

Journal homepage:http://www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

α - δ_{v} -ALMOST COMPACTNESS FOR CRISP SUBSETS IN A FUZZY TOPOLOGICAL SPACE

Anjana Bhattacharyya

Department Of Mathematics, Victoria Institution (College), 78B, A.P.C. Road, Kolkata – 700009, India.

Manuscript Info Abstract	
Manuscript History:	In this paper, using the notion of α -shading of Gantner et al. [5], the idea of α -
Received: 25 September 2013 Final Accepted: 23 September 2013 Published Online: October 2013	δ_p -almost compactness for crisp subsets of a space X is introduced, where the underlying structure on X is a fuzzy topology. Mainly several characterizations of such subsets are obtained, where among other things, ordinary nets and power-set filterbases are taken as supporting appliances.
Key words: α - δ_p -almost compact space, α - δ_p -regularity, δ_p^{α} -adherent point of net and filter.	2000 AMS SUBJECT CLASSIFICATION CODEPrimary 54 A 40Secondary 54 D 99Primary 54 A 40
	Copy Right, IJAR, 2013,. All rights reserved.

Introduction

It is seen from the literature that many mathematicians have keen interest to introduce various types of compactness in a fuzzy topological space. In 1978, Gantner, Steinlage and Warren [5] paved a new idea of compactness, called α -compactness, by means of a sort of α -level covering termed α -shading. We take resort to the same concept here to define the proposed idea of α - δ_p -almost compactness in a fuzzy topological space (henceforth to be abbreviated as fts). This new idea is also characterized by ordinary nets and power-set filters as basic appliances with the notion of adherence suitably defined via fuzzy topology of the space, the characterizations being also true for α - δ_p -almost compactness of X if one puts A = X.

In what follows, by (X, τ) or simply by X, we mean an fts in the sense of Chang [3]. By a crisp subset or just a subset A of an fts X, we mean that A is an ordinary subset of the set X, the underlying structure of the set X being a fuzzy topology τ , whereas a fuzzy set A in an fts X denotes, as usual, a function from X to the closed interval I = [0, 1] of the real line, i.e., $A \in I^X$ [8]. The closure and interior of a fuzzy set A in X will be denoted by cl A and *int A* respectively. The support of a fuzzy set A in X will be denoted by $suppA = \{x \in X \in X\}$ $X : A(x) \neq 0$. A fuzzy point [7] with the singleton support $x \in X$ and the value α ($0 < \alpha \le 1$) at x will be denoted by x_{α} . 0_X and 1_X are the constant fuzzy sets taking respectively the constant values 0 and 1 on X. The complement of a fuzzy set A in X will be denoted by $1_x \setminus A$ [8], defined by $(1_x \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For two fuzzy sets A and B in X, we write $A \leq B$ iff $A(x) \leq B(x)$, for each $x \in X$, while we write A q B to mean A is quasi-coincident (q-coincident, for short) with B [7] if there is some $x \in X$ such that A(x) + B(x) > 1; the negation of A q B is written as A \bar{q} B. A fuzzy set A in X is called fuzzy regular open [1] if A = int cl A.A fuzzy set B is called a quasi-neighbourhood (q-nbd, for short) of a fuzzy set A if there is a fuzzy open set U in Xsuch that $AqU \leq B$ [7]. If, in addition, B is fuzzy open (resp. fuzzy regular open), then B is called a fuzzy open (resp. fuzzy regular open) q-nbd of A. A fuzzy nbd [7] A of a fuzzy point x_{α} in an fts X is define in the usual way, i.e., whenever for some fuzzy open set U in X, $x_{\alpha} \leq U \leq A$; A is a fuzzy open nbd of x_{α} if A is fuzzy open, in addition. A fuzzy point x_{α} is said to be a fuzzy δ -cluster point of a fuzzy set A in an fts X if every fuzzy regular

open q-nbdU of x_{α} is q-coincident with A [4]. The union of all fuzzy δ -cluster points of A is called the fuzzy δ -closure of A and is denoted by δclA [4].

§ 1. FUZZY δ -PREOPEN AND δ -PRECLOSED SETS : SOME RESULTS

In this section, we recall some definitions and theorems from [2] for ready references.

DEFINITION 1.1. A fuzzy set A in an fts X is said to be fuzzy δ -preopen if $A \leq int (\delta clA)$. The complement of a fuzzy δ -preopen set is called fuzzy δ -preclosed.

