
ISSN: 2320-5407 Int. J. Adv. Res. 5(1), 1239-1245

1239

Journal Homepage: - www.journalijar.com

Article DOI: 10.21474/IJAR01/2877

DOI URL: http://dx.doi.org/10.21474/IJAR01/2877

RESEARCH ARTICLE

ACCELERATION OF DISTANCE COMPUTATION FOR MULTIPLE SEQUENCE ALIGNMENT ON

MULTI-CORE ARCHITECTURES

*Mohammed W. Al-Neama
1
 and Kasim A. Al-Salem

2
.

1. Education College for Girls, University of Mosul, Mosul, IRAQ.

2. Department of Computer Science, University of Cihan/Sulaimanya, Kurdstan, Iraq.

……………………………………………………………………………………………………....

Manuscript Info Abstract

……………………. ………………………………………………………………
Manuscript History

Received: 21 November 2016

Final Accepted: 21 December 2016
Published: January 2017

Although high quality multiple sequence alignment is an essential task

in bioinformatics, it becomes a big dilemma nowadays due to the

gigantic explosion in the amount of molecular data. The most

consuming time and space phase is the distance matrix computation.

This paper addresses this issue by proposing a vectorized parallel

method that accomplishes the huge number of similarity comparisons

faster in linear space.

 Copy Right, IJAR, 2016,. All rights reserved.

……………………………………………………………………………………………………....

Introduction:-
Multiple sequence alignment of several nucleotides or amino acids is an important tool in bioinformatics. It can

identify patterns or motifs to characterize protein families, and is therefore utilized to detect homology between

sequences as well as to perform phylogenetic analysis [1].

It is playing an increasingly important role in diverse areas, such as elucidation of the tree of life [2], studies of

epidemiology and virulence [3], drug design [4], and human genetics [5]. Most popular MSA tools, ClustalW[6], T-
Coffee[7], MAFFT[8], and DIALIGN[9], utilize the progressive method that was at first introduced in [10].

It typically consists of three stages. Stage 1 computes a Distance Matrix (DM) comprised of the distance value

between each pair of input sequences. Stage 2 computes an evolutionary tree from the DM using some phylogeny

reconstruction methods like Neighbor-Joining (NJ) [11] which guides the final multiple alignment process. In stage

3, first closely related sequence or group of sequences is aligned then the most divergent sequences are aligned to

get the final MSA.

However, there are some obstacles that must be handled carefully when using the progressive method. First,

complexity is of increasing relevance due to the rapid growth of sequence databases, which now contains enough

representatives of larger protein families to exceed the capacity of most current programs.

For example, aligning two sequences with one megabyte length each requires several terabytes of memory, which

cannot be provided by most of the commodity computational resources. Second, computational load of multiple

alignment calculations is of great increasing.

For example, computations of modern homologous sequence data sets could take days. In fact, the best methods

sometimes fail to deal with these complexities efficiently and obtain biologically accurate alignments at the same

time. The present study overcomes these obstacles by using two main approaches.

Corresponding Author:- Mohammed W. Al-Neama.

Address:- Education College for Girls, University of Mosul, Mosul, IRAQ.

http://www.journalijar.com/

ISSN: 2320-5407 Int. J. Adv. Res. 5(1), 1239-1245

1240

The first is the vectorization, where all matrices are compensated by vectors, which in turn reduces the memory

requirement and speedup execution without affecting the accuracy.

The second approach is parallelism, the widespread programming method nowadays that allows multiple

independent processes which share the same resources, to be executed concurrently at less time. Thus, this work
proposes an optimized method for the progressive MSA distance matrix computation using vectorization and

parallelism.

It aims at producing a superlative MSA tool over existing ones in space and execution time. Implementation

tests uses MATLAB®2012 compiler and explicit parallel programming with the fork-join model of parallel

execution on core i7.

