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This paper describe the Bayesian Estimator using non informative prior and 

the Maximum Likelihood Estimation of the Weibull distribution with Type I 

censored data. The maximum likelihood method can’t estimate the shape 

parameter in closed forms, although it can be solved by Newton Raphson 

methods. Moreover, the Bayesian estimates of the parameters, the survival 

function and hazard rate cannot be solved analytically. Hence Markov Chain 

Monte Carlo method is used, where the full conditional distribution for the 

parameters of Weibull distribution are obtained via Gibbs sampling and 

Metropolis-Hastings algorithm followed by the survival function and hazard 

rate estimates. The methods are compared to MLE counterparts and the 

comparisons are made with respect to the Mean Square Error (MSE) and 

absolute bias to determine the better method in scale and shape parameters, 

the survival function and the hazard rate.  
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Introduction 

The Weibull distribution observably has the widest variety of applications in many areas, including life testing, 

reliability theory and others. The most used methods, which are considered to be the traditional methods are 

maximum likelihood and the moment estimation (Cohen and Whitten, 1982).  Sinha (1986) obtained Bayesian using 

Jeffreys prior to estimate the survival function and hazard rate of Weibull distribution under squared error loss 

function using Lindley’s approximation method. Smith (1987) developed the maximum likelihood and Bayesian 

estimators and compared them using the three-parameter Weibull distribution. Singh et al. (2002) estimated 

Exponentiated Weibull shape parameters by maximum likelihood estimators and Bayesian estimator using Jeffreys 

prior. Hossain and Zimmer (2003) estimated the scale and shape parameters of Weibull distribution using complete 

and censored samples. Also, an array of methods ha been proposed for estimating the Weibull distribution 

parameters. These are maximum likelihood estimator and other two types of least squares method where the Mean 

Squared Error values were compared between these three estimators and the conclusion was that maximum 

likelihood estimator is the best compare to the others. Soliman et al. (2006) estimated Weibull distribution by using 

maximum likelihood estimator and Bayesian approach following by estimated the hazard and reliability functions 

were solved by taking the posterior for Bayesian estimator. Ibrahim et al. 1991 reported that generalized linear 

models have been proven suitable for modeling various kinds of data consisting of exponential family response 

variables with covariates. Green et al. (1994) applied the MCMC method for estimating the three - parameters 

Weibull distribution, and they showed in their work that, the MCMC method is better than the maximum likelihood 

method when given a proper prior distribution for the parameters.  Berger and Sun, (1993) considered the Bayesian 

using Gibbs sampler for estimating the Poly Weibull distribution using informative priors, followed by the posterior 

moments, the marginal posterior probability density function and the reliability function. Assoudou and Essebbar 
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(2003) obtained Bayesian estimate by using Jeffreys prior information with Markov Chain, where the integral in the 

posterior density function under squared error loss could not be obtained in close form. For that, they proposed an 

approximation which was the Metropolis-Hasting algorithm, and Maximum likelihood estimation was also obtained 

for the study. Upadhyay et al. (2001) and Pang et al. (2007) estimated parameters of the three-parameter Weibull 

distribution by Markov Chain Monte Carlo methods and they have shown the flexibility of Markov Chain Monte 

Carlo methods over other traditional approaches. Joarder et al. (2011), considered the unknown parameters of a 

Weibull distribution under Type-I censored data where the maximum likelihood estimator and Bayesian approach 

using Gibbs sampling technique were used to construct the confidence intervals and the corresponding highest 

posterior density credible intervals of the unknown parameters were also obtained under fairly general priors on the 

unknown parameters. Gupta et al., (2008) estimated Weibull extension model by Bayesian method using Markov 

Chain Monte Carlo (MCMC) simulation. MCMC methods are considered in two ways: the Gibbs sampler and the 

Metropolis-Hasting algorithms to simulate sample from the posterior, where by MCMC methods analyses the 

posterior to some graphs and tables that show the estimator for Weibull extension model correlation to MCMC 

output and in their study they showed that the MCMC was useful and a good estimator for the posterior distribution. 

Upadhyay and Gupta (2010) discussed some Bayes analysis of modified Weibull distribution using Markov Chain 

Monte Carlo technique for complete samples and independent vague priors for the unknown parameters.  

