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1. Introduction

Powar P. L. and Rajak K. [16], have investigated a special case of generalized topological space called fine
topological space. In this space, they have defined a new class of open sets hamely fine-open sets which contains all
a —open sets, B —open sets, semi-open sets, pre-open sets, regular open sets etc.. By using these fine-open sets they
have defined fine-irresolute mappings which include pre-continuous functions, semi-continuous function,
a —continuouos function, B —continuous functions, a —irresolute functions, g —irresolute functions, etc (cf. [12]-
[16]).

In this paper, we have defined strongly gds —continuous functions, pre-gds —continuous functions, semi-
gds —continuous functions etc. in fine-topological space and investigated their properties. Also defined
gds —seperation axioms in fine-topological space.

2. Preliminaries
Throughout this paper, (X, t) and (Y, o) means topological spaces on which no separation axioms are assumed.

For a subset A of a space X the closure and interior of A with respect to 7 are denoted by cl(A) and int (4). We use
the following definitions:
Definition 2.1 A subset A of a topological space X is said to be regular open if A = int(cl(4)) and the
compliment of regular open set is called regular closed (cf. [17]).
Definition 2.2 The largest regular open set contained in A is called the § —interior of A and is denoted by § —
int(A) (cf. [17]).
Definition 2.3 The set A of X is called § —open if A = § — int(A). The complement of § —open is called § —closed
(cf. [17]).
Definition 2.4 A subset A of a space (X, 1) is called

1) Semi-open if A < cl(int (4)) (cf. [11]).

2) a —openif A c int(cl(int(A))) (cf. [8]).
Definition 2.5 The largest semi-open set contained in A is called the semi-interior of A and is denoted by
sint(A)(cf. [6]).
Definition 2.6 The smallest semi-closed set containing the set A is called semi-closure of A and is denoted by
scl(A)(cf. [6]).
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Definition 2.7 A subset A of X is called g&s —closed [1] if scl(4) c U whenever A c U and U is § —open in X.
The family of all g&s —closed subsets of the space X is denoted by Gdsc(X).
Definition 2.8 The smallest gés —closed set containing the set A is called gés —closure of A and is denoted by
gos — cl(A). Aset Ais gbs —closed if gds — cl(A) = A (cf. [1]).
Definition 2.9 The largest gés —open set contained in A is called gds —interior of A and is denoted by gds —
int(A). Aset Ais gos —open if gds — int (A) = A (cf. [1]).
Definition 2.10 A function f: X — Y is called

1) Semi-continuous [11] if £~1(V) is semi-closed in X for every closed set Vin Y.

2) g&s —continuous [2] if f~1(V) is g&s —-closed in X for every closed set V in Y.

3) Semi g&s —continuous [2] if f~1(V) is g&s-closed in X for every semi-closed set Vin Y.

4) gés —irresolute [7] if f~1(V) is g&s-closed in X for every g&s —closed set V in Y.

5) gd&s —open [3]if f(V) is g6s —open in Y for every closed set V in X.

6) pgds —open [3]if f(V) is g6s —open in Y for every semi-open set V in X.

7) quasi— g&s —open [4] if f(V) is open in 'Y for every gés —open set V in X.

8) Strongly gds —open [4] if f(V) is gés —openin Y for every g&s —open set V in X.

9) Semi-closed [9] if (V) is semi-closed in 'Y for every closed set V in X.

10) Pre-closed [10] if f(V) is closed in Y for every semi-closed set V in X.
Definition 2.11 A topological space X is said to be gés — T, space if for each pair of distinct points x and y of X,
there exists a gds —open set containing one point but not the other (cf. [5]).
Definition 2.12 A topological space X is said to be gds — T; space if for any pair of distinct point x and y, there
exists a gés —open sets G and H suchthat x € G,y € Gand x ¢ H,y € H (cf. [5]).
Definition 2.13 A topological space X is said to be gds — T, space if for any pair of distinct points x and vy, there
exists disjoint g6s —open sets G and H such that x € G and y € H (cf. [5]).
Definition 2.14 A topological space X is said to be gds —regular if for each closed set F and each point x ¢ F,
there exist disjoint g6s —open sets U and V such that x € U and Fc V (cf. [5]).
Definition 2.15 Let (X, 7) be a topological space we define
7 (A,) =1, (sAY) ={G,(#X): G, n A, = ¢,forA, € Tand A, # ¢, X, for some o € J, where J is the index set.}
Now, we define

