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Generalized estimating equations (GEE) models are often used to
analyze the longitudinal data.lt accounts for the within-subject
associations through specification of working correlation matrixR. In
multivariate longitudinal data, the within-subject correlation is
computed by many outcomesare measured over many occasions.
Then, the correlation is the main problem in the multivariate
longitudinal data. This complicated correlation may affect the
parameter estimations precision when it is increased over the
outcomes or occasions. Designing a simulation method to investigate
the correlation effects on the parameter estimations for the marginal
models could be good statistical tool in the longitudinal data analysis.
In this paper, we utilize a method to generate correlated binary data
for a multivariate longitudinal model with specified R correlation
matrix. This specified structure allows the correlation to be induced
over the outcomes or occasions. We utilized the methods of Wang and
Louis (2003) and Parzen et al. (2011) to use the generalized linear
mixed models via a bridge distribution to generate multivariate binary
longitudinal data for marginal models. In addition, we conducted a
clinical trial simulation study for analyzing multiple and correlated
binary outcomes based on control the correlation over the outcomes
and occasions, and estimate the effect sample size. This approach
could be a good method in simulating the correlated binary data. We
include an explanation of some constraints to achieving the best
simulation results.
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1 Introduction

In this paper, our interest is generate multivariate binary longitudinal data for marginal models. It
is a simulation study for many longitudinal outcomes. The longitudinal data feature is measuring
the responses over many occasions. Then, the measurements within each subject are supposed
to be correlated. In the multivariate longitudinal data, there are many longitudinal outcomes are
obtained in many oceasions. The main two factors to build up the within subject correlation in
multivariate longitudinal data are outcomes and occasions. Because the multivariate longitudinal
data has a complicated correlation structure R, there is not a lot of correlation or covariance patterns
are defined for the multivariate longitudinal data. This simulation study will be helpful to build
up a correlation pattern for the correlated binary response form the artificial data. Generating the
data based on the advantage of controlling the correlation over the outcomes and occasions is the
main goal in this simulation study. Then, we can study the changes in the responses means over
the time based on controlling the correlation.

Generating correlated binary data under the marginal model requires specification of the
marginal means or pairwise correlation in R. Different methods are used based on different struc-
tures of R and equal or unequal marginal means. In the case of generate the artificial correlated
binary data, Lee (1993) developed a method using Copula to generate correlated binary data, but
contains only one parameter for R matrix. Lunn and Davies (1998) and Kang and Jung (2001)
improved methods for exchangeable patterns and equal means correlations. Qaqish (2003) intro-
duced the conditional linear family of correlated binary distribution for patterned R under equals
and unequal means, or unpatterned R and large sample size. The method of Qagish (2003) is based
on a conditional linear family of multivariate binary distributions. Emrich and Piedmonte (1991)
proposed a method based on the multivariate probit model using correlated standard normal vari-
ables by solving nonlinear equations. Since our goal is build a desired correlation pattern to adopt
the multivariate longitudinal data, the method we use should generate the data for unstructured
correlation matrix which means no constraints and the maximum parameters to estimate.

The two most practical and applicable methods for unpatterned R are those described by Emrich
and Piedmonte (1991) and Qaqish (2003). Generally, Preisser Jr and Qaqish (2012) compared
the two method and showed they have good estimations unless in some patterned structures. In
Addition to the two methods of Emrich and Piedmonte (1991) and Qaqish (2003) to generate

correlated binary data for unstructured pattern of R, we describe a third method to generate the
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multivariate binary data using bridge distribution. It is a method considered to be for unstructured
R or building up a desired pattern. In section 2, we preview some aspects of the multivariate
longitudinal data structure specifically for the binary data. Then, we explained the proposed
method and its constraints in sections 3 and section 4. Section 5 is the application to the study

design for multivariate binary data. Sections 6 and 7 contain the results and conclusion, respectively.

