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1. Introduction   

 Powar P. L. and Rajak K. [16], have investigated a special case of generalized topological space called fine 

topological space. In this space, they have defined a new class of open sets namely fine-open sets which contains all 

𝛼 −open sets, 𝛽 −open sets, semi-open sets, pre-open sets, regular open sets etc.. By using these fine-open sets they 

have defined fine-irresolute mappings which include pre-continuous functions, semi-continuous function, 

𝛼 −continuouos function, 𝛽 −continuous functions, 𝛼 −irresolute functions, 𝛽 −irresolute functions, etc (cf. [12]-

[16]).  

In this paper, we have defined strongly 𝑔𝛿𝑠 −continuous functions, pre-𝑔𝛿𝑠 −continuous functions, semi-

𝑔𝛿𝑠 −continuous functions etc. in fine-topological space and investigated their properties. Also defined 

𝑔𝛿𝑠 −seperation axioms in fine-topological space. 

 

2. Preliminaries 
Throughout this paper, (𝑋, 𝜏) and (𝑌, 𝜎) means topological spaces on which no separation axioms are assumed. 

For a subset A of a space X the closure and interior of A with respect to 𝜏 are denoted by 𝑐𝑙(𝐴) and 𝑖𝑛𝑡  𝐴 . We use 

the following definitions: 

Definition 2.1   A subset A of a topological space X is said to be regular open if 𝐴 = 𝑖𝑛𝑡(𝑐𝑙(𝐴)) and the 

compliment of regular open set is called regular closed (cf. [17]). 

Definition 2.2 The largest regular open set contained in A is called the 𝛿 −interior of A and is denoted by 𝛿 −
𝑖𝑛𝑡 𝐴  (cf. [17]). 

Definition 2.3 The set A of X is called 𝛿 −open if 𝐴 = 𝛿 − 𝑖𝑛𝑡 𝐴 . The complement of 𝛿 −open is called 𝛿 −closed 

(cf. [17]). 

Definition 2.4 A subset A of a space (𝑋, 𝜏) is called  

1) Semi-open if 𝐴 ⊂ 𝑐𝑙 𝑖𝑛𝑡  𝐴   (cf. [11]). 

2) 𝛼 −open if 𝐴 ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝐴))) (cf. [8]). 

Definition 2.5 The largest semi-open set contained in A is called the semi-interior of A and is denoted by 

𝑠𝑖𝑛𝑡 𝐴 (cf. [6]). 

Definition 2.6 The smallest semi-closed set containing the set A is called semi-closure of A and is denoted by 

 𝑠𝑐𝑙(𝐴)(cf. [6]). 
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Definition 2.7 A subset A of X is called 𝑔𝛿𝑠 −closed [1] if 𝑠𝑐𝑙 𝐴 ⊂ 𝑈 whenever 𝐴 ⊂ 𝑈 and U is 𝛿 −open in X. 

The family of all 𝑔𝛿𝑠 −closed subsets of the space X is denoted by 𝐺𝛿𝑠𝑐 𝑋 . 
Definition 2.8 The smallest 𝑔𝛿𝑠 −closed set containing the set A is called 𝑔𝛿𝑠 −closure of A and is denoted by 

𝑔𝛿𝑠 − 𝑐𝑙 𝐴 . A set A is 𝑔𝛿𝑠 −closed if  𝑔𝛿𝑠 − 𝑐𝑙 𝐴 = 𝐴 (cf. [1]). 

Definition 2.9 The largest 𝑔𝛿𝑠 −open set contained in A is called 𝑔𝛿𝑠 −interior of A and is denoted by 𝑔𝛿𝑠 −
𝑖𝑛𝑡 𝐴 .  A set A is 𝑔𝛿𝑠 −open if 𝑔𝛿𝑠 − 𝑖𝑛𝑡  𝐴 = 𝐴 (cf. [1]). 

Definition 2.10 A function 𝑓: 𝑋 → 𝑌 is called 

1) Semi-continuous [11] if 𝑓−1(𝑉) is semi-closed in X for every closed set V in Y. 

2) 𝑔𝛿𝑠 −continuous [2] if 𝑓−1(𝑉) is 𝑔𝛿𝑠 −-closed in X for every closed set V in Y. 

3) Semi 𝑔𝛿𝑠 −continuous [2] if  𝑓−1(𝑉) is 𝑔𝛿𝑠-closed in X for every semi-closed set V in Y. 

4) 𝑔𝛿𝑠 −irresolute [7] if  𝑓−1(𝑉) is 𝑔𝛿𝑠-closed in X for every 𝑔𝛿𝑠 −closed set V in Y. 

5) 𝑔𝛿𝑠 −open [3] if 𝑓(𝑉) is 𝑔𝛿𝑠 −open in Y for every closed set V in X. 

6) 𝑝𝑔𝛿𝑠 −open [3] if 𝑓(𝑉) is 𝑔𝛿𝑠 −open in Y for every semi-open set V in X. 

7) 𝑞𝑢𝑎𝑠𝑖 − 𝑔𝛿𝑠 −open [4] if 𝑓(𝑉) is open in Y for every 𝑔𝛿𝑠 −open set V in X. 

8) Strongly 𝑔𝛿𝑠 −open [4] if 𝑓(𝑉) is 𝑔𝛿𝑠 −open in Y for every 𝑔𝛿𝑠 −open set V in X. 

9) Semi-closed [9] if 𝑓(𝑉) is semi-closed  in Y for every closed set V in X. 

10)  Pre-closed [10] if 𝑓(𝑉) is closed in Y for every semi-closed set V in X. 

Definition 2.11 A topological space X is said to be 𝑔𝛿𝑠 − 𝑇0 space if for each pair of distinct points x and y of X, 

there exists a 𝑔𝛿𝑠 −open set containing one point but not the other (cf. [5]). 