 

Maximum Likelihood Estimation 

 Let ti be the set of n  random lifetimes from Weibull distribution with parameters   and p. The PDF of Weibull 

distribution is given below, 

1
( ; , ) exp

p
pp t

f t p t
 

  
  

 
 

For Type I censored data, the likelihood function as in Klein and Moeschberger, (2003) is 
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where 1i   for failure and 0i  for censored observation, and (.)S  is the survival function. 

                                                                   

Taking the logarithm of equation (1), we have  

                                                         
To obtain the equations for the unknown parameters, we differentiate equation above partially with respect to the 

parameters   and p and equate them to zero. The resulting equations are given respectively as, see for example Al 

omari et al (2012) 

                                                                        

                                                         
 

Let ( )U  equals to zero, then the maximum likelihood estimator for the scale parameter of Weibull distribution is,  
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The shape parameter p as in ( )U p  usually cannot be solved analytically, and for that we need to employ a 

numerical approach which in most cases is determined by Newton-Raphson method.

 
Then the estimates of the survival function and hazard rate of Weibull distribution are   
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Bayesian Estimation using Markov Chain Monte Carlo 

The posterior probability density function of    and p is 
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(5)

 

where 
1J is the marginal likelihood estimation of scale and shape parameters of the Weibull distribution,
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This posterior cannot be computed explicitly. We propose to use the Gibbs sampling technique to generate MCMC 

samples for the estimation of the scale parameter, and then use Metropolis- Hastings Algorithm for estimation of the 

shape parameter. 

From equation (5) we can get the conditional posterior of the scale parameter   as follows  
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(6) 

 

The conditional posterior of the scale parameter   follows inverse gamma density function with scale and shape 

parameters and

1 1

n n p
t

i i
i i

 
 

 respectively. We propose to use Gibbs sampling technique to generate MCMC 

sample as shown in Algorithm.  

 

 

 

The conditional posterior of the shape parameter p is given by 
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(7) 

 

As shown in the conditional posterior of the shape parameter, p does not follow any close distribution. Here we 

propose to use the Metropolis- Hastings algorithm to generate MCMC sample as shown in Algorithm follow by 

estimate the survival function and hazard rate.  
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1. Start with initial value 
0p , where the value of 

ip  in the first step will be the  initial value
0p . 

2.  Generate the scale parameter   from inverse gamma ,
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3. Generate candidate value p from arbitrary distribution Uniform (0, 1) 

4. Take the ratio at the candidate value p  and current value
ip      
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6. Generate u from Uniform (0, 1). 

7. Accept p  if u   and return to step 2, otherwise accept 
ip  and return to  step 2. 

8. The Bayesian estimation of the scale and shape parameters   and  p under  the squared error loss 

function is given as 
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   9. Obtain the posterior variance of p for Bayesian by using Jeffreys prior 
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Extension of Jeffreys Prior Estimation using Markov Chain 

 

The posterior by using extension of Jeffreys is see Al omari et al (2010)
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From equation (7) we obtain the conditional posterior by using extension of Jeffreys prior of the scale parameter   

as follows 
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As shown, the conditional posterior with extension of Jeffreys prior of the scale parameter   follows inverse 

gamma density function with scale and shape parameters 2 1 and
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 respectively. We propose to use 

Gibbs sampling technique to generate MCMC sample. 

 

From equation (7) we can get the conditional posterior by using extension of Jeffreys prior of the shape parameter p 

as given below, 
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(9) 

As shown in the conditional posterior for extension of Jeffreys of the shape parameter p does not follow any close 

distribution. For that, we propose to use the Metropolis- Hastings algorithm to generate the MCMC samples follows 

by estimate the survival function and hazard rate. 

 

Simulation Study 

 

In our simulation study, we have chosen n=25, 50 and 100, censored data was 20%. The value of parameters chosen 

were   = 0.5 and 1.5 and p = 0.8 and 1.2. The two values of extension of Jeffreys were 1.5 and 3. The process was 

repeated 10,000 times. For each repetition the mean squared error (MSE) and absolute bias of scale and shape 

parameters and survival function and hazard rate for the three methods above.  

The results are presented in Tables 1 and 2 for different selections of the parameters and c extension of Jeffreys 

prior. 