DEFINITION 1.2. A fuzzy set A in an fts X is called a fuzzy δ -pre-q-nbd of a fuzzy point x_{α} in X if there exists a fuzzy δ -preopen set V in X such that $x_{\alpha}qV \leq A$.

DEFINITION 1.3. A fuzzy point x_{α} in an fts X is called a fuzzy δ -precluster point of a fuzzy set A in X if every fuzzy δ -pre-q-nbd of x_{α} is q-coincident with A.

The union of all fuzzy δ -precluster points of A is called the fuzzy δ -preclosure of A and will be denoted by $\delta - pclA$.

DEFINITION 1.4. The union of all fuzzy δ -preopen sets in an fts X, each contained in a fuzzy set A in X, is called the fuzzy δ -preinterior of A and is denoted by δ – pintA.

THEOREM 1.5. The union (intersection) of any collection of fuzzy δ -preopen (δ -preclosed) sets in an fts X is also fuzzy δ -preopen (δ -preclosed).

THEOREM 1.6. In an fts X, the following statements hold :

- (a) A fuzzy set A in X is δ -preopen (δ -preclosed) iff $A = \delta pintA$ (resp. $A = \delta pclA$).
- (b) $\delta pcl(1_X \setminus A) = 1_X \setminus \delta pintA$, for any fuzzy set A in X.
- (c) $\bigcup_{i=1}^{n} \delta pclA_i = \delta pcl(\bigcup_{i=1}^{n} A_i)$, for any finite collection $\{A_1, A_2, \dots, A_n\}$ of fuzzy sets A_1 , A_2, \dots, A_n in X.
- (d) $\delta pcl(\delta pclA) = \delta pclA$, for any fuzzy set A in X.
- (e) $\delta pintA$ (resp., $\delta pclA$) is a fuzzy δ -preopen (resp., δ -preclosed) set in X, for any fuzzy set A in X.

From the above definitions, we get the following two results.

RESULT 1.7. For any two fuzzy δ -preopen sets A, B, $A\bar{q}B \Rightarrow \delta - pclA\bar{q}B$ and $A\bar{q}\delta - pclB$.

PROOF. If possible, let $\delta - pclAqB$. Then there exists $x \in X$ such that $(\delta - pclA)(x) + B(x) > 1$. Let $(\delta - pclA)(x) = \alpha$. Then $x_{\alpha} \in \delta - pclA$ and $x_{\alpha}qB$. As $x_{\alpha} \in \delta - pclA$, by Definition 1.2 and Definition 1.3, BqA, a contradiction.

Similarly, it can be proved that $A\bar{q}\delta - pclB$.

RESULT 1.8. For a fuzzy δ -preopen set $U, \delta - pcl(\delta - pint(\delta - pclU)) = \delta - pclU$.

PROOF. $U \leq \delta - pclU \Rightarrow \delta - pintU = U \leq \delta - pint(\delta - pclU) \Rightarrow \delta - pclU \leq \delta - pcl(\delta - pint(\delta - pclU)).$ Again, $\delta - pclU = \delta - pcl(\delta - pclU)$ (by Theorem 1.6 (d)) $\geq \delta - pcl(\delta - pint(\delta - pclU)).$ Hence $\delta - pclU = \delta - pcl(\delta - pint(\delta - pclU)).$

§ 2. α - δ_p -ALMOST COMPACTNESS : CHARACTERIZATIONS

As already mentioned, the notion of α -shading for an fts X was first given by Gantner et al. [5]. The concept when applied to arbitrary crisp subsets of X gets the following description.

DEFINITION 2.1.Let A be a crisp subset of an fts X. A collection \mathcal{U} of fuzzy sets in X is called an α -shading (where $0 < \alpha < 1$) of A if for each $x \in A$, there is some $U_x \in \mathcal{U}$ such that $U_x(x) > \alpha$. If, in addition, the members of \mathcal{U} are fuzzy open (δ -preopen) then \mathcal{U} is called a fuzzy open (resp. δ -preopen) α -shading of A.