Definition 2.12 A topological space X is said to be 𝑔𝛿𝑠 − 𝑇1 space if for any pair of distinct point x and y, there 

exists a 𝑔𝛿𝑠 −open sets G and H such that 𝑥 ∈ 𝐺, 𝑦 ∉ 𝐺 and 𝑥 ∉ 𝐻, 𝑦 ∈ 𝐻  (cf. [5]). 

Definition 2.13   A topological space X is said to be 𝑔𝛿𝑠 − 𝑇2 space if for any pair of distinct points x and y, there 

exists disjoint 𝑔𝛿𝑠 −open sets G and H such that 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝐻  (cf. [5]). 

Definition 2.14   A topological space X is said to be 𝑔𝛿𝑠 −regular if for each closed set F and each point 𝑥 ∉ 𝐹, 

there exist disjoint 𝑔𝛿𝑠 −open sets U and V such that 𝑥 ∈ 𝑈 and F⊂ V  (cf. [5]). 

Definition 2.15   Let (X, τ) be a topological space we define  

τ (𝐴𝛼 ) = 𝜏𝛼  (say) = {𝐺𝛼 (≠X) : 𝐺𝛼  ∩  𝐴𝛼 =  𝜙, for 𝐴𝛼  ∈  𝜏 and 𝐴𝛼 ≠  𝜙, 𝑋, for some α ∈ J, where J is the index set.} 
Now, we define 

𝜏𝑓  =  {𝜙, 𝑋,∪ 𝛼∈𝐽 {𝜏𝛼}} 

The above collection 𝜏𝑓  of subsets of X is called the fine collection of subsets of X and (X, τ, 𝜏𝑓  ) is said to be the 

fine space X generated by the topology τ on X  (cf. [16]). 

Definition 2.16 A subset U of a fine space X is said to be a fine-open set of X, if U belongs to the collection 𝜏𝑓  and 

the complement of every fine-open sets of X is called the fine-closed sets of X and we denote the collection by 

𝐹𝑓  (cf. [16]). 

Definition 2.17 Let A be a subset of a fine space X, we say that a point x ∈ X is a fine limit point of A if every fine-

open set of X containing x must contains at least one point of A other than x (cf. [16]). 

Definition 2.18 Let A be the subset of a fine space X, the fine interior of A is defined as the union of all fine-open 

sets contained in the set A i.e. the largest fine-open set contained in the set A and is denoted by 𝑓𝐼𝑛𝑡  (cf. [16]). 

Definition 2.19 Let A be the subset of a fine space X, the fine closure of A is defined as the intersection of all fine-

closed sets containing the set A i.e. the smallest fine-closed set containing the set A and is denoted by 𝑓𝑐𝑙  (cf. [16]). 

Definition 2.20 A function f : (X, τ, 𝜏𝑓  ) → (Y, τ ′, 𝜏𝑓
′  ) is called fine-irresolute (or f-irresolute) if 𝑓−1(𝑉 ) is fine-

open in X for every fine-open set V of Y (cf. [16]). 

3. Fine 𝒈𝜹𝒔 −open sets and Fine 𝒈𝜹𝒔 −continuous functions 

In this section, we have defined fine 𝑔𝛿𝑠 −open sets and fine 𝑔𝛿𝑠 −continuous functions. 

Definition 3.1 The largest f-regular open set contained in A is called fine-𝛿 −interior of A and is denoted by 

𝑓 − 𝛿 − 𝐼𝑛𝑡 𝐴 . 
Definition 3.2 The smallest f-regular closed set containing A is called fine−𝛿 −closure of A and is denoted by 

𝑓 − 𝛿 − 𝑐𝑙 𝐴 . 
Definition 3.3 A subset A of X is said to be fine−𝑔𝛿𝑠 −closed if 𝑓 − 𝑠 − 𝑐𝑙 𝐴 ⊂ 𝑈 whenever 𝐴 ⊂ 𝑈 and 𝑈 is fine 

– 𝛿 −open in X. The family of all 𝑓 − 𝑔𝛿𝑠 −closed sets is denoted by 𝐹𝐺𝛿𝑆𝐶 𝑋 . 
Definition 3.4 The intersection of all fine−𝑔𝛿𝑠 −closed sets containing a set A is called 𝑓 − 𝑔𝛿𝑠 −closure of A and 

is denoted by 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙(𝐴). A set 𝐴 is 𝑓 − 𝑔𝛿𝑠 −closed iff 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙 𝐴 = 𝐴. 
Definition 3.5 The union of all 𝑓𝑔𝛿𝑠 −open sets contained in A is called 𝑓 − 𝑔𝛿𝑠 −interior of A and is denoted by 

𝑓 − 𝑔𝛿𝑠 − 𝐼𝑛𝑡 𝐴 . A set A is 𝑓 − 𝑔𝛿𝑠 −open if and only if 𝑓 − 𝑔𝛿𝑠 − 𝐼𝑛𝑡 𝐴 = 𝐴. 
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Definition 3.6 A function 𝑓: 𝑋 → 𝑌 is called fine−𝑔𝛿𝑠 −continuous if 𝑓−1(𝑉) is fine−𝑔𝛿𝑠 −closed in X for every 

fine-closed set V in Y. 

Definition 3.7 A function 𝑓: 𝑋 → 𝑌 is called fine-semi−𝑔𝛿𝑠 −continuous if 𝑓−1(𝑉) is fine−𝑔𝛿𝑠 −closed in X for 

every fine-semi-closed set V in Y. 

Definition 3.8 A function 𝑓: 𝑋 → 𝑌 is called fine−𝑔𝛿𝑠 −irresolute if 𝑓−1(𝑉) is fine−𝑔𝛿𝑠 −closed in X for every 

fine−𝑔𝛿𝑠 −closed set V in Y. 

Definition 3.9 A function 𝑓: 𝑋 → 𝑌 is called fine−𝑔𝛿𝑠 −open if 𝑓(𝑉) is fine−𝑔𝛿𝑠 −open in Y for every fine-open 

set V in X. 