7r = {$, X,Upepy {ta}}
The above collection 7 of subsets of X is called the fine collection of subsets of X and (X, 7, 7 ) is said to be the
fine space X generated by the topology z on X (cf. [16]).
Definition 2.16 A subset U of a fine space X is said to be a fine-open set of X, if U belongs to the collection 7, and
the complement of every fine-open sets of X is called the fine-closed sets of X and we denote the collection by
Fy (cf. [16]).
Definition 2.17 Let A be a subset of a fine space X, we say that a point x € X is a fine limit point of A if every fine-
open set of X containing x must contains at least one point of A other than x (cf. [16]).
Definition 2.18 Let A be the subset of a fine space X, the fine interior of A is defined as the union of all fine-open
sets contained in the set A i.e. the largest fine-open set contained in the set A and is denoted by f,,; (cf. [16]).
Definition 2.19 Let A be the subset of a fine space X, the fine closure of A is defined as the intersection of all fine-
closed sets containing the set A i.e. the smallest fine-closed set containing the set A and is denoted by f, (cf. [16]).
Definition 2.20 A function f: (X, 7, 77 ) — (¥, 7, r]L ) is called fine-irresolute (or f-irresolute) if f~1(V) is fine-
open in X for every fine-open set V of Y (cf. [16]).
3. Fine gds —open sets and Fine gds —continuous functions
In this section, we have defined fine g&s —open sets and fine gds —continuous functions.

Definition 3.1 The largest f-regular open set contained in A is called fine-§ —interior of A and is denoted by
f— 36— Int(A).
Definition 3.2 The smallest f-regular closed set containing A is called fine—& —closure of A and is denoted by
f—36—cl(A).
Definition 3.3 A subset A of X is said to be fine—gds —closed if f —s — cl(4A) c U whenever A c U and U is fine
- & —open in X. The family of all f — g&s —closed sets is denoted by FG6SC (X).
Definition 3.4 The intersection of all fine—gds —closed sets containing a set A is called f — g&s —closure of A and
is denoted by f — gds — cl(A). Aset Ais f — gds —closed iff f — gds — cl(4) = A.
Definition 3.5 The union of all fgds —open sets contained in A is called f — gds —interior of A and is denoted by
f—g6s—Int(A). Aset Ais f — gds —open if and only if f — gds — Int(A4) = A.
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Definition 3.6 A function f: X — Y is called fine—gds —continuous if £~ (V) is fine—gds —closed in X for every
fine-closed set Vin Y.
Definition 3.7 A function f: X — Y is called fine-semi—gé&s —continuous if f~1(V) is fine—g&s —closed in X for
every fine-semi-closed set Vin Y.
Definition 3.8 A function f:X — Y is called fine—gé&s —irresolute if f~1(V) is fine—gds —closed in X for every
fine—gds —closed set Vin Y.
Definition 3.9 A function f: X — Y is called fine—gds —open if f(V) is fine—g&s —open in Y for every fine-open
set Vin X.
Definition 3.10 A function f: X — Y is called fine—pgds —open if f(V) is fine—gé&s —closed in Y for every fine-
semi-open set V in X.
Definition 3.11 A function f:X — Y is called fine-quasi- g&s —open if f(V) is fine-open in Y for every
fgds —openset Vin X.
Definition 3.12 A function f: X — Y is called fine-strongly—gds —open if f(V) is fine—gds —closed in Y for every
fine-g&s-open set V in X.
Definition 3.13 A function f: X — Y is called fine-semi-closed if f(V) is fine-semi-closed in Y for every fine-
closed set V in X.
Definition 3.14 A function f: X — Y is called fine-pre closed if f(V) is fine-closed in Y for every fine-semi-open
set Vin X.
Remark 3.15
1) Every gds —open set is fine open and every gds —closed set if fine-closed.
2) Every semi-closed and pre-closed set is fine closed.