DEFINITION 2.2. Let X be an fts and A be a crisp subset of X. A is said to be α -compact [5] (resp., α -almost compact [6]) if each α -shading ($0 < \alpha < 1$) of A by fuzzy open sets of X has a finite (resp., finite proximate) α -subshading, i.e., there is a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{U: U \in \mathcal{U}_0\}$ (resp., $\{cl \ U: U \in \mathcal{U}_0\}$ is again an α -shading of A. If A = X in addition, then X is called an α -compact(resp., α -almost compact) space.

We now set the following definition.

DEFINITION 2.3. Let X be an ftsand A, a crisp subset of X. A is said to be α - δ_p -almost compact if each α shading of A by fuzzy δ -preopen sets of X has a finite δ_p -proximate α -subshading, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{\delta - pclU : U \in \mathcal{U}_0\}$ is again an α -shading of A. If, in addition, A = X, then X is called an α - δ_p -almost compact space.

It is immediate from Definition 2.3 and Theorem 1.6 that

THEOREM 2.4.(a) Every finite subset of an fts X is α - δ_p -almost compact.

(b) If A_1 and A_2 are α - δ_p -almost compact subsets of an fts X, then so is $A_1 \cup A_2$.

(c) X is $\alpha - \delta_p$ -almost compact if X can be written as the union of finite number of $\alpha - \delta_p$ -almost compact sets in X.

As $\delta - pclA \leq clA$, for any fuzzy set A in an fts X, it is clear from definition that $\alpha - \delta_p$ -almost compactness imply α -almost compactness. In order to arrive at a condition, under which $\alpha - \delta_p$ -almost compactness may imply α compactness and hence α -almost compactness, we need to define a sort of regularity condition in our setting. The
following definition serves our purpose.

DEFINITION 2.5. An fts X is said to be $\alpha - \delta_p$ -regular, if for each point $x \in X$ and each fuzzy open set U_x in X with $U_x(x) > \alpha$, there exists a fuzzy δ -preopen set V_x in X with $V_x(x) > \alpha$ such that $\delta - pclV_x \leq U_x$.

Two other equivalent ways of defining $\alpha - \delta_p$ -regularity are given by the following result.

THEOREM 2.6. For an fts X, the following are equivalent :

- (a) X is $\alpha \delta_p$ -regular.
- (b) For each point $x \in X$ and each fuzzy closed set F with $F(x) < 1 \alpha$, there is a fuzzy δ -preopen set U such that $(\delta pclU)(x) < 1 \alpha$ and $F \leq U$.
- (c) For each $x \in X$ and each fuzzy closed set *F* with $F(x) < 1 \alpha$, there exist fuzzy δ -preopen sets *U* and *V* such that $V(x) > \alpha$, $F \leq U$ and $U\bar{q}V$.

PROOF. (a) \Rightarrow (b) : Let $x \in X$ and F be a fuzzy closed set with $F(x) < 1 - \alpha$. Put $V = 1_X \setminus F$. Then V is a fuzzy open set and $V(x) > \alpha$. By (a), there is a fuzzy δ -preopen set W in X with $W(x) > \alpha$ and $\delta - pclW \le V = 1_X \setminus F$. Then $F \le 1_X \setminus \delta - pclW = \delta - pint(1_X \setminus W) = U$ (say). Then U is fuzzy δ -preopen in X. Also, $\delta - pclU = \delta - pcl(\delta - pint(1_X \setminus W)) = \delta - pcl(1_X \setminus \delta - pclW) = 1_X \setminus \delta - pint(\delta - pclW) \le 1_X \setminus W$. Thus $(\delta - pclU)(x) \le (1_X \setminus W)(x) < 1 - \alpha$.

(b) \Rightarrow (a) : Let $x \in X$ and U be any fuzzy open set in X with $U(x) > \alpha$. Let $F = 1_X \setminus U$. Then F is a fuzzy closed set in X with $F(x) < 1 - \alpha$. By (b), there is a fuzzy δ -preopen set V such that $(\delta - pclV)(x) < 1 - \alpha$ and $F \leq V$. So $(1_X \setminus \delta - pclV)(x) > \alpha$, i.e., $W(x) > \alpha$ where $W = 1_X \setminus \delta - pclV = \delta - pint(1_X \setminus V)$ is a fuzzy δ -preopen set in X. Now $\delta - pclW = \delta - pcl(1_X \setminus \delta - pclV) = 1_X \setminus \delta - pint(\delta - pclV) \leq 1_X \setminus V \leq 1_X \setminus F = U$. Hence (a) follows.