Definition 3.10 A function 𝑓: 𝑋 → 𝑌 is called fine−𝑝𝑔𝛿𝑠 −open if 𝑓(𝑉) is fine−𝑔𝛿𝑠 −closed in Y for every fine-

semi-open set V in X. 

Definition 3.11 A function 𝑓: 𝑋 → 𝑌 is called fine-quasi- 𝑔𝛿𝑠 −open if 𝑓(𝑉) is fine-open in Y for every 

𝑓𝑔𝛿𝑠 −open set V in X. 

Definition 3.12 A function 𝑓: 𝑋 → 𝑌 is called fine-strongly−𝑔𝛿𝑠 −open if 𝑓(𝑉) is fine−𝑔𝛿𝑠 −closed in Y for every 

fine-𝑔𝛿𝑠-open set V in X. 

Definition 3.13 A function 𝑓: 𝑋 → 𝑌 is called fine-semi-closed if 𝑓(𝑉) is fine-semi-closed in Y for every fine-

closed set V in X. 

Definition 3.14 A function 𝑓: 𝑋 → 𝑌 is called fine-pre closed if 𝑓(𝑉) is fine-closed in Y for every fine-semi-open 

set V in X. 

Remark 3.15  

1) Every 𝑔𝛿𝑠 −open set is fine open and every 𝑔𝛿𝑠 −closed set if fine-closed. 

2) Every semi-closed and pre-closed set is fine closed. 

Remark 3.17 By the Definition 2.20, Definition 2.10 and Remark 3.15, we conclude the following: 

                                         ⇒ Semi-continuous 

                                         ⇒ 𝑔𝛿𝑠 −continuous 

                                         ⇒ Semi-𝑔𝛿𝑠 -continuous 

        ⇒ 𝑔𝛿𝑠 -irresolute  

Fine-irresolute mapping  ⇒ 𝑔𝛿𝑠 −open 

                                        ⇒ 𝑝 𝑔𝛿𝑠 −open 

                                        ⇒ 𝑞𝑢𝑎𝑠𝑖 − 𝑔𝛿𝑠 −open 

                                        ⇒ Strongly 𝑔𝛿𝑠 −open 

                                        ⇒ Semi-open 

                                        ⇒ Pre-closed 

4. Fine 𝒈𝜹𝒔 −separaton axioms 

In this section, we introduce and study weak separation axioms such as 𝑓 − 𝑔𝛿𝑠 − 𝑇 0, 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 and 

𝑓 − 𝑔𝛿𝑠 − 𝑇 2 spaces and obtain some of their properties. 

Definition 4.1 A topological space X is said to be 𝑓 − 𝑔𝛿𝑠 − 𝑇 0 space if for each pair of distinct points  x and y 

of X, there exists a 𝑓 − 𝑔𝛿𝑠 −open set containing one point but not the other. 

 Theorem 4.1 A topological space X is a 𝑓 − 𝑔𝛿𝑠 − 𝑇 0 space if and only if 𝑓 − 𝑔𝛿𝑠 −closures of distinct 

points are distinct. 

Proof. Let x and y be distinct points of X. Since, X is 𝑓 − 𝑔𝛿𝑠 − 𝑇 0 space, there exists a 𝑓 − 𝑔𝛿𝑠 −open set G 

such that 𝑥 ∈ 𝐺  and 𝑦 ∉ 𝐺 . Consequently, 𝑋 − 𝐺  is a 𝑓 − 𝑔𝛿𝑠 −closed set containing y but not x. But, 𝑓 −
𝑔𝛿𝑠 − 𝑐𝑙 (𝑦 )is the intersection of all 𝑓 − 𝑔𝛿𝑠 −closed set containing y. Hence, 𝑦 ∈ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙 (𝑦 ) but 

𝑥 ∉ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙 (𝑦 ) as 𝑥 ∉ 𝑋 − 𝐺 . Therefore, 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑥  ≠ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑦  .  
Conversely, let 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑥  ≠ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑦   for 𝑥 ≠ 𝑦 . Then, there exists at least one point 

𝑧 ∈ 𝑋  such that 𝑧 ∈ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙 (𝑥 ) but 𝑧 ∉ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑦  . We claim 𝑥 ∉ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙 (𝑦 ), 

because if 𝑥 ∈ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙 (𝑦 ) then {𝑥 } ⊂ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑦  ⇒ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑥  ⊂ 𝑓 − 𝑔𝛿𝑠 −
𝑐𝑙  𝑦  . So 𝑧 ∈ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑦  , which is a contradiction, hence 𝑥 ∉ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑦  ⇒ 𝑥 ∈ 𝑋 −
𝑓𝑔𝛿𝑠𝑐𝑙  𝑦  , which is a 𝑓 − 𝑔𝛿𝑠 −open set containing x but not y. Hence, X is a 𝑓 − 𝑔𝛿𝑠 − 𝑇 0 space.  

Theorem 4.2 If 𝑓 : 𝑋 → 𝑌  is a bijection strongly 𝑓 − 𝑔𝛿𝑠 −open and X is 𝑓 − 𝑔𝛿𝑠 −  𝑇 0 space, then Y is also 

𝑓 − 𝑔𝛿𝑠 − 𝑇 0 space.  