MATLAB was the most appropriate programming language for our work because it is an interpreted language of a

high-level scripting and interactive sessions. It tends to be easier to code and debug. Its package comes with

sophisticated libraries for matrix and vector operations, general numeric methods and plotting of data. It supports

parallelism and MEX-files including C++ codes that accelerate execution and offer full control over parallelization

[12]. The multi-core was the candidate platform for implementation due to its availability, but it is intended to
extend our work for clusters; grids; or clouds. A multi-core processor uses the shared memory storage mechanism.

The relationship between its cores is tightly coupled, and they are often interconnected by shared-cache, therefore,

there is almost no communication overhead between cores [13].

Related Work:-
This section surveys the most popular parallel tools developed for MSA using multi-cores. It highlights their
parallel techniques and their performance enhancement. ClustalW presented a fully multithreading optimized

version called MT-ClustalW [14]. It utilized the machine resources and achieves higher throughput. It was 2 times

faster than the sequential ClustalW using 8 threads. While on Cell BE [15], it makes extensive use of vectorization

and schedules the application across all cores which speed up the pairwise alignment phase. In addition, it applies

loop unrolling and loop skewing optimizations that speedup the progressive alignment phase. It achieves an overall

speedup of 9.1. Also on a QS21 Cell Blade, it demonstrates a speedup of 24.4 times when using 16 synergistic

processor units compared to single-thread execution on the power processing unit, and 3.8 times faster than a 3-

thread version running on an Intel Core2 Duo[16]. Cloud-Coffee [17] is the parallel implementation of T-Coffee

that is based on shared-memory architectures, like multi-core. It was benchmarked on the Amazon Elastic Cloud

(EC2) and runs 3.7 times faster. In [18], all stages of MAFEET have been parallelized using the POSIX

Threads library with the best-first and simple hill-climbing parallelization strategies. It achieved a speedup of 10

times with different random numbers on a 16 core PC. DIALIGN-TX-MPI [19] is the parallel version of
DIALIGN-TX that was implemented using both OpenMP and MPI on a heterogeneous multi-core cluster. It used

an iterative heuristic method for MSA that is based on dynamic programming and generates alignments by

concatenating ungapped regions with high similarity. It obtains a speedup of 3.13. MSAProbs [20] combines a

pair-HMM and a partition function to calculate posterior probabilities. It investigates weighted probabilistic

consistency transformation and weighted profile- profile alignment, to achieve high alignment accuracy. In

addition, it is optimized for modern multi-core CPUs by employing a multi-threaded design in order to reduce

execution time. It statistically demonstrates dramatic accuracy improvements over previous tools. MSACompro

[21] incorporates predicted secondary structure, relative solvent accessibility, and residue-residue contact

information into the currently most accurate posterior probability-based MSA methods. It uses a multiple-threading

implementation on a 32 CPU cores machine. Benchmarks clearly show improvements in accuracy over MSAProbs

and all leading tools. We concluded from the study of the above tools that MSACompro and MSAProbs are the
most accurate but at expense of speed. Sample-Align-D is the fastest but not available. Clustal and MAFFT are

fast, available, portable and can align huge number of sequences but less accurate. MUSCLE and T-coffee provide

a good compromise between time spent and quality of the resulting alignment. And most of them exhaust large

storage space due to the usage of matrices. Thus this research aims at addressing the problems concerning space

and time.

ISSN: 2320-5407 Int. J. Adv. Res. 5(1), 1239-1245

1241

Proposed Approach:-
Some attempts have been made to accelerate DM computations using GPU’s [22], and CUDA [23]. This section

explains our proposed algorithm. It depends mainly on the espoused idea in this work of switching from matrices to

vectors. Its main goal is to speedup computations and reduces storage. The baseline equation used to compute

the elements of the distance matrix DM(N×N) for aligning N sequences {S1, S2, … , SN} is:

DM (i,j) = 1- nid(Si,Sj) / min(Li,Lj)  1< i, j < N (1)

where nid(Si,Sj) is the similarity score between Si and Sj. It is computed by using the most popular optimal local

alignment known as the Smith-Waterman algorithm (SM) [24]. It compares two sequences by computing a

distance that represents the minimal cost of transforming one segment into another, with respect to the given

scoring system. It identifies common subsequences between any two sequences S1 and S2 of length L1 and L2,

by computing the similarity H(i,j) of two sequences ending at position i and j, using the following recurrence:

 ,  1< i, j < N (2)
where sbt is a nucleotides or amino acid substitution matrix, and g is a gap penalty.