(b) \Rightarrow (c) : For a given $x \in X$ and a fuzzy closed set F with $F(x) < 1 - \alpha$, there exists (by (b)) a fuzzy δ -preopen set U such that $(\delta - pclU)(x) < 1 - \alpha$ and $F \leq U$. Then the fuzzy point $x_{1-\alpha} \notin \delta - pclU$. Hence by Definition 1.2 and Definition 1.3, there is a fuzzy δ -preopen set V in X such that $x_{1-\alpha}qV$ and $V\bar{q}U$, i.e., $V(x) + 1 - \alpha > 1 \Rightarrow V(x) > \alpha$.

(c) \Rightarrow (b): Let $x \in X$, and F, a fuzzy closed set in X with $F(x) < 1 - \alpha$. By (c), there exist fuzzy δ -preopen sets Uand V such that $V(x) > \alpha, F \leq U$ and $U\bar{q}V$. Now $V(x) > \alpha \Rightarrow x_{1-\alpha}qV$. Then as $U\bar{q}V$, by Result $1.7, \delta - pclU\bar{q}V \Rightarrow (\delta - pclU)(x) \leq 1 - V(x) < 1 - \alpha$.

THEOREM 2.7. In an α - δ_p -regular fts X, the α - δ_p -almost compactness of a crisp subset A of X implies its α compactness (and hence α -almost compactness).

PROOF. Let \mathcal{U} be a fuzzy open α -shading of an α - δ_p -almost compact set A in an α - δ_p -regular fts X. Then for each $a \in A$, there exists $U_a \in \mathcal{U}$ such that $U_a(a) > \alpha$. By α - δ_p -regularity of X, there is a fuzzy δ -preopen set V_a in X with $V_a(a) > \alpha$ such that $\delta - pclV_a \leq U_a \dots (1)$.

Let $\mathcal{V} = \{V_a : a \in A\}$. Then \mathcal{V} is a fuzzy δ -preopen α -shading of A. By α - δ_p -almost compactness of A, there is a finite subset A_0 of A such that $\mathcal{V}_0 = \{\delta - pclV_a : a \in A_0\}$ is an α -shading of A. By (1), $\mathcal{U}_0 = \{U_a : a \in A_0\}$ is then a finite α -subshading of \mathcal{U} . Hence A is α -compact (and hence α -almost compact).

In what follows in the rest of this paper we would like to give different characterizations of α - δ_p -almost compact sets (space) via different approaches.

THEOREM 2.8. A crisp subset A of an fts X is α - δ_p -almost compact iff every family of fuzzy δ -preopen sets, the δ -preinteriors of whose δ -preclosures form an α -shading of A, contains a finite subfamily, the δ -preclosures of whose members form an α -shading of A.

PROOF. It is sufficient to observe that for a fuzzy δ -preopen set U, $U \leq \delta - pint (\delta - pcl U) \leq \delta - pcl (\delta - pint (\delta - pcl U)) = \delta - pcl U$ (by Result 1.8).

THEOREM 2.9. A crisp subset A of an fts X is $\alpha - \delta_p$ -almost commpact iff for every collection $\{F_i : i \in \Lambda\}$ of fuzzy δ -preopen sets with the property that for each finite subset Λ_0 of Λ , there is $x \in A$ such that $\inf_{i \in \Lambda_0} F_i(x) \ge 1$

 $1 - \alpha$, one has $\inf_{i \in \Lambda} (\delta - pcl F_i)(y) \ge 1 - \alpha$, for some $y \in A$.