Proof. Let 𝑦 1 and 𝑦 2 be two distinct points of Y. Since f is bijection there exist distinct points 𝑥 1 and 𝑥 2 of X such 

that 𝑓  𝑥 1 = 𝑦 1 and 𝑓  𝑥 2 = 𝑦 2. Since, X is 𝑓 − 𝑔𝛿𝑠 − 𝑇 0 space there exists a 𝑓 − 𝑔𝛿𝑠 −open set G such 

that 𝑥 1 ∈ 𝐺  and 𝑥 2 ∈ 𝐺 . Therefore, 𝑦 1 = 𝑓  𝑥 1 ∈ 𝑓 (𝐺 ) and 𝑦 2 = 𝑓 (𝑥 2) ∉ 𝑓 (𝐺 ). Since, f being strongly fine-

𝑔𝛿𝑠 −open function, f(G) is fine-𝑔𝛿𝑠 −open in Y. Thus, there exists a 𝑓 − 𝑔𝛿𝑠 −open set f(G) in Y such that 

𝑦 1 ∈ 𝑓 (𝐺 ) and 𝑦 2 ∉ 𝑓  𝐺  . Therefore, Y is 𝑓 − 𝑔𝛿𝑠 − 𝑇 0 space. 
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Definition 4.2 A topological space X is said to be 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space if for any pair of distinct points x and y 

there exist a 𝑓 − 𝑔𝛿𝑠 −open sets G and H such that 𝑥 ∈ 𝐺 , 𝑦 ∉ 𝐺  and 𝑥 ∉ 𝐻, 𝑦 ∈ 𝐻. 
Theorem 4.3 A topological space X is 𝑓 − 𝑔𝛿𝑠 − 𝑇 1space if and only if singletons are 𝑓 − 𝑔𝛿𝑠 −closed sets. 

Proof. Let X be a 𝑓 − 𝑔𝛿𝑠 − 𝑇 1space and 𝑥 ∈ 𝑋 . Let 𝑦 ∈ 𝑋 − {𝑥 }. Then, for 𝑥 ≠ 𝑦 , there exists 𝑓 −
𝑔𝛿𝑠 −open set 𝑈𝑦  such that 𝑦 ∈ 𝑈𝑦  and 𝑥 ∉ 𝑈𝑦 . Consequently, 𝑦 ∈ 𝑈𝑦 ⊂ 𝑋 − {𝑥 }. That is 𝑋 − {𝑥 } =∪
{𝑈𝑦 : 𝑦 ∈ 𝑋 − {𝑥 }}, which is 𝑓 − 𝑔𝛿𝑠 −open. Hence, {𝑥 } is 𝑓 − 𝑔𝛿𝑠 −closed set. 

Conversely, suppose {𝑥 } is 𝑓 − 𝑔𝛿𝑠 −closed set for every 𝑥 ∈ 𝑋 . Let x and 𝑦 ∈ 𝑋  with 𝑥 ≠ 𝑦 . Now, 𝑥 ≠ 𝑦 ⇒
𝑦 ∈ 𝑋 − {𝑥 }. Hence, 𝑋 − {𝑥 } is 𝑓 − 𝑔𝛿𝑠 −open set containing y but not x. Similarly, 𝑋 − {𝑦 } is 𝑓 −
𝑔𝛿𝑠 −open set containing x but not y. Therefore, 𝑋  is 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space.  

Theorem 4.4 The property being 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space is preserved under bijection and strongly fine-𝑔𝛿𝑠 −open 

function. 

Proof. Let 𝑓 : 𝑋 → 𝑌  be bijection and strongly fine−𝑔𝛿𝑠 −open function. Let X be a 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space and 

𝑦 1 and 𝑦 2 be two distinct points of Y. Since f is bijective there exists distinct points 𝑥 1, 𝑥 2 of X such that 𝑦 1 =
𝑓 (𝑥 1) and 𝑦 2 = 𝑓 (𝑥 2). Now, X being a 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space, there exist 𝑓 − 𝑔𝛿𝑠 −open sets G and H such 

that 𝑥 1 ∈ 𝐺 , 𝑥 2 ∉ 𝐺  and 𝑥 1 ∉ 𝐻, 𝑥 2 ∈ 𝐻. Therefore, 𝑦 1 = 𝑓  𝑥 1 ∈ 𝑓 (𝐺 ) but 𝑦 2 = 𝑓  𝑥 2 ∉ 𝑓 (𝐺 ) and 𝑦 2 =
𝑓  𝑥 2 ∈ 𝑓 (𝐻) and 𝑦 1 = 𝑓  𝑥 1 ∉ 𝑓  𝐻 . Now, f being strongly 𝑓 − 𝑔𝛿𝑠 −open, f(G) and f(H) are 𝑓 −
𝑔𝛿𝑠 −open subsets of Y such that 𝑦 1 ∈ 𝑓 (𝐺 ) but 𝑦 2 ∉ 𝑓 (𝐺 ) and 𝑦 2 ∈ 𝑓 (𝐻) and 𝑦 1 ∉ 𝑓  𝐻 . Hence, Y is 

𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space. 

Theorem 4.5 If 𝑓 : 𝑋 → 𝑌  be 𝑓 − 𝑔𝛿𝑠 −continuous injection and Y be 𝑇 1, then X is 𝑓 − 𝑔𝛿𝑠 − 𝑇 1.  

Proof. If 𝑓 : 𝑋 → 𝑌  be 𝑓 − 𝑔𝛿𝑠 −continuous injection and Y be 𝑇 1. For any two distinct points 𝑥 1, 𝑥 2 of X there 

exist distinct points 𝑦 1, 𝑦 2 of Y such that 𝑦 1 = 𝑓 (𝑥 1) and 𝑦 2 = 𝑓  𝑥 2 . Since, Y is 𝑇 1 −space there exist fine-

open sets U and V in Y such that 𝑦 1 ∈ 𝑈, 𝑦 2 ∉ 𝑈and 𝑦 1 ∉ 𝑉 , 𝑦 2 ∈ 𝑉 . That is 𝑥 1 ∈ 𝑓 −1 𝑈 , 𝑥 1 ∉ 𝑓 −1(𝑉 ) and 

𝑥 2 ∈ 𝑓 −1 𝑉  , 𝑥 2 ∉ 𝑓 −1 𝑈 . Since, f is 𝑓 − 𝑔𝛿𝑠 −continuous, 𝑓 −1 𝑈 , 𝑓 −1(𝑉 ) are 𝑓 − 𝑔𝛿𝑠 −open sets in X. 