The proposed algorithm vectorizes all above matrices. First, it benefits from the fact that computing any anti-

diagonal in the matrix H is based only on the values of the previous two anti- diagonals. Based on Equation (2),
each cell H(i,j) depends only on its Northern H(i,j-1), Western H(i-1,j) and North-Western H(i-1,j-1)

previously computed. Thus, just one vector V for current anti- diagonal, with two buffers V1 and V2 for two

previously computed anti-diagonals, are enough to compute the similarity score.

This is done by computing all cells along anti-diagonal V in parallel. The value of each cell is evaluated in terms

of its diagonal neighbour stored at V1, with its left and upper neighbours stored at V2, and the maximum value is

selected indicating the highest score, using the following equation repeatedly along all 2L-1 anti-diagonals,

where it is assumed that all sequences have the same length L, for simplicity.

(3)

Fig. 1 illustrates the main idea when aligning the two sequences S1={ACCGTCG} and S2={TCCGTCA} of

length 7. It shows the computation of the similarity matrix H, with the linear gap cost (-8) and a substitution cost

of (5) if the characters are identical and (-4) otherwise, and how it is replaced by V, using V1 and V2.

ISSN: 2320-5407 Int. J. Adv. Res. 5(1), 1239-1245

1242

Fig. 1:- Relation between H, V, V1, V2.

Second, the proposed algorithm also replaces the distance matrix DM by a distance vector DV. It exploited the fact

that DM is symmetric, and stores only its minor diagonal with its upper triangle, dispensing repeated values. It

computed the values of DV by the following equation:

 DV (k) = 1- (dvk)/min(L) (4)

Where (dvk) is the number of similarity score in the optimal local alignment of Si and Sj. Fig. 2 shows the

correspondence between DV and DM cells when N=5.

Fig. 2:- The relation between DM, DV.

Results and Discussion:-
This section presents results obtained when measuring the performance of the above proposed parallel method

implemented using MATLAB® R2012a on a core-i7 processor with 8 cores of 3.4GHz and 8GB RAM running on

Windows7. Evaluations were concerning two attributes of MSA tools that are of great importance to users. They

are time and space.

ISSN: 2320-5407 Int. J. Adv. Res. 5(1), 1239-1245

1243

Runtime:-

The most important criterion of measuring the quality of our tool is the consumed time during its execution. A set

of performance evaluation experiments has been conducted using ten protein sequence datasets, consisting of

sequences with different combinations of sequences’ number (N) and length (L), selected from the Human

Immunodeficiency Virus (HIV) dataset downloaded from NCBI. Table (1) presents the execution time and

speedup of the proposed parallel algorithm for computing the distance vector DV, and the original algorithm
computing the distance matrix DM. It shows that the greater the length of sequences, the more acceleration of DV

due to the high computation speedup of the optimal exact matches.

Table 1:- Performance Comparison between DM, DV Computations

N L DM(sec.) DV (sec.) Speedup

400 856 760.812 141.245 5.386

400 408 213.575 48.063 4.444

600 462 595.460 142.750 4.171

800 454 1087.349 230.806 4.711

1000 858 4895.379 900.068 5.439

1000 446 1640.334 385.649 4.253

2000 266 2624.920 570.873 4.598

4000 247 22720.202 5579.069 4.072

4000 83 4989.181 1462.492 3.411

8000 73 16972.691 4733.101 3.586

Our work has achieved higher performance due to four reasons: (1) the superiority of MATLAB on other

languages at dealing with vectors, (2) the optimal use of Multi-core machine when parallelizing the computation of

DV independent elements, (3) the perfect use of C++ mix-file when dealing with memory, (4) the use of RAM

only for storing the V’s and H’s.