PROOF. Let A be α - δ_p -almost compact, and if possible, let for a collection $\{F_i : i \in \Lambda\}$ of fuzzy δ -preopen sets in X with the stated property, $(\bigcap_{i \in \Lambda} \delta - pcl F_i)(x) < 1 - \alpha$, for each $x \in A$. Then $\alpha < (1_X \setminus \bigcap_{i \in \Lambda} \delta - pcl F_i)(x) =$ $\begin{bmatrix} \bigcup_{i \in \Lambda} (1_X \setminus \delta - pcl F_i) \end{bmatrix}(x), \text{ for each } x \in A \text{ which shows that } \{1_X \setminus \delta - pcl F_i : i \in \Lambda\} \text{ is a fuzzy } \delta \text{-preopen } \alpha \text{-} \text{ shading of } A. \text{ By } \alpha - \delta_p \text{-almost compactness of } A, \text{ there is a finite subset } \Lambda_0 \text{ of } \Lambda \text{ such that } \{\delta - pcl (1_X \setminus \delta - pcl F_i) : i \in \Lambda_0\} \text{ is an } \alpha \text{-shading of } A. \text{ Hence } \alpha < [\bigcup_{i \in \Lambda_0} (1_X \setminus \delta - pint (\delta - pcl F_i))](x) = [1_X \setminus \bigcap_{i \in \Lambda_0} \delta - pint (\delta - pcl F_i)](x), \text{ for each } x \in A. \text{ Then } (\bigcap_{i \in \Lambda_0} F_i)(x) \leq [\bigcap_{i \in \Lambda_0} \delta - pint (\delta - pcl F_i)](x) < 1 - \alpha, \text{ for each } x \in A, \text{ a contradiction.} \end{bmatrix}$

Conversely, let under the given hypothesis, A be not $\alpha - \delta_p$ -almost compact. Then there is a fuzzy δ -preopen α -shading $\mathcal{U} = \{U_i : i \in \Lambda\}$ of A such that for every finite subset Λ_0 of Λ , $\{\delta - pcl U_i : i \in \Lambda_0\}$ is not an α -shading of A, i.e., there exists $x \in A$ such that $\sup_{i \in \Lambda_0} (\delta - pcl U_i)(x) \leq \alpha$, i.e., $1 - \sup_{i \in \Lambda_0} (\delta - pcl U_i)(x) = \inf_{i \in \Lambda_0} [1_X \setminus (\delta - pcl U_i)(x)] \geq 1 - \alpha$. Hence $\{1_X \setminus \delta - pcl U_i : i \in \Lambda\}$ is a family of fuzzy δ -preopen sets with the stated property. Consequently, there is some $y \in A$ such that $\inf_{i \in \Lambda} [\delta - pcl (1_X \setminus \delta)]$

$$\delta - pcl U_i)](y) \ge 1 - \alpha. \text{Then} \sup_{i \in \Lambda} U_i(y) \le \sup_{i \in \Lambda} [\delta - pcl U_i)](y) = 1 - \inf_{i \in \Lambda} [1_X \setminus U_i)](y) = 0$$

 $\delta - pint (\delta - pcl U_i)](y) = 1 - inf_{i \in \Lambda} [\delta - pcl (1_X \setminus \delta - pcl U_i)](y) \le \alpha$. This shows that $\{U_i : i \in \Lambda\}$ fails to

be an α -shading of A, a contradiction.

Let us now introduce the following definition :

DEFINITION 2.10. A family $\{F_i : i \in \Lambda\}$ of fuzzy sets in an fts X is said to have $\alpha - \delta_p$ -interiorly finite intersection property ($\alpha - \delta_p$ -IFIP, for short) in a subset A of X, if for each finite subset Λ_0 of Λ , there exists $x \in$ A such that $[\bigcap_{i \in \Lambda_0} \delta - pint F_i](x) \ge 1 - \alpha$.

THEOREM 2.11. A crisp subset A of an fts X is $\alpha - \delta_p$ -almost compact iff for every family $\mathcal{F} = \{F_i : i \in \Lambda\}$ of fuzzy δ -preclosed sets in X with $\alpha - \delta_p$ -IFIP in A, there exists $x \in A$ such that $\inf_{i \in \Lambda} F_i(x) \ge 1 - \alpha$.

PROOF. Let $\mathcal{F} = \{F_i : i \in \Lambda\}$ be a family of fuzzy δ -preclosed sets in X with $\alpha - \delta_p$ -IFIP in A where A is an α - δ_p -almost compact subset of X. If possible, let for each $x \in A$, $\inf_{i \in \Lambda} F_i(x) < 1 - \alpha$, i.e., $(\bigcap_{i \in \Lambda} F_i)(x) < 1 - \alpha$ i.e., $1 - (\bigcap_{i \in \Lambda} F_i)(x) > \alpha \Rightarrow [\bigcup_{i \in \Lambda} (1_X \setminus F_i)](x) > \alpha$. Therefore, $\mathcal{U} = \{1_X \setminus F_i : i \in \Lambda\}$ is a fuzzy δ -preopen α -shading of A.