Thus, for two distinct points 𝑥 1, 𝑥 2 of X there exist 𝑓 − 𝑔𝛿𝑠 −open sets 𝑓 −1 𝑈  and 𝑓 −1 𝑉   such that 𝑥 1 ∈

𝑓 −1 𝑈 , 𝑥 1 ∉ 𝑓 −1(𝑉 ) and 𝑥 2 ∈ 𝑓 −1 𝑉  , 𝑥 2 ∉ 𝑓 −1 𝑈 . Therefore, X is 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space. 

Theorem 4.6 If 𝑓 : 𝑋 → 𝑌  be 𝑓 − 𝑔𝛿𝑠 −irresolute injective and Y  𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space, then X is 𝑓 − 𝑔𝛿𝑠 −
𝑇 1 space. 

Proof. Let 𝑥 1, 𝑥 2 be pair of distinct points in X. Since f is injective there exist distinct points 𝑦 1, 𝑦 2 of Y such that 

𝑦 1 = 𝑓 (𝑥 1) and 𝑦 2 = 𝑓  𝑥 2 . Since, Y is 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space there exist 𝑓 − 𝑔𝛿𝑠 −open sets U and V in Y 

such that 𝑦 1 ∈ 𝑈, 𝑦 2 ∉ 𝑈  and 𝑦 1 ∉ 𝑉 , 𝑦 2 ∈ 𝑉 . That is 𝑥 1 ∈ 𝑓 −1 𝑈 , 𝑥 1 ∉ 𝑓 −1(𝑉 ) and 𝑥 2 ∈ 𝑓 −1 𝑉  , 𝑥 2 ∉

𝑓 −1 𝑈 . Since f is 𝑓 − 𝑔𝛿𝑠 −irresolute 𝑓 −1 𝑈 , 𝑓 −1(𝑉 ) are 𝑓 − 𝑔𝛿𝑠 −open sets in X. Thus for two distinct 

points 𝑥 1, 𝑥 2 of X there exist 𝑓 − 𝑔𝛿𝑠 −open sets 𝑓 −1 𝑈  and 𝑓 −1(𝑉 ) such that 𝑥 1 ∈ 𝑓 −1 𝑈 , 𝑥 1 ∉ 𝑓 −1(𝑉 ) 

and 𝑥 2 ∈ 𝑓 −1 𝑉  , 𝑥 2 ∉ 𝑓 −1 𝑈 . Therefore, X is 𝑓 − 𝑔𝛿𝑠 − 𝑇 1 space. 

Definition 4.3 A topological space X is said to be 𝑓 − 𝑔𝛿𝑠 − 𝑇 2 space if for any pair of distinct points x and y, 

there exist disjoint 𝑓 − 𝑔𝛿𝑠 −open sets G and H such that 𝑥 ∈ 𝐺  and 𝑦 ∈ 𝐻. 
Theorem 4.7 If 𝑓 : 𝑋 → 𝑌  is 𝑓 − 𝑔𝛿𝑠 −continuous injection and Y is 𝑇 2then X is 𝑓 − 𝑔𝛿𝑠 − 𝑇 2 space. 

Proof. Let 𝑓 : 𝑋 → 𝑌  be 𝑓 − 𝑔𝛿𝑠 −continuous injection and Y is 𝑇 2. For any two distinct points 𝑥 1, 𝑥 2of X there 

exist distinct points 𝑦 1, 𝑦 2 of Y such that 𝑦 1 = 𝑓 (𝑥 1) and 𝑦 2 = 𝑓  𝑥 2 . Since, Y is 𝑇 2 space there exist disjoint 

fine-open sets U and V in Y such that 𝑦 1 ∈ 𝑈  and 𝑦 2 ∈ 𝑉 . That is 𝑥 1 ∈ 𝑓 −1(𝑈) and 𝑥 2 ∈ 𝑓 −1 𝑉  . Since, f is fine-

𝑔𝛿𝑠 −continuous 𝑓 −1(𝑈) and 𝑓 −1(𝑉 ) are 𝑓 − 𝑔𝛿𝑠 −open sets in X. Further f is injective, 𝑓 −1 𝑈 ∩

𝑓 −1 𝑉  = 𝑓 −1 𝑈 ∩ 𝑉  = 𝑓 −1 𝜙 = 𝜙 . Thus, for two disjoint points 𝑥 1, 𝑥 2 of X there exist disjoint 𝑓 −
𝑔𝛿𝑠 −open sets 𝑓 −1(𝑈) and 𝑓 −1(𝑉 ) such that 𝑥 1 ∈ 𝑓 −1(𝑈) and 𝑥 2 ∈ 𝑓 −1(𝑉 ). Therefore, X is 𝑓 − 𝑔𝛿𝑠 −
𝑇 2space. 

Theorem 4.8 If 𝑓 : 𝑋 → 𝑌  is 𝑓 − 𝑔𝛿𝑠 −irresolute injective function and Y is 𝑓 − 𝑔𝛿𝑠 − 𝑇 2  space then X is 

𝑓 − 𝑔𝛿𝑠 − 𝑇 2 space. 

Proof. Let 𝑥 1, 𝑥 2 be pair of distinct points in X. Since f is injective there exist distinct points 𝑦 1, 𝑦 2 of Y such that 

𝑦 1 = 𝑓  𝑥 1 , 𝑦 2 = 𝑓 (𝑥 2). Since Y is 𝑓 − 𝑔𝛿𝑠 − 𝑇 2 space there exist disjoint 𝑓 − 𝑔𝛿𝑠 −open sets U and V in 

Y such that 𝑦 1 ∈ 𝑈  and 𝑦 2 ∈ 𝑉  in Y. That is 𝑥 1 ∈ 𝑓 −1(𝑈) and 𝑥 2 ∈ 𝑓 −1 𝑉  .  Since, f is 𝑓 − 𝑔𝛿𝑠 −irresolute 

injective 𝑓 −1 𝑈 , 𝑓 −1(𝑉 ) are distinct 𝑓 − 𝑔𝛿𝑠 −open sets in X. Thus, for two distinct points 𝑥 1, 𝑥 2 of X there 

exist disjoint 𝑓 − 𝑔𝛿𝑠 −open sets 𝑓 −1(𝑈) and 𝑓 −1(𝑉 ) such that 𝑥 1 ∈ 𝑓 −1(𝑈) and 𝑥 2 ∈ 𝑓 −1 𝑉  . Therefore, X 

is 𝑓 − 𝑔𝛿𝑠 − 𝑇 2 space. 