Remark 3.17 By the Definition 2.20, Definition 2.10 and Remark 3.15, we conclude the following:

= Semi-continuous

= gds —continuous

= Semi-gds -continuous

= g -irresolute

Fine-irresolute mapping = 445 —open

= pgls —open

= quasi — g5 —open
= Strongly gds —open

= Semi-open

= Pre-closed

4. Fine gf¢ —separaton axioms

In this section, we introduce and study weak separation axioms such as /' — g -7, f —gf% — 71 and

J —g05 — 7', spaces and obtain some of their properties.
Definition 4.1 A topological space X is said to be /' — gds — 77, space if for each pair of distinct points x and y
of X, there existsa / — g& —open set containing one point but not the other.
Theorem 4.1 A topological space X is a /' — g&s — 7'y space if and only if /' — g& —closures of distinct
points are distinct.
Proof. Let x and y be distinct points of X. Since, X is /' — g8 — 7y space, there existsa /' — g —open set G
such that + € & and y € &. Consequently, X' — & isa /' — g —closed set containing y but not x. But, / —
g8 —d (p)isthe intersection of all /' — gds —closed set containing y. Hence, vy € /' — gf — <& () but
Y@ f—g —d (y)asx ¢ X¥— . Therefore, f—ags —d (x)+=/f—g —d ().
Conversely, let f—gs —d (x¥)+/ —g8 —d (y) for x # y. Then, there exists at least one point
zE€EXsuchthat ze f—agb —d (¥)butzeg/f—gb —d (). Weclamux &/ —ags —d (v),
because if r€e f—gfb —d () then (xlcf—gb —-d (V)=>/f—-gb6 —d (x)cf—gb -—
d (). So ze/f—ag8 —d (y) which is a contradiction, hence ¥ € /' — g8 —d (y)=>r €S-
Jaksd (»), whichisa /' — g5 —open set containing x but noty. Hence, X isa /' — g — 7, space.
Theorem 4.2 If f/: ¥ — V is a bijection strongly /" — gds —openand X is /' — gds — 77, space, then Y is also
J — g5 — Ty space.
Proof. Let ¥, and y, be two distinct points of Y. Since f is bijection there exist distinct points .+, and .x, of X such
that /(rq1) = yq1and f/(x,) = ¥, Since, X is /' — g — 7y space there exists a /" — gf5 —open set G such
that ¥, € ¢ and x, € ¢. Therefore, ¥, = f(x1) € f(&) and ¥y, = f(xr,) € /(&). Since, f being strongly fine-
g4 —open function, f(G) is fine-gds —open in Y. Thus, there exists a /" — gds —open set f(G) in Y such that
yvi1 € f(&)and y, & f(&). Therefore, Y is f — g5 — 77, space.
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Definition 4.2 A topological space X is said to be /" — gfs — 77; space if for any pair of distinct points x and y
there exista /' — g —opensetsGand Hsuchthatx € &,y € Gand v ¢ 7,y € A.
Theorem 4.3 A topological space X is /" — g8 — 7’;space if and only if singletons are /" — gds —closed sets.
Proof. Let X be a f— g8 — 7ySpace and x € X. Let y € ¥ —{x}. Then, for x # y, there exists / —
g —open set &/, such that y € &/, and » & &/,,. Consequently, y € ¢/, ¢ ¥ —{x}. That is X' —{x} =U
{U,:y € ¥—{x}}, whichis /' — g —open. Hence, {r}is /' — g& —closed set.
Conversely, suppose {x}is /" — gf5 —closed set for every x € X. Let xand y € X' with v = y.Now, x # y =
vy €X—{x} Hence, X¥—{x} is /—g& —open set containing y but not x. Similarly, ¥ —{y} is / —
g4 —open set containing X but not y. Therefore, X'is /" — g& — 7'; space.
Theorem 4.4 The property being / — gds — 77y space is preserved under bijection and strongly fine-g% —open
function.
Proof. Let /: X — ¥ be bijection and strongly fine—gds —open function. Let X be a /' — g8 — 77, space and
1 and y, be two distinct points of Y. Since f is bijective there exists distinct points x4, .x, of X such that y, =