By α - δ_p -almost compactness of A, there exists a finite subfamily Λ_0 of Λ such that $[\bigcup_{i \in \Lambda_0} \delta - pcl(1_X \setminus F_i)](x)$

= $1 - (\bigcap_{i \in \Lambda_0} \delta - p \text{ int } F_i)(x) > \alpha$, i.e., $(\bigcap_{i \in \Lambda_0} \delta - p \text{ int } F_i)(x) < 1 - \alpha$, for each $x \in A$, which shows that \mathcal{F} does not have $\alpha - \delta_n$ -IFIP in A, a contradiction.

Conversely, let $\mathcal{U} = \{U_i : i \in \Lambda\}$ be a fuzzy δ -preopen α -shading of A. Then $\mathcal{F} = \{\mathbf{1}_X \setminus U_i : i \in \Lambda\}$ is a family of fuzzy δ -preclosed sets in X with $\inf_{i \in \Lambda} (\mathbf{1}_X \setminus U_i)(x) < 1 - \alpha$, for each $x \in A$. Then by hypothesis, \mathcal{F} cannot have $\alpha - \delta_p$ -IFIP in A. Hence for some finite subset Λ_0 of Λ , we have for each $x \in A$, $[\bigcap_{i \in \Lambda_0} \delta - pint(\mathbf{1}_X \setminus U_i)](x) < 1 - \alpha$, for each $x \in A \Rightarrow (\bigcup_{i \in \Lambda_0} \delta - pcl U_i)(x) < \alpha$, for each $x \in A \Rightarrow (\bigcup_{i \in \Lambda_0} \delta - pcl U_i)(x) > \alpha$, for each $x \in A \Rightarrow A$ is $\alpha - \delta_p$ -almost compact.

§ 3. CHARACTERIZATIONS OF α - δ_p -ALMOST COMPACTNESS VIA ORDINARY NETS AND POWER-SET FILTERBASES

In this section, we characterize $\alpha - \delta_p$ -almost compactness of a crisp subset *A* of an fts *X* via δ_p^{α} -adherent point of ordinary nets and power-set filterbases.

DEFINITION 3.1. Let $\{S_n : n \in (D, \geq)\}$ (where (D, \geq) is a directed set) be an ordinary net in A and \mathcal{F} be a power-set filterbase on A, and $x \in X$ be any crisp point. Then x is called an δ_p^{α} -adherent point of (a) the net $\{S_n\}$ if for each fuzzy δ -preopen set U in X with $U(x) > \alpha$ and for each $m \in D$, there exists $k \in D$ such that $k \geq m$ in D and $(\delta - pcl U)(S_k) > \alpha$,

(b) the filterbase \mathcal{F} if for each fuzzy δ -preopen set U with $U(x) > \alpha$ and for each $F \in \mathcal{F}$, there exists a crisp point x_F in F such that $(\delta - pcl U)(x_F) > \alpha$.

THEOREM 3.2. A crisp subset A of an fts X is α - δ_p -almost compact iff every net in A has $a\delta_p^{\alpha}$ -adherent point in A.

PROOF. Suppose $A ext{ is} \alpha - \delta_p$ -almost compact, but there is a net $\{S_n : n \in (D, \geq)\}$ in A ((D, \geq) being a directed set, as usual) having no δ_p^{α} -adherent point in A. Then for each $x \in A$, there is a fuzzy δ -preopen set U_x in X with $U_x(x) > \alpha$, and an $m_x \in D$ such that $(\delta - pcl U_x)(S_n) \le \alpha$, for all $n \ge m_x$ ($n \in D$). Now, $\mathcal{U} = \{1_X \setminus \delta - pcl U_x : x \in A\}$ is a collection of fuzzy δ -preopen sets such that for any of its finite subcollection $\{1_X \setminus \delta - pcl U_x : x \in A\}$