Theorem 4.9 In any fine-topological space the following are equivalent: 

1) X is 𝑓 − 𝑔𝛿𝑠 − 𝑇 2 space. 

2) For each 𝑥 ≠ 𝑦 , there exists a 𝑓 − 𝑔𝛿𝑠 −open set U such that 𝑥 ∈ 𝑈  and 𝑦 ∉ 𝑓 − 𝑔𝛿𝑠 −  𝑐𝑙  𝑈 . 
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3) For each 𝑥 ∈ 𝑋 , {𝑥 } =∩ { 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑈 : 𝑈  is 𝑓 − 𝑔𝛿𝑠 −open set in X and 𝑥 ∈ 𝑈. 
Proof.  

1)⟹2) Assume (1) holds. Let 𝑥 ∈ 𝑋  and 𝑥 ≠ 𝑦 , then there exist disjoint 𝑓 − 𝑔𝛿𝑠 −open sets U and V such that 

𝑥 ∈ 𝑈  and 𝑦 ∈ 𝑉 . Clearly, 𝑋 − 𝑉  is 𝑓 − 𝑔𝛿𝑠 −closed set. Since, 𝑈 ∩ 𝑉 = 𝜙, 𝑈 ⊂ 𝑋 − 𝑉 . Therefore, 𝑓 −
𝑔𝛿𝑠 − 𝑐𝑙  𝑈 ⊂ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑋 − 𝑉  = 𝑋 − 𝑉 . Now, 𝑦 ∉ 𝑋 − 𝑉 ⇒ 𝑦 ∉ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑈 . 
2)⟹3) For each 𝑥 ≠ 𝑦 , there exust a 𝑓 − 𝑔𝛿𝑠 −open set U such that 𝑥 ∈ 𝑈  and 𝑦 ∉ 𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑈 . So, 

𝑦 ∉ ∩ {𝑓 − 𝑔𝛿𝑠 − 𝑐𝑙  𝑈 : 𝑈 is 𝑓𝑔𝛿𝑠 −open in X and 𝑥 ∈ 𝑈} = {𝑥 }. 
3)⟹1) Let 𝑥 , 𝑦 ∈ 𝑋  and 𝑥 ≠ 𝑦 . By hypothesis there exist a 𝑓𝑔𝛿𝑠 −open set U such that 𝑥 ∈ 𝑈  and 𝑦 ∉
𝑓𝑔𝛿𝑠 − 𝑐𝑙  𝑈 . This implies there exists a 𝑓𝑔𝛿𝑠 −closed set V such that 𝑦 ∉ 𝑉 . Therefore, 𝑦 ∈ 𝑋 − 𝑉  and 

𝑋 − 𝑉  is 𝑓𝑔𝛿𝑠 −open set. Thus, there exist two disjoint 𝑓𝑔𝛿𝑠 −open sets U and X-V such that 𝑥 ∈ 𝑈and 

𝑦 ∈ 𝑋 − 𝑉 . Therefore X is 𝑓𝑔𝛿𝑠 − 𝑇 2 space. 

 

5. Fine−𝒈𝜹𝒔 −regular space 

 In this section, we introduce and study 𝑓𝑔𝛿𝑠 −regular space and some of their properties. 

Definition 5.1 A topological space X is said to be 𝑓𝑔𝛿𝑠 −regular space if for each fine-cloed set F and each point 

𝑥 ∉ 𝐹 , there exist disjoint 𝑓𝑔𝛿𝑠 −open sets U and V such that 𝑥 ∈ 𝑈  and 𝐹 ⊂ 𝑉 . 
Theorem 5.1 Every 𝑓𝑔𝛿𝑠 −regular 𝑇0 space is𝑓𝑔𝛿𝑠 − 𝑇 2. 

Proof. Let 𝑥 , 𝑦 ∈ 𝑋  such that 𝑥 ≠ 𝑦 . Let X be a 𝑇 0 space and V be a fine –open set which contains x but not y. 

Then, X-V is a closed set containing y but not x. Now, by 𝑓𝑔𝛿𝑠 −regularity of X there exist disjoint 

𝑓𝑔𝛿𝑠 −open sets U and W such that 𝑥 ∈ 𝑈  and 𝑋 − 𝑉 ⊂ 𝑊. Since, 𝑦 ∈ 𝑋 − 𝑉 , 𝑦 ∈ 𝑊. Thus, for 𝑥 , 𝑦 ∈ 𝑋  with 

𝑥 ≠ 𝑦 , there exist disjoint open sets U and W such that 𝑥 ∈ 𝑈  and𝑦 ∈ 𝑊. Hence, X is 𝑓𝑔𝛿𝑠 − 𝑇 2. 

Theorem 5.2 If 𝑓 : 𝑋 → 𝑌  is fine-continuous bijective 𝑓𝑔𝛿𝑠 −open function and X is a fine-regular space, then Y 

is 𝑓𝑔𝛿𝑠 −regular. 

Proof. Let F be a fine-closed set in Y and 𝑦 ∉ 𝐹 . take 𝑦 = 𝑓 (𝑥 ) for some 𝑥 ∈ 𝑋 . Since f is continuous surjective 

𝑓 −1(𝐹 ) is fine-closed set in X and 𝑥 ∉ 𝑓 −1 𝐹  . Now, since X is fine−regular, there exist disjoint fine-open sets U 

and V such that 𝑥 ∈ 𝑈  and 𝑓 −1 𝐹  ⊂ 𝑉 . That is 𝑦 = 𝑓  𝑥  ∈ 𝑓 (𝑈) and 𝐹 ⊂ 𝑓  𝑉  . Since, f is 𝑓𝑔𝛿𝑠 −open 

function f(U) and f(V) are  𝑓𝑔𝛿𝑠 −open sets in Y and f is bijective. 𝑓  𝑈 ∩ 𝑓  𝑉  = 𝑓  𝑈 ∩ 𝑉  = 𝑓  𝜙 = 𝜙. 
Therefore, Y is 𝑓𝑔𝛿𝑠 −regular. 

