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Introduction
Let us consider a mesh on [0, 1] which is defined by P :0= X, <X, —<X, =1, Fori=1.2,...n-1, P, shall denote

the length of the mesh interval [X;,X;;]. LetP=max P, and P*=mini p,, for uniform mesh P=P, for all i,

I
throughout, h will represent a given positive real number, consider a real valued function s (x, h) defined over [0, 1]

which is such that its restriction S;on [X;, X;,,] is Polynomial of degree 4 or less with deficiency 1, if
DIs, (x;,,h)=D{* S, (x;,h) j=0,1,2 1)

Where the difference operator Dr{]i} for a function f is defined by

f(x+h)—f(x—h)

DO f(x)=f(x), D& f(x)= o

D™ 1(=D{ DI (), m,n=0

Let the S (4, 1, p, h) denoted the class of all such deficient discrete quartic splines with deficiency 1
satisfying the boundary conditions.

D $(xy, 1) =D f (x,,h) @)
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D& s(x,,h)=D f(x,,h).

Discrete splines have been introduced by Mangasarian and Schumaker in [7] in connection with certain
studies of minimization problems, involving differences. They have a close connection with best summation
formula in [8] which is a special case of abstract theory of best approximation of linear functionals. To compute
non-linear splines intratively, Malcolm in [6] has used discrete splines. In the direction of some constructive aspects
of discrete splines, we refer to Astor and Duris in [1], Jia in [4] and Schumaker in [10], Existence, uniqueness and
convergence properties of discrete cubic spline interpolation matching the given function value at intermediate
points for uniform mesh have been studied by Dikshit and Powar in [2] (see also in [3]), Rana and Dubey in [9] have
obtained an asymtotically precise estimate of the difference between discrete cubic spline interpolant and the
function interpolated, which is sometime used to smooth a histrogram. Deficient spline are more useful than usual
splines as they require less continuity requirement at mesh points. In this paper, we have investigate convergence
properties, existence and uniqueness and also obtain error bounds.

X, + X
Non writing o; = 1 “L  we introduced the following interpolatory conditions for a given function f,
s()(i h)=f (xi) i=01,..n (3)
s(a;,h)=f () i=0,1,.n-1 Q)

and pose the following.
Problem 1

A given h > 0, for what restriction on p does there exist a unique S(X,h)e S (4,.1, p,h) which satisfies
the condition (3) and (4).

Existence and unigueness

Let P(z) be a discrete quartic polynomial on [0, 1]. Then we can show that
P(2)=P(0)Q,(2)+P() Q,(2)+P(*2) Q;(2) ()

+ Dy P(0),Q, (2)+D;? P(1)Qs(2)

Ql(z)=6—1A[6A—(72h2 +78)7+48h°2° +962° — 487" ]
Qz(z)zﬁiA[(—Mh2 —18)z+48h°2 +967° — 487*]
Qa(z)=6iA[96(h2 +1)2-96h°z> —1927° +962° |

Q4(z)=6iA[— (2h? +4)z +3(5+ 2h?)z% — (17 + 4h*)Z° + 67*]
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Q5(z)=6iA[(2h2 +1)z-6h°2° + (4h* = 7)2° + 62°]

1

Where A:[—]
5+ 4h?

Now, we are set to answer problem A in the following.

Theorem 2.1. Suppose h >0 is real, then there exists a unique deficient descrete quartic spline
s(x,h)eS (4,1, p, h) which satisfies the conditions (2) and (3).

Proof of theorem 2.1 : Let Pt=(X—X;),0<t<1 we can write (5) in the form of the restriction S, of the quartic

spline s (x, h) on [xi \ XM] as follows.

s; (%, h)=TF (%) Q)+ (%;,1) Q, (1) + f () Qs (1) + PizQ4 (t) Dr{lz} s;i(x,h)
+P?Q, (1) Dy? 5., (x,h) (6)

In view of (5), it may be seen that S, (X, h) is quarticon [X;, X;,,] fori=0,1,...n-1 and satisfies (2) and
(3). Let G,(a,b)=ap +bh* and g(c,d) =ch? +d where a, b, ¢, and d are real number. Now applying the

continuity condition of first difference of S, (X,h)at X;, given by (1), we get the following system of equations :
P {Gi—l(g (2,1),9(4, _7))} D5, ,(x,h)