J(xy) and y, = f(xry). Now, X being a /' — gfs — 77, space, there exist /" — g& —open sets G and H such
that ¥1 € G, v, € G and v & A, v, € A. Therefore, y1 = f(x1) € f (&) but ¥y, = f(x;5) & f(&) and y, =
f(xo) e f(A) and yi = f(xy) & f(A). Now, f being strongly /" — g& —open, f(G) and f(H) are / —
g4 —open subsets of Y such that y; € /(&) but y, & /(&) and y, € f(A) and y, &€ /(A). Hence, Y is
J/ — g — 7'y space.
Theorem 451If /2 ¥ - Vbe /' — gf —continuous injection and Y be 774, then X'is /' — gds — 7.
Proof. If /: ¥ - ¥V be /"— gf5 —continuous injection and Y be 7’;. For any two distinct points .x 1, ¥, of X there
exist distinct points y4, ¥, of Y such that ¥, = £ (rq) and ¥, = f(x,). Since, Y is 71 —space there exist fine-
open sets U and V in Y such that ¥, € &, ¥, & Zand ¥, & V,y, € V. That is x, € f~X(), x, & /£ X(V) and
Xy € YW, vy ¢ FTLHY). Since, fis /£ — g —continuous, £71(Y), f71(V) are £ — gfs  —open sets in X.
Thus, for two distinct points ', x, of X there exist /# — g —open sets /(&) and F£~1(¥) such that x, €
YD, x ¢ A and xvy € FTHY), xp & (). Therefore, Xis f — gfs  — 74 space.
Theorem 4.6 If /- X —» Vbe /' — gfs —irresolute injectiveand Y / — g8 — 7'y space, then X'is /" — g5 —
71 space.
Proof. Let x4, ¥, be pair of distinct points in X. Since f is injective there exist distinct points y;, ¥, of Y such that
y1=/(xr) and y, = f(x,). Since, Yis f — gfs — 7'y space there exist /' — gds —open sets U and V in Y
such that ¥y, € Z,y, ¢ &/ and y, & V,y, € V. That is x, € F Y (), x1 & fFX(V) and x, € fFY(V),x, &
7Y, Since fis f— gf  —irresolute £~1(&), fF71(V) are f — g% —open sets in X. Thus for two distinct
points x4, x, of X there exist /' — g —open sets £~*(&) and £~*(¥) such that x; € A7), x1 & fF~X(V)
and x, € £7X(V), x, & F7H(Y). Therefore, X is f — gfs  — 7, space.
Definition 4.3 A topological space X is said to be /" — gds — 7', space if for any pair of distinct points x and y,
there exist disjoint /* — g& —open sets G and H such that x € ¢ and y € Z.
Theorem 4.7 If /2 ¥ = Vs /' — g5 —continuous injection and Y is 7',then X is /' — g5 — 77, space.
Proof. Let /: X — ¥V be /' — gfs —continuous injection and Y is 7’,. For any two distinct points .x 1, .x ,0f X there
exist distinct points 34, ¥, of Y such that ¥, = f/(x4) and ¥, = /(x5,). Since, Y is 7, space there exist disjoint
fine-open sets U and V in Y such that ¥, € Zand y, € 7. Thatis x; € £~1(&) and x, € F~1(¥). Since, f s fine-
g —continuous £7Y(&) and F7L(V) are £ — g& —open sets in X. Further f is injective, /(&) N
Y= uny)=FUp) = . Thus, for two disjoint points x, x, of X there exist disjoint / —
g% —open sets £~1(¢) and £7L(¥) such that ¥, € £71(&) and x, € £7L(F). Therefore, X is f — g —
7,space.
Theorem 48 If /=¥ = V'is /' — gf5 —irresolute injective function and Y is /' — gfs — 7, space then X is
[ —g8 — 7, space.
Proof. Let x4, x5 be pair of distinct points in X. Since f is injective there exist distinct points 31, ¥, of Y such that
vi=/f(x),y,=/f(x5).Since Yis f— gfs — 7, space there exist disjoint / — g —open sets U and V in
Y such that y; € Zand y, € ¥ in Y. Thatis x; € £~X(&) and x, € F71(F). Since, fis / — g —irresolute
injective £X(&), £~H(¥) are distinct /' — g —open sets in X. Thus, for two distinct points x4, .+, of X there
exist disjoint /' — g —open sets £~1(&) and £~1(¥) such that x, € £71(&) and x, € £~1(¥). Therefore, X
is f— g5 — 7, space.
Theorem 4.9 In any fine-topological space the following are equivalent:

1) Xisf —gfs — 7, space.