Theorem 5.3 If 𝑓 : 𝑋 → 𝑌  is 𝑓𝑔𝛿𝑠 −continuous, fine-closed injection and Y is fine-regular, then X is 

𝑓𝑔𝛿𝑠 −regular. 

Proof. Let F be a fine-closed set in X and 𝑥 ∉ 𝐹 . Since, f is closed injection f(F) is fine-closed set in Y such that 

𝑓  𝑥  ∉ 𝑓  𝐹  . Now, Y is fine-regular there exist disjoint fine-open sets G and H such 𝑓  𝑥  ∈ 𝐺  and 𝑓  𝐹  ⊂ 𝐻. 
This implies 𝑥 ∈ 𝑓 −1(𝐺 ) and 𝐹 ⊂ 𝑓 −1 𝐻 . Since, f is 𝑓𝑔𝛿𝑠 −continuous, 𝑓 −1(𝐺 ) and 𝑓 −1(𝐻) are 

𝑓𝑔𝛿𝑠 −open sets in X. Further 𝑓 −1 𝐺  ∩ 𝑓 −1 𝐻 = 𝜙. Hence, X is 𝑓𝑔𝛿𝑠 −regular.  

Theorem 5.4 If 𝑓 : 𝑋 → 𝑌  is fine-semi-𝑔𝛿𝑠 −continuous, fine-closed injection and Y is fine-semi regular, then 

X is 𝑓𝑔𝛿𝑠 −regular. 

Proof. Let F be a fine-closed set in X and 𝑥 ∉ 𝐹 . Since, f is fine-closed injection f(F) is fine-closed set in Y such 

that 𝑓  𝑥  ∉ 𝑓  𝐹  . Now, Y is fine-semi-regular, there exist disjoint fine-semi-open sets G and H such that 𝑓  𝑥  ∈
𝐺  and 𝑓  𝐹  ⊂ 𝐻. This implies 𝑥 ∈ 𝑓 −1(𝐺 ) and 𝐹 ⊂ 𝑓 −1 𝐻 . Since, f is fine-semi-𝑓𝛿𝑠 −continuous 𝑓 −1(𝐺 ) 

and 𝑓 −1(𝐻) are 𝑓𝑔𝛿𝑠 −open sets in X. Further, 𝑓 −1 𝐺  ∩ 𝑓 −1 𝐻 = 𝜙. Hence, X is 𝑓𝑔𝛿𝑠 −regular. 

Theorem 5.5 If 𝑓 : 𝑋 → 𝑌  is 𝑓𝑔𝛿𝑠 −irresolute, fine-closed injection and Y is 𝑓𝑔𝛿𝑠 −regular then X is 

𝑓𝑔𝛿𝑠 −regular. 

Proof. Let F be a fine-closed set in X and 𝑥 ∉ 𝐹 . Since, f is fine-closed injection f(F) is fine-closed set in Y such 

that 𝑓 (𝑥 ) ∉ 𝑓 (𝐹 ). Now, Y is 𝑓𝑔𝛿𝑠 −regular, there exist diajoint 𝑓𝑔𝛿𝑠 −open sets G and H such that 𝑓  𝑥  ∈

𝐺  and 𝑓  𝐹  ⊂ 𝐻. This implies 𝑥 ∈ 𝑓−1(𝐺 ) and 𝐹 ⊂ 𝑓 −1 𝐻 . Since, f is 𝑓𝑔𝛿𝑠 −irresolute 𝑓 −1(𝐺 ) and 𝑓 −1(𝐻) 

are 𝑓𝑔𝛿𝑠 −open sets in X. Further 𝑓 −1 𝐺  ∩ 𝑓 −1 𝐻 = 𝜙. Hence, X is 𝑓𝑔𝛿𝑠 −regular. 

6. Fine-𝒈𝜹𝒔 −normal space 

In this section, we introduce and study 𝑓𝑔𝛿𝑠 −normal spaces and some of their properties. 

Definition 6.1 A topological space X is said to be 𝑓𝑔𝛿𝑠 −normal if every pair of disjoint fine-closed sets E and F 

of X there exist disjoint 𝑓𝑔𝛿𝑠 −open sets U and V such that 𝐸 ⊂ 𝑈  and 𝐹 ⊂  𝑉 . 
Theorem 6.1 The following statements are equivalent for a fine-topological space X: 

1) X is 𝑓𝑔𝛿𝑠 −normal. 

2) For each fine-closed set A and for each fine-open set U containing A, there exist a 𝑓𝑔𝛿𝑠 −open set V 

containing A such that 𝑓𝑔𝛿𝑠 − 𝑐𝑙  𝑉  ⊂ 𝑈. 
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3) For each pair of disjoint fine-closed sets A and B there exists a 𝑓𝑔𝛿𝑠 −open set U containing A such that 

𝑓𝑔𝛿𝑠 − 𝑐 𝑙  𝑈 ∩ 𝐵 = 𝜙. 
 

Proof.  