Usage Space:-

Storage space is the second parameter of measuring the quality of the MSA tool because of the huge growth of
sequence databases that exceed current programs’ capacity. It is measured by the space needed to store data.

Experiment results of used storage during computations of both DM and DV were recorded as given in Table (2),

with respect to the size of the N input sequences. It is clear that the proposed algorithm has reduced the overall

space almost to the half. This is because the space required for the matrix DM whose size is N×N has been

reduced to DV of size N×(N-1)/2.

Table 2:- Storage Comparisons between DM, DV

N L DM(Mbyte) DV(Mbyte)

400 408 0.64 0.31

400 856 0.64 0.31

600 462 1.44 0.70

800 454 2.56 1.25

1000 446 4 1.95

1000 858 4 1.95

2000 266 16 7.80

4000 247 64 31.19

4000 83 64 31.19

8000 73 256 124.78

In addition, Table (3) shows the RAM storage exhausted when storing H’s in comparison to that of V’s. This

remarkable achievement comes from the fact that SW algorithm consumes (L+1)2 word to find similarity between

two sequences of length L, while DV uses only 3(L+1) word.

ISSN: 2320-5407 Int. J. Adv. Res. 5(1), 1239-1245

1244

Table 3:- Storage Comparisons between H’s, V’s

L H’s(Kbyte) V’s(Kbyte)

408 334.56 2.45

856 1468.90 5.14

462 428.74 2.78

454 414.05 2.73

446 399.62 2.68

858 1475.76 3.54

266 142.58 1.60

247 123.01 1.49

83 14.11 0.51

73 10.95 0.44

Conclusion and Future Work:-
The contribution of this work contain optimizations for SW algorithm, and DM computation for addressing the

problem of building a parallel tool for multi-cores that produces the best alignment of multiple sequences in short

time without using much storage space. Results prove that the proposed approach for DM and SW has good ability

to aligning large number of sequences through powerful improved storage handling capabilities with efficient

improvement of the overall processing time.

For future, it is planned to apply the same mechanism on NJ stage, and combine all algorithms to produce the

aligner. Then the aligner will be extended to operate on different parallel platforms. Challenges expected to be

tackled when merging optimization techniques for improving accuracy may affect performance improvements.

References:-
1. Albert Y. Zomaya, Parallel computing for bioinformatics and computational biology: models, enabling

technologies, and case studies, John Wiley & Sons Inc., 2006.

2. CW. Dunn, A. Hejnol, DQ. Matus, K. Pang, WE. Browne, et al., Broad phylogenomic sampling improves

resolution of the animal tree of life, Nature, vol. 452, , 2008 pp. 745–749.

3. Y. Bao, P. Bolotov, D. Dernovoy, B. Kiryutin, L. Zaslavsky, et al., The influenza virus resource at the

National Center for Biotechnology Information, J. Virol., vol. 82, 2008, pp. 596–601.
4. RK. Kuipers, HJ. Joosten, WJ. van Berkel, NG. Leferink, E. Rooijen, et al., 3DM: systematic analysis of

heterogeneous superfamily data to discover protein functionalities, Proteins, vol. 78, 2010, pp. 2101–2113.

5. S. Singh, R. Tokhunts, V. Baubet, JA. Goetz, ZJ. Huang, et al., Sonic hedgehog mutations identified in

holoprosencephaly patients can act in a dominant negative manner, Hum. Genet., vol. 125, 2009, pp. 95–103.

6. J.D. Thompson, D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix

choice, Nucleic Acids Res., vol. 22, No. 22, 1994, pp. 4673– 4680.