—DPs, (x,N)[p{G,.(9(2.4),9(417)) + p,.{G, (9(2.4), 9(417))] +

014G (9(21), 9(4-7))}DP 5., (%, h)=%{ei1(g(24,18>,

9(0,-96)) f (x1)+G;,1(9(72,78),9(0,-96)) T (x;)

+{G;1(9(-96,-96),9(0,192)) f (2 ,)

+-DL[{G,(9(72,78), 9(0, - 96)}]+ f (x))

+{G; (9(24.18),9(0,-96)) f (x..,)
+{G; (9(-96,-96),9(0,192)} f ()]

=F, i=12..n (Say) (M
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write D& s(x,,h)=M, (h)=M, (say) for all we can easily see that excess of the absolute value of the

coefficient of M over the sum of the absolute value of coefficients of M, ; and M, in (7) under the condition
of theorem 2.1 is given by.

= [RG.,(9(03),9(024)+ PG (9(03),0.24)]

which is clearly positive, therefore, the coefficient matrix of the system of equation (7) is diagonally dominant and
hence invertible. Thus the system of equations (7) has a unique solution. This complete the proof of the theorem
2.1.

Error bounds

We assume in this section 1 = Nh where N is positive integer; Let X, €[0,1] , for i =1,2,...n. Where the discrete

interval [0,1]; is the set of points {0, h, 2h, ....Nh}. For a function f and two distinct points X, , X, in its domain, the
first divided difference is defined by

_(F(x) = (%)

[Xl’XZ]f (Xl_XZ)

For convenience we writt f@for D? f, £ for D f(x)and w (f, p) is the modulus of
continuity of f, the discrete norm of a function f over the interval [0,1)h is defined by

1T fl=max] T (x)|

We shall obtain error bounds for the error function e(X)=s(X, h)— f (X) over the discrete interval [0,1];.

Theorem 3.1 : Suppose s(x,h) is the deficient discrete quartic spline interpolant of theorem 2.1 then

I e |<C,(h)K(p,h)w(f, p) (®)
I e I<C,(h) K, (p,h)w(f, p) 9)
and [ e(x) |<P2K"(P,h)w(f, p) (10)

where K(P,h), K; (P,h) & K* (P, h) are positive constant.

Proof of Theorem 3.1 : To obtain the error estimate (8) first we replace

M, (h) by €@ (x,)=D? s(x;,h)— . in(7) and get
A(h) (e{z} (x)=F, (h)—A(h) fi{Z} =(L;) (Say) (11)

To estimate the row max norm of the matrix (Li) in (11). We shall need the following Lemma due to
Lyche [5].

593



ISSN 2320-5407 International Journal of Advanced Research (2013), Volume 1, Issue 10, 590-597

Lemma 3.1 : Let {ai }:113“‘1 {bj }rj':l, be given sequences of non negativereal numbers such that Zai = ij

then for any real value function f defined over discrete interval [0,1], we have

Zai [XiO, Xigeees Xik]f _ij [ij’ yjl""'yjk]f (12)
i1 1

<w(f¥,1-kh[)> a7k
Where X;, Y €[0,1], for relevant values of i, j and k.

It may be observed that the i row of the right hand side of (11) is written as

7

|(Li)|:|Zai [XiO’Xil]f _ij [yj07yj1]f | (13)

i

3=, (902,99 (0.-48))=b,

a,=P G, (g (21),9(4,- 7))=b2
a,=R G, (g (2,4), 9(4117))=b3

a,=R R, Gi—l(g(24’30) g(0,0)) :b4

2,="£1G, (9(12.9),9(0,-48))=b,

a,=P, G (9(21),9(4.-7)=b,

a, =P, G; (9(24),9(4.17))=b,

and Xo0=i1 = Y10 = X40
X11=X = X30=Ya0 = Yoo = Y31= Ya1=X41= Y51 =Xe1
V=X 1=Yo =X, Xpo=Xiy—N , ¥,y=X%X_,+h

y30=Xi+h=y61’ X31=Xi_h=X60’ Xs0 = =Y50= Y0
X51= X1 = X0, X71=Xi+1+h: y7O=Xi+1_h v Y= Xin

7

Clearly iai =Z i
i=L

i=1
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Thus applying Lemma 3.1, for i=j=7 and k=1, we get

[(L)ISN(p,hw(f®,|1-p] (14)
Now, using the equation (14) in (11), we have

e (x) 1<C, () k(p,hyw(f ¥, p) (15)
Where k(p, h) is some positive function of P and h.