$$\begin{split} &\delta - pcl \, U_{x_1}, \dots, \, \mathbf{1}_X \setminus \delta - pcl \, U_{x_k} \,\} \text{ (say) , there exists } m \in D \text{ with } m \geq m_{x_1}, \dots, m_{x_k} \text{ in } D \text{ such that } \\ & (\bigcup_{i=1}^k \delta - pcl \, U_{x_i})(S_n) \leq \alpha, \text{for all } n \geq m \text{ } (n \in D), \text{ i.e., } \inf_{1 \leq i \leq k} (1_X \setminus \delta - pcl \, U_{x_i})(S_n) \geq 1 - \alpha, \text{ for all } n \geq m \text{ . Hence} \\ & \text{by Theorem 2.9, there exists some } y \in A \text{ such that } \inf_{x \in A} [\delta - pcl \, (1_X \setminus \delta - pcl \, U_x)](y) \geq 1 - \alpha, \text{ i.e., } \\ & (\bigcup_{x \in A} U_x)(y) \leq [\bigcup_{x \in A} \delta - pint \, (\delta - pcl \, U_x)](y) = 1 - [1 - (\bigcup_{x \in A} (\delta - pint \, (\delta - pcl \, U_x)))(y)] = 1 - \\ & \inf_{x \in A} [\delta - pcl \, (1_X \setminus \delta - pcl \, U_x)](y) \leq 1 - 1 + \alpha = \alpha. \text{ We have, in particular, } U_y(y) \leq \alpha, \text{ going against the } \\ & \text{definition of } U_y. \end{split}$$

Conversely, let every net in A have $a\delta_p^{\alpha}$ -adherent point in A and suppose $\{F_i : i \in \Lambda\}$ be an arbitrary collection of fuzzy δ -preopen sets in X. Let Λ_f denote the collection of all finite subsets of Λ , then (Λ_f, \geq) is a directed set, where for $\mu, \lambda \in \Lambda_f, \mu \geq \lambda$ iff $\mu \equiv \lambda$. For each $\mu \in \Lambda_f$, put $F_{\mu} = \bigcap \{F_i : i \in \mu\}$. Let for each $\mu \in \Lambda_f$, there be a point $x_{\mu} \in A$ such that $\inf_{i \in \mu} F_i(x_{\mu}) \geq 1 - \alpha$...(1). It is then enough to prove, in view of Theorem 2.9, that $\inf_{i \in \Lambda} (\delta - pcl F_i)(z) \geq 1 - \alpha$ for some $z \in A$. If possible, let $\inf_{i \in \Lambda} (\delta - pcl F_i)(z) < 1 - \alpha$, for each $z \in A$...(2). Now, $S = \{x_{\mu} : \mu \in (\Lambda_f, \geq)\}$ is clearly a net of points in A. By hypothesis, there is a δ_p^{α} -adherent point z in A of this net. By (2), $\inf_{i \in \Lambda} (\delta - pcl F_i)(z) < 1 - \alpha$ and hence there is some $i_0 \in \Lambda$ such that $(\delta - pcl F_{i_0})(z) < 1 - \alpha$, i.e., $(1_X \setminus \delta - pcl F_{i_0})(z) > \alpha$. Since z is a δ_p^{α} -adherent point of S, for the index $\{i_0\} \in \Lambda_f$, there is $\mu_0 \in \Lambda_f$ with $\mu_0 \geq \{i_0\}$ (i.e., $i_0 \in \mu_0$) such that $\delta - pcl (1_X \setminus \delta - pcl F_{i_0})(x_{\mu_0}) > \alpha$, i.e., $\delta - pint \delta - pcl F_{i_0}(x_{\mu_0}) < 1 - \alpha$. Since $i_0 \in \mu_0$, $\inf_{i \in \mu_0} F_i(x_{\mu_0}) \leq \delta - pint \delta - pcl F_{i_0}(x_{\mu_0}) < 1 - \alpha$, which contradicts (1). This completes the proof.

THEOREM 3.3. A crisp subset A of an fts X is α - δ_p -almost compact iff every filterbase \mathcal{F} on A has $a\delta_p^{\alpha}$ adherent point in A.

PROOF. Let A be α - δ_p -almost compact and let there exist, if possible, a filterbase \mathcal{F} on A having no δ_p^{α} -adherent point in A. Then for each $x \in A$, there exists a fuzzy δ -preopen set U_x with $U_x(x) > \alpha$, and an $F_x \in \mathcal{F}$ such that $(\delta - pcl U_x)(y) \le \alpha$, for each $y \in F_x$. Then $\mathcal{U} = \{U_x : x \in A\}$ is a fuzzy δ -preopen α -shading of A. By α - δ_p -almost compactness of A, there are finitely many points x_1, x_2, \ldots, x_n in A such that $\mathcal{U}_0 = \{\delta - pcl U_{x_i}: i = 1, 2, \ldots, n\}$ is again an α -shading of A. Now let $F \in \mathcal{F}$ be such that $F \le F_{x_1} \cap F_{x_2} \cap \ldots \cap F_{x_n}$. Then

 $(\delta - pcl U_{x_i})(y) \le \alpha$, for all $y \in F$ and for i = 1, 2, ..., n. Thus \mathcal{U}_0 fails to be an α -shading of A, a contradiction.