1)⟹2) Let A be a fine-closed set and U be a fine-open set containing A. Then, 𝐴 ∩  𝑋 − 𝑈 = 𝜙  and therefore 

they are disjoint fine-closed sets in X. Since, X is 𝑓𝑔𝛿𝑠 −normal, there exist disjoint 𝑓𝑔𝛿𝑠 −open sets V and W 

such that 𝐴 ⊂ 𝑈, 𝑋 − 𝑈 ⊂ 𝑊 that is 𝑋 − 𝑊⊂ 𝑈. Now 𝑉 ∩ 𝑊= 𝜙, implies 𝑉 ⊂ 𝑋 − 𝑊. Therefore, 𝑓𝑔𝛿𝑠 −
𝑐𝑙  𝑉  ⊂ 𝑓𝑔𝛿𝑠 − 𝑐𝑙  𝑋 − 𝑊 = 𝑋 − 𝑊, because X-W is 𝑓𝑔𝛿𝑠 −closed set. Thus, 

𝐴 ⊂ 𝑉 ⊂ 𝑓𝑔𝛿𝑠𝑐𝑙  𝑉  ⊂ 𝑋  − 𝑊⊂ 𝑈. That is 𝐴 ⊂ 𝑉 ⊂ 𝑓𝑔𝛿𝑠𝑐𝑙  𝑉  ⊂ 𝑈.  
2)⟹3) Let A and B be disjoint fine-closed sets in X, then 𝐴 ⊂ 𝑋 − 𝐵  and X-B is a fine-open set containing A. By 

(2), there exists a 𝑓𝑔𝛿𝑠 −open set U such that 𝐴 ⊂ 𝑈  and 𝑓𝑔𝛿𝑠 − 𝑐𝑙  𝑈 ⊂ 𝑋 − 𝐵 , which implies 𝑓𝑔𝛿𝑠 −
𝑐𝑙  𝑈 ∩ 𝐵 = 𝜙.  
3)⟹ 1) Let A and B be disjoint fine-closed sets in X. By (3) there exist a 𝑓𝑔𝛿𝑠 −open set U such that 𝐴 ⊂ 𝑈  and 

𝑓𝑔𝛿𝑠 − 𝑐𝑙  𝑈 ∩ 𝐵 = 𝜙  or 𝐵 ⊂ 𝑋 − 𝑓𝑔𝛿𝑠 − 𝑐𝑙 (𝑈. ) Now, U and 𝑋 − 𝑓𝑔𝛿𝑠 − 𝑐𝑙 (𝑈) are disjoint 

𝑓𝑔𝛿𝑠 −open sets of X such that 𝐴 ⊂ 𝑈  and 𝐵 ⊂ 𝑋 − 𝑓 𝑔𝛿𝑠 − 𝑐𝑙  𝑈 . Hence, X is 𝑓𝑔𝛿𝑠 −normal. 

Theorem 6.2 If X is fine semi-normal, then the following statements are true: 

1) For each 𝑓 − 𝛿 −closed set A and every 𝑓 − 𝑔𝛿𝑠 −open set B such that 𝐴 ⊂ 𝐵  there exists a fine-semi-

open set U such that 𝐴 ⊂ 𝑈 ⊂ 𝑓 − 𝑐 − 𝑐𝑙  𝑈 ⊂ 𝐵 . 
2) For every 𝑓𝑔𝛿𝑠 −closed set A and every 𝑓 − 𝛿 −open set containing A, there exists a fine-semi-open 

set containing U such that 𝐴 ⊂ 𝑈 ⊂ 𝑓 𝑠 − 𝑐𝑙  𝑈 ⊂ 𝐵 . 
Proof.  

1) Let A be a 𝑓 − 𝛿 −closed set and B be a 𝑓𝑔𝛿𝑠 −open set such that 𝐴 ⊂ 𝐵. Then, 𝐴 ∩  𝑋 − 𝐵 = 𝜙. 
Since, A is a 𝑓 − 𝑔 −closed set and 𝑋 − 𝐵  be a 𝑓𝑔𝛿𝑠 −closed, by Theorem 6.1, there exists fine-semi-

open sets U and V such that 𝐴 ⊂ 𝑈, 𝑋 − 𝐵 ⊂ 𝑉  and 𝑈 ∩ 𝑉 = 𝜙. Thus, 𝐴 ⊂ 𝑈 ⊂ 𝑋 − 𝑉 ⊂ 𝐵.   Since, 

𝑋 − 𝑉  is fine-semi-closed 𝑓𝑠𝑐𝑙  𝑈 ⊂ 𝑋 − 𝑉 . Therefore, 𝐴 ⊂ 𝑈 ⊂ 𝑓 𝑠 − 𝑐𝑙  𝑈 ⊂ 𝐵 . 
2) Let A be a 𝑓𝑔𝛿𝑠 −closed set and B be a 𝑓 − 𝛿 −open set such that 𝐴 ⊂ 𝐵. Then, 𝑋 − 𝐵 ⊂ 𝑋 − 𝐴 . 

Since, X is fine-semi-normal and X-A is a 𝑓𝑔𝛿𝑠 −open set containing 𝑓 − 𝛿 −closed set 𝑋 − 𝐵, by(1) 

there exists a fine-semi-open set G such that 𝑋 − 𝐵 ⊂ 𝐺 ⊂ 𝑓 𝑠 𝑐𝑙  𝐺  ⊂ 𝑋 − 𝐴 . That is, 𝐴 ⊂ 𝑋 − 𝑓 𝑠 −
𝑐𝑙  𝐺  ⊂ 𝑋 − 𝐺 ⊂ 𝐵. Let 𝑈 = 𝑋 − 𝑓 𝑠 − 𝑐𝑙  𝐺  , then U is fine-semi-open set and 𝐴 ⊂ 𝑈 ⊂ 𝑓 𝑠 −
𝑐𝑙  𝑈 ⊂ 𝐵 . 
 

7. Conclusion 
The author has defined strongly 𝑔𝛿𝑠 −continuous functions, pre-𝑔𝛿𝑠 −continuous functions, semi-

𝑔𝛿𝑠 −continuous functions etc. in fine-topological space and investigated their properties also defined 

𝑔𝛿𝑠 −seperation axioms in fine-topological space. This concept may be useful in Quantum physics, Quantum 

Mechanics, Quantum gravity etc.  
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