7. C. Notredame, D.G. Higgins, J. Heringa, T- Coffee: a novel method for fast and accurate multiple sequence

alignment, J. Mol. Biol., vol. 302, No. 1, 2000, pp. 205–17.

8. K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: a novel method for rapid multiple sequence

alignment based on fast Fourier transform, Nucleic Acids Res., vol. 30, No. 14, 2002, pp. 3059-3066.
9. B. Morgenstern, K. Frech, A. Dress and T. Werner, DIALIGN: Finding Local Similarities by Multiple

Sequence Alignment, Bioinformatics, vol. 14, 1998, pp. 290-294.

10. D. Feng, R. Doolittle, Progressive sequence alignment as a prerequisite to correct phylogenetic trees, J. Mol.

Evol., vol. 25, 1987, pp. 351–360.

11. Saitou N, Nei M, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol.

Biol. Evol., vol. 4, pp. 406-425, 1987.

12. Jan Urban., Interfacing C++ libraries to Matlab, MSc. Thesis, Universitas Masarykiana, 2012.

13. Xiaozhong Geng, A Task Scheduling Algorithm for Multi-Core Cluster Systems, JCP, Vol. 7, No. 11, 2012,

pp. 2797-2804.

14. Kridsadakorn Chaichoompu and Surin Kittitornkun, Multithreaded ClustalW with improved optimization for

Intel multi-core processor, ISCIT '06, 2006, pp. 590-594.

15. Hans Vandierendonck, Sean Rul, Michiel Questier et al., Experiences with parallelizing a bio-informatics
program on the cell BE, HiPEAC’08, vol. 4917, 2008, pp. 161–175.

ISSN: 2320-5407 Int. J. Adv. Res. 5(1), 1239-1245

1245

16. Hans Vandierendonck, Sean Rul, and Koen De Bosschere, Accelerating multiple sequence alignment with the

Cell BE processor, Comput. J., vol. 53, No. 6, 2010, pp. 814–826.

17. P. Di Tommaso, M. Orobitg, F. Guirado, F. Cores, T. Espinosa, C. Notredame, Cloud- Coffee: implementation

of a parallel consistency-based multiple alignment algorithm in the T-Coffee package and its benchmarking

on the Amazon Elastic-Cloud, Bioinformatics, vol. 26, No. 15, 2010, pp. 1903-1904.

18. K. Katoh, and H. Toh, Parallelization of the MAFFT multiple sequence alignment program, Bioinformatics,
vol. 26, No. 15, 2010, pp. 1899- 1900.

19. E. de Araujo Macedo, A.C. Magalhaes Alves de Melo, G.H. Pfitscher, A. Boukerche, Hybrid MPI/OpenMP

Strategy for Biological Multiple Sequence Alignment with DIALIGN-TX in Heterogeneous Multicore

Clusters, IPDPSW’11, IEEE Xplore Press, 2011, pp. 418- 425.

20. Yongchao Liu, Bertil Schmidt, Douglas L. Maskell, MSAProbs: multiple sequence alignment based on pair

hidden Markov models and partition function posterior probabilities, Bioinformatics, vol. 26, No. 16, 2010, pp.

1958 -196.

21. X. Deng and J. Cheng, MSACompro: Protein Multiple Sequence Alignment Using Predicted Secondary

Structure, Solvent Accessibility, and Residue-Residue Contacts, BMC Bioinformatics, vol. 12, 2011, pp. 472-

488.

22. Zhi Ying, Xinhua Lin, Simon Chong-Wee and Minglu Li, GPU-Accelerated DNA Distance Matrix

Computation, ChinaGrid’11, 2011, pp. 42-47.
23. Balaji Venkatachalam, Parallelizing the Smith-Waterman Local Alignment Algorithm using CUDA, 2012,

http://www.zl50.com/ 2012061030871115.html.

24. T.F. Smith, M.S. Waterman, Identification of common molecular subsequences, J. Mol. Biol., vol. 147, 1981,

pp. 195-197.