We need proceed to obtain an upper bound for e(x), Replacing M, (h) by ei{Z} in equation (7), we obtain

e(x,n)=P[Q,®)e? +Q,(t) e |+ M, (f) (16)

Now, we write the expression of M, (f) used in the right hand side of (16) in terms of the divided
difference as follows :-

Mi(f)zzui[xiolXil]_zvj[yjol Vil f 17)
=) -1
9(24,30)
ere Uy =V, =P, =
g(12,9)

=P 6A

u,=24z° & =V,
6A g(2, 4)

=P?*[-0(2,4)z+g(6,15)z* —g(417)z° +62")] =V,

Ug = 6A(2h)[g(21)z 6h?z% +g(4,~7)z° + 62 ]—v5

and X10=Xi =Y10= Y20 = Y31 = Ya1 = X401 Y11 = Xo0 = Y21 = Y30 = & = X9

X1 =X, X3 =X

i+1

Xo1 =X = Y51 = X500 X4 =X +h

Yao=% —h.  Xigi Xsr=Xiyg + 0, ygo =%, —h,

Clearly Zslui :Zslvj
i=1 j=1

We again apply Lemma 3.1 in (14) ;for i = j = 5 and k=1 to see that
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Where

Where

M, (f)|[<PN*(P,hyw(f®, P) (18)
Where N *(P h)—i[g(36 39)p
"7 BA R

+242°(L+2z-2%)p, + P? {-3z +152° - 247° +122"}],
where A=g(4,5) .
Thus, using (3.8) and (3.11) in (3.9) we get the following :-
|l e(x) |[<P?K*(P,hyw(f®, P] (19)
Where K* (P,h) is a positive constant of P and h. This is the inequality (10) of theorem 3.1.

We now proceed to obtain an upper bound of ei{l}, from equation (6) we get

s9(xh)=fQY M+ fL,Q M) + f, Q7 (©)

+ PP (x, h)Q (1) + P*s2 (x,)Q () (20)
Thus
6Ae™ (x,h)=P?[eP2Q¥ (t) +2QM (1) ]+, () (21)

U, (f)=fQF )+ £, )+ f, Q¥ (1)
+P2[£2Q 1) + £2Q (t)|-6A £,2 (x,h)

i+1

By using Lemma 3.1 and first and second divided difference in U; (f) as follows:-
4 4

U, (£)<w(f®,P)>a=b, 22)
i=1 =1

— p, [0(36,39) — 48?2 — 489(31) + 962(2? +1?)]

+ p?|-3+30Z — 24327 +h?) + 482 (22 + h?)]

a, = p,|g(12.9)-482Z —48(3Z2 +h?) +96Z(Z* +h?)|=b,
a,=p,;9(24,30)=h,

a,=p’ |- 9(2.4) + 9(12,30)Z — g(417)(3Z2 +h?) + 24Z(Z? +h?) |=h,
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a,=p?|9(21) —12h*Z + g(4,-7)(3Z7 + h? +24Z (2% +h?)|=b,
and Xio=Xi =X50 =X30 = Y311 X11 = & =X,1=Y1,

Y10 = X110 =X40 = Ya1r Y20 =X
Y21 =X+N, X5y =X +h, Y50=% —h

X=X+ h, Yao=Xjs1 — h

From equation (15) put value of ei{Z} in (21) we get upper bound of ei{l}. This is inequality (9) of theorem
3.1

Conclusion

We have constructed deficient discrete quartic spline interpolation and obtained existence uniqueness and error
bounds.
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