position to tackle these other features in combination with compensation.  

In our self-cancellation rule for compensation pairs, we have only allowed for pairs  

of atomic actions. To deal with the more general case, our current belief is that we  

need a semantic model that admits a notion of event refinement where an atomic  

event at a course level of granularity is replaced by a whole process at a finer-grained  

level.  
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