Conversely, let the condition hold and suppose, if possible, $\{y_n : n \in (D, \geq)\}$ be a net in A having no δ_p^{α} -adherent point in $A((D, \geq)$ being a directed set, as usual). Then for each $x \in A$, there are a fuzzy δ -preopen set U_x with $U_x(x) > \alpha$ and an $m_x \in D$ such that $(\delta - pcl U_x)(y_n) \le \alpha$, for all $n \ge m_x$ $(n \in D)$. Thus $\mathcal{B} = \{F_x : x \in A\}$, where $F_x = \{y_n : n \ge m_x\}$, is a subbase for a filterbase \mathcal{F} on A, where \mathcal{F} consists of all finite intersections of members of \mathcal{B} . By hypothesis, \mathcal{F} has a δ_p^{α} -adherent point z (say) in A. But there are a fuzzy δ -preopen set U_z with $U_z(z) > \alpha$ and an $m_z \in D$ such that $(\delta - pcl U_z)(y_n) \le \alpha$, for all $n \ge m_z$, i.e., for all $p \in F_z \in \mathcal{B}$ ($\subseteq \mathcal{F}$), $(\delta - pcl U_z)(p) \le \alpha$. Hence z cannot be $a\delta_p^{\alpha}$ -adherent point of the filterbase \mathcal{F} , a contradiction. Hence by Theorem 3.2, A is $\alpha - \delta_p$ -almost compact.

Putting A = X in the characterization theorems so far for $\alpha - \delta_p$ -almost compact crisp subset A in an ftsX, we arrive at the following formulations for $\alpha - \delta_p$ -almost compactness of X.

THEOREM 3.4. For an fts (X, τ), the following are equivalent :

(a) X is α - δ_p -almost compact.

(b) For every family $\mathcal{U} = \{U_i : i \in \Lambda\}$ of fuzzy δ -preopen sets in X such that $\{\delta - pint(\delta - pclU_i) : i \in \Lambda\}$ is an α -shading of X, there exists a finite subset Λ_0 of Λ such that $\{\delta - pclU_i : i \in \Lambda_0\}$ is an α -shading of X.

(c) For every collection $\{F_i : i \in \Lambda\}$ of fuzzy δ -preopen sets in X with the property that for each finite subset Λ_0 of Λ , there is $x \in X$ such that $\inf_{i \in \Lambda_0} F_i(x) \ge 1 - \alpha$, one has $\inf_{i \in \Lambda} (\delta - pcl F_i)(y) \ge 1 - \alpha$, for some $y \in I$

X .

(d) For every family $\mathcal{F} = \{F_i : i \in \Lambda\}$ of fuzzy δ -preclosed sets in X with α - δ_p -IFIP in X, there exists $x \in X$ such that $\inf_{i \in \Lambda} F_i(x) \ge 1 - \alpha$.

(e) Every net in X has a δ_p^{α} -adherent point in X.

(f) Every filterbase on X has a δ_p^{α} -adherent point in X.

REFERENCES

 Azad, K.K.; On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14 – 32.

- 2. Bhattacharyya, Anjana and Mukherjee, M.N.; On fuzzy δ -almost continuous and δ^* -almost continuous functions, J. Tripura Math. Soc. 2 (2000), 45 57.
- 3. Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182 190.
- Ganguly, S. and Saha, S.; A note on δ-continuity and δ-connected sets in fuzzy set theory, Simon Stevin 62 (1988), 127 141.
- 5. Gantner, T.E., Steinlage, R.C. and Warren, R.H.; Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547 562.
- Mukherjee, M.N. and Bhattacharyya, Anjana; α-almost compactness for crisp subsets in a fuzzy topological space, J. Fuzzy Math. 11 (1) (2003), 105 – 113.
- Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, Jour. Math. Anal. Appl. 76 (1980), 571 – 599.
- 8. Zadeh, L.A.; Fuzzy Sets, Inform. Control 8 (1965), 338 353.