2) Foreach r # y,thereexistsa /' — g —opensetUsuchthatr € Zandy & f — g6 — & ().
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3) Foreachr e X, {x}=n{/—gf& —d (U):Uisf — g —opensetinXand.x € /.
Proof.
1)=2) Assume (1) holds. Let + € X and .x # y, then there exist disjoint /" — g& —open sets U and V such that
x €l and y € V. Clearly, XY=V is f'— g& —closed set. Since, /' NV =g, c ¥ — V.Therefore, f/ —
g —d (Ncf-gb —d X-DV=X-V.Nw,yeX—-V=>ye¢/—gs —d (D).
2)=3) For each x # y, there exusta /' — g —opensetUsuchthat x € Zand y ¢ /' — g —d (). So,
ven{fy —gs —d (0):0is a5 —openinXand.xr € U} ={r}.
3)=1) Let v,y € X and x # y. By hypothesis there exist a fgds  —open set U such that v+ € Z and y ¢
Jais  —d (). This implies there exists a fgds  —closed set V such that y ¢ /. Therefore, y € X' — /" and
X —Vis g —open set. Thus, there exist two disjoint /gds  —open sets U and X-V such that + € Zand
y € X — V. Therefore X is fgds  — 7', space.

5. Fine— g —regular space
In this section, we introduce and study /g5  —regular space and some of their properties.

Definition 5.1 A topological space X is said to be /zf  —regular space if for each fine-cloed set F and each point
x & £, there exist disjoint /&  —open sets U and V such that + € Zand 7 c /.
Theorem 5.1 Every /o  —regular T, space is/gds — 7.
Proof. Let .x, » € X such that »+ # p. Let X be a 77; space and V be a fine —open set which contains x but not y.
Then, X-V is a closed set containing y but not x. Now, by /ads  —regularity of X there exist disjoint
Jass  —opensets Uand W such that ¥ € Zand X' — V' < W/ Since, y € X — V, y € W Thus, for x, y € X with
x # y,there exist disjoint open sets U and W such that .+ € Zandy € #/Hence, Xis fgfs — 7.
Theorem 5.2 If /: X — ¥ is fine-continuous bijective /gds  —open function and X is a fine-regular space, then Y
is fg&s  —regular.
Proof. Let F be a fine-closed setin Y and y ¢ /4. take ¥ = /(x) for some x € .X. Since f is continuous surjective
/7Y(#) s fine-closed set in X and x & /~1(#). Now, since X is fine—regular, there exist disjoint fine-open sets U
and V such that x € Z and £~Y(#) c V. Thatis y = f(x) € f(¥) and # c £ (V). Since, fis fgfs  —open
function f(U) and f(V) are /@&  —open sets in Y and f is bijective. /() n/(V) = /(N V)= f(P) = &.
Therefore, Y is fgds  —regular.
Theorem 53 If /2 ¥ - ¥V is fgs  —continuous, fine-closed injection and Y is fine-regular, then X is
Jass  —regular.
Proof. Let F be a fine-closed set in X and .x & /. Since, f is closed injection f(F) is fine-closed set in Y such that
J(x) & /(). Now, Y is fine-regular there exist disjoint fine-open sets G and H such /(x) € & and /£ (/) c A.
This implies x € £7Y(¢) and # c f~Y(#). Since, f is fa%  —continuous, F71(&) and f~1(#4) are
Jads  —open sets in X. Further #71(&) n f71(#) = @. Hence, Xis f/afs  —regular.
Theorem 5.4 If /: ¥ - V is fine-semi-g& —continuous, fine-closed injection and Y is fine-semi regular, then
Xis fg&s  —regular.
Proof. Let F be a fine-closed set in X and .+ & £ Since, f is fine-closed injection f(F) is fine-closed set in Y such
that /() € /(#). Now, Y is fine-semi-regular, there exist disjoint fine-semi-open sets G and H such that /() €
¢ and £ (/) c A. This implies x € f~(&) and # c F~1(#). Since, f is fine-semi-/&%  —continuous #~(&)
and £7Y(#) are /af  —open sets in X. Further, #~3(&) n £~Y(#) = . Hence, X is /@&  —regular.
Theorem55 If /2 X - ¥V is /g&  —irresolute, fine-closed injection and Y is /g  —regular then X is
Jaos  —regular.
Proof. Let F be a fine-closed set in X and v & /#. Since, f is fine-closed injection f(F) is fine-closed set in Y such
that /(r) € F(#). Now, Y is fgds  —regular, there exist diajoint /g  —open sets G and H such that /(v) €
¢ and £(#) c 4. Thisimplies.x € f~1(&) and # c f~(#). Since, fis /g&  —irresolute #~*(&) and £ ~X(#)
are /g%  —open sets in X. Further #71(&) n f71(#) = ¢. Hence, X is /g —regular.
6. Fine-gds —normal space