 

TABLE (1). Estimated scale parameter with MSE (parentheses) of Weibull distribution censored data by 

maximum likelihood (MLE) and Bayesian approach using Gibbs sampler. 

 

Size Estimators  =0.8  =1.2 

p=0.5 p=1.5 p=0.5 p=1.5 

25 MLE  0.9083 0.7432 1.1370 1.3166 

 (0.0512) (0.0491) (0.1369) (0.1743) 

BJ 0.9336 0.8718 1.2880 1.3011 

 (0.0613) (0.0536) (0.2345) (0.0970) 

BE(c=1.5) 0.8237 0.7645 1.1568 1.2634 

 (0.0310) (0.0416) (0.1201) (0.1295) 

BE(c=3) 0.8637 0.7882 1.0782 1.2415 

 (0.0433) (0.0319) (0.1550) (0.0622) 

50 MLE 0.9001 0.7757 1.1434 1.3078 

 (0.0321) (0.0217) (0.0418) (0.0757) 

BJ 0.9602 0.7657 1.1207 1.2790 

 (0.0538) (0.0274) (0.0420) (0.0761) 

BE(c=1.5) 0.8410 0.7690 1.1753 1.2481 

 (0.0225) (0.0164) (0.0394) (0.0873) 

BE(c=3) 0.8104 0.8195 1.0925 1.2399 

 (0.0140) (0.0153) (0.0462) (0.0572) 

100 MLE 0.8994 0.7763 1.1537 1.2854 

 (0.0194) (0.0139) (0.0250) (0.0416) 

BJ 0.9373 0.7552 1.1428 1.2730 

 (0.0267) (0.0233) (0.0259) (0.0444) 

BE(c=1.5) 0.9135 0.7858 1.2142 1.2383 

 (0.0207) (0.0133) (0.0206) (0.0537) 

BE(c=3) 0.8353 0.7931 1.2625 1.2102 

 (0.0117) (0.0087) (0.0334) (0.0274) 
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TABLE (2). Estimated shape parameter with MSE (parentheses) of Weibull distribution censored data by 

maximum likelihood (MLE), Bayesian approach using Metropolis- Hastings Algorithm. 

Size Estimators  =0.8  =1.2 

p=0.5 p=1.5 p=0.5 p=1.5 

25 MLE  0.5380 1.6022 0.5380 1.6039 

 (0.0109) (0.1005) (0.0111) (0.1011) 

BJ 0.5937 1.3105 0.6045 1.6578 

 (0.0177) (0.3728) (0.0191) (0.3492) 

BE(c=1.5) 0.5674 1.3109 0.5357 1.6516 

 (0.0144) (0.3694) (0.0095) (0.3693) 

BE(c=3) 0.4723 1.3648 0.5745 1.6199 

 (0.0095) (0.4046) (0.0103) (0.3262) 

50 MLE 0.5213 1.5442 0.5244 1.5451 

 (0.0048) (0.0395) (0.0049) (0.0415) 

BJ 0.5750 1.3596 0.6161 1.6239 

 (0.0058) (0.3156) (0.0094) (0.2906) 

BE(c=1.5) 0.5701 0.3623 0.6021 1.6150 

 (0.0063) (0.3120) (0.0086) (0.2954) 

BE(c=3) 0.5112 1.3310 0.5438 1.6417 

 (0.0045) (0.3229) (0.0063) (0.3053) 

100 MLE 0.5168 1.5224 0.5056 1.5224 

 (0.0021) (0.0180) (0.0021) (0.0185) 

BJ 0.5587 1.3743 0.6082 1.5824 

 (0.0049) (0.2753) (0.0038) (0.2717) 

BE(c=1.5) 0.5428 1.3712 0.5862 1.5779 

 (0.0034) (0.2755) (0.0031) (0.2713) 

BE(c=3) 0.5061 1.3725 0.5259 1.5756 

 (0.0019) (0.2863) (0.0024) (0.2727) 

 

 

CONCLUSION 
Bayesian using extension of Jefferys prior using Gibbs sampling for estimate the scale parameter is better than 

Maximum Likelihood for all cases. The Maximum Likelihood estimate of shape parameter is more efficient than 

their Bayesian models using the Metropolis- Hastings algorithm. However the extension of Jeffreys is better than 

MLE for certain value of extension of Jeffreys prior.  
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