In this section, we introduce and study /z  —normal spaces and some of their properties.
Definition 6.1 A topological space X is said to be /s  —normal if every pair of disjoint fine-closed sets E and F
of X there exist disjoint /gds  —open sets U and V such that £ c Zand #~ c /.
Theorem 6.1 The following statements are equivalent for a fine-topological space X:

1) Xis fgfs  —normal.

2) For each fine-closed set A and for each fine-open set U containing A, there exist a /&  —open set V

containing A such that /a8 — & (V) c 0.

543



ISSN 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 10, 539-545

3) For each pair of disjoint fine-closed sets A and B there exists a /z&  —open set U containing A such that

Jg&  —cl(NE=g.

Proof.

1)=2) Let A be a fine-closed set and U be a fine-open set containing A. Then, 4 n (¥ — &) = ¢ and therefore
they are disjoint fine-closed sets in X. Since, X is fgd&s  —normal, there exist disjoint /a&  —open sets V and W
such that 4 ¢ , X — U c Wthat is X — wc . Now V' n W= g, implies V c X — W Therefore, fafs —
d Ncmps —d X-wW=x-w because X-W is Jass  —closed set. Thus,
AcVc g (N ckx —wc U Thatisd c V c fg&d ) c/.

2)=3) Let A and B be disjoint fine-closed sets in X, then 4 ¢ ¥ — Z and X-B is a fine-open set containing A. By
(2), there exists a /zfs  —open set U suchthat 4 ¢ Zand /g — & (&) € X — Z, which implies /s —
d ()NnF=4g.

3)= 1) Let A and B be disjoint fine-closed sets in X. By (3) there exist a /z&  —open set U such that 4 c  and
Jas —d (DnF=g or FcX— a8 —d (V) Now, U and ¥ — fafs — o (&) are disjoint
Jaos  —opensetsof Xsuchthat 4 c Zand Fc ¥ — fgls — o (). Hence, Xis /s —normal.
Theorem 6.2 If X is fine semi-normal, then the following statements are true:

1) Foreach /' — J —closed set A and every / — gfs —open set B such that 4 c # there exists a fine-semi-
opensetUsuchthatd c /c f—c —d (V) cCB.

2) Forevery fads  —closed set A and every /£ — J —open set containing A, there exists a fine-semi-open
set containingU suchthat 4 c /< f, — & (V) c 4.

Proof.

1) Let Abea f — J —closed set and B be a fgds  —open set such that 4 ¢ #. Then, 4 n (V' — £) = &.
Since, Aisa /' — g —closed setand X' — #Z be a /g  —closed, by Theorem 6.1, there exists fine-semi-
opensetsUand Vsuchthat A c /¥ —FcVand NV =¢. Thus, Ac/cX¥—VcA Since,
X — Visfine-semi-closed /5«7 (&) c X — V. Therefore, A c /c f, —d (V) c B.

2) Let Abea fgds —closed set and B be a /' — J —open set such that 4 c Z. Then, ¥ — £ c X — 4.
Since, X is fine-semi-normal and X-A is a /g  —open set containing /" — J —closed set X' — Z, by(1)
there exists a fine-semi-open set G suchthat ¥ —Fc ¢ c f.d (6)c X —A4.Thatis, dc ¥ —f, —
d (QYcX—-—CcPh Let U=X¥—-/f,—d (&), then U is fine-semi-open set and 4 c /' c f, —
ad (U)ch.

7. Conclusion

The author has defined strongly g5 —continuous functions, pre-gds —continuous functions, semi-
g8 —continuous functions etc. in fine-topological space and investigated their properties also defined
g4 —seperation axioms in fine-topological space. This concept may be useful in Quantum physics, Quantum
Mechanics, Quantum gravity etc.
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