2 Multivariate Binary Longitudinal Data

The multivariate longitudinal data model is an extension of the univariate longitudinal model, but
for more than one outcome. Each individual i has a vector of responses for different outcomes,
k=1,2,..K. Also, each individual is measured at different times or occasions, 7 = 1,2....J;, and
has cluster size n; = J; K. Let us model K vectors of outcomes measured corresponding to a vector

of times. Then, the structure is in the following figure:

1D Yin Yo - Yk time
1 \ Y111 Yz -0 Y11k 1
1 Y121 Yi22 - 12K 2
1 Mgy Yz o YIK J
2 Y211 Y212 0 YUK 1
2 Y221 Y222 Y2oK 2
N YN11  YN12 r YNIK 1
N YN21  YN22 c YN2K 2
\ N ) YNJT YNJ2Z  YUNJK J

Figure 1: Multivariate longitudinal data structure

To simplify these notations, we will refer to .J; as .J which is the number of occasions or visit

numbers over all the observations, the vector of responses for subject 7 is :
3 T
Y; = [Yan, Yao1, .. Yin, Yae, Yaoo, Yisg, ooy Yiaz, covicnnecns Yirk, Yiok s -os Yisk]

To illustrate aspects of the multivariate longitudinal data structure, lets assume the simple case

where there are two longitudinal ontcomes, k = 1,2 | are measured over three occasions, j = 1,2, 3.
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for observation 7, i = 1,2,3...N. The correlation matrix R consists of the within subject correlation
parameters. Then, correlation matrix R(y) is a function of , where + represents a vector of within
subject association parameters, v = [y, 72, ...,'7'15]T .

Yo Yo Yy Yo Yo Yi

Ve . 7 ; ~
Yu /1l m " m o om %

Yal - 1 % v 1w
R= 31 == == 1 Yo Y11 M2
Yio - - - ! Y13 M4
G| = = = = I ms
Yo \ — = - = = 1

Let v be a vector of size ("é‘) of all non-redundant pairwise correlation parameters in R. We

will use the idea of modeling the correlation matrix to reduce the length of the vector 4. O'Brien
and Fitzmaurice (2004) fit a regression model for marginal pairwise odds ratio to estimate less
parameters in the binary multivariate longitudinal data structure correlation for GEE model. We
will build a model for pairwise correlation parameters to induce the correlation over the outcomes
or the occasions for many scenarios. Consider the correlation matrix R consists of three correlation
parameters types:

1- Let « kiR be the inter-outcome correlation parameter which compares the outcome £ with

the outcome k'at time VE

S P(Yjr =1,Y;0 =1) = P(YVjr = )PV = 1)
T JP(i = DP(Ye = D1 = PV = D)(1 = P(Ve = 1))

J J

2- Let vy, ;v be the intra-outcome correlation parameter which compares outcome & at time
j with the same outcome at time j':
P(Yjk = 1,Y;, =1) — P(Yjr = )P(Y;1, = 1)

Vi ity = < (2)
L Bt = DYy, = (1 = PGk = D)1 - P(Fy, = 1)

3- Let 7;; v be the cross correlation parameter which compares the outcome £ at time j

. ’ . » )
with outcome k£ at time j:

s P(Yjr =1,Ypp =1) - P(Yj = 1)P(Yy =1)
ik.g'k \/P(ij = 1)P(Yyp =1)(1 — P(Yjr =1))(1 - P(Yyp =1))
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Yoo Yo Y Yo Ya Yy

Y|| | t ty o) T ]
Yia - I Uy T (xy Th
- ):m | ™ T4 vy
)'.!l e o - | Y Vs
Yo I vy
Yy\- - - = = |1
Then, corvelation matrix /2 is for the response Y, k 1,2 (onteomes), J 1,2,3

(oceasions). Here we can specify any pattern or build up a parsimonious model to reduce
the number of estimated parameter less than (";i“) 16 in . For example, we could assume
the time correlation parameters a's to be exponential and assume the ontcomes correlation
parametors v's to be compound symmetry o ‘To simplify the parameter estimations size, we
conducted the simulation under the assumption of exchangeability for each correlation type
v, ocand, moand 7= 0 for five correlation scenarios. The following table shows the values
for cach correlation structure and scenavio in Romatrix:

Table 10 The scenarios of simulation study

o = .00 o = (.60 o = (.00
0 = 0,00 seennriol seennrio2 seennriod
0 o= 0,060 seonariod
0 = 0,90 seennriod

3 The Simulation Method

3.1  Generating correlated binary data using bridge distribution

The goal in this study is to generate correlated binary data for marginal model, We used
o regular generalized liner mixed model using bridge distribution for the random effecty
term. It ig known that the parameter ostimations under the mixed model have different
interpretation than the marginal model heeanuse the marginal model integration over the
random effect do not keep the logistic form. Using bridge distribution, matched the logistic
shape of the conditional and marginal binary response models. T'he first contribution to use
bridge distribution for the random intercept logistic regression model is proposed by Wang

and Louis (2003). We will start by the univariate longitudinal data stroctore, Let Y, be
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the binary response that measured at time j, j = 1,2,3,....J form independent observations
1,7 = 1,2,3...N. For each individual has a C'x1 vector of covariate X;;. Suppose the marginal
distribution of the responses is Bernoulli with mean E(Y};) = P(Y;; = 1|Xy;,58,) = pj

through a logit link function, then responses model is:
lOgif(/‘:ij) = U’;,r Xij (4)

where 3, = (5. 51, 52, ... ‘,"'3C)T are the regression parameters from the marginal model.
Wang and Louis (2003) used a bridge distribution for the random effect in the following

mixed effects logistic model:
logit(pij|bi, Xi;) = b; + ¢ BT Xi; (5)

where ¢ is the a cluster heterogeneity parameter. The relationship between the effects from
the marginal regression model 3, and the mixed regression model 3 is related by ¢ such
that:

Hp = 3% ¢

Here will give a brief description of the method of Wang and Louis (2003). They introduced
a CDF of bridge distribution G/(b) for the random effect to gain its advantage of keeping the

marginal shape same as the conditional shape such as:

/ H(b+ BTX)dG(b) = H(r + ¢8TX) (6)

where H is a CDF of bridge distribution and ¢ is rescaling parameter between 0 and 1. The
parameters 3¢ and r are unknown parameters and r is 0 when H is a CDF of symmetric
distribution. The parameter 3, is regression effect and X is the covariates. By differentiate
both sides of equation (6) respect to 37X and taking Fourier transformation F, then after

organizing and using the Fourier Inversion theorem, they got the following equation:

Fh((—%)
Fh(¢)

i, F "
gu(e) = 5 [ SN e (")
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BT X

If the function H(.) = logit link function then H(ATX) = l ; By plugging in Fourier

(./i_“.\' :

transformation, see Wang and Louis (2003), then they got the pdf of bridge distribution:

| sin ()
Gs() = =— — LA <<l —00o< < 8
go() 27 cosh(gx) 4 cos(dm) ( " 20) (8)
&' o™ ; T TR SRy ; ; . 3
where cosh(r) = - . The bridge distribution is symmetric and has slightly heavier tail

-

than the normal distribution and lighter than logistic distribution with mean O and variance

L~ 1/3). In addition, B3y = (1 = py) where py = corr(Y;,, Y}, ) is the intracluster

2 2
a, =T (,/,.
correlation in the binary response. ¢ measure the heterogeneity across the clusters hetween

[0,1]. The CDFE of the bridge distribution is :

n ey ocos(md
- — m'('lu,n,—__(,_.{_). (9)

1
Gyl ] — — ,
7¢() gy I‘J sin(me)

and the inverse of the cumulative density function is:

W | sin(meoa)
ki oY am A v 00, B0 oo S
G, (r) 3 l“‘{/.q'in(’/rr/)(l ) (10)

Using the transformation b = & '(G(x)), where & is CDF of standard Gaussian disten-
tion, then b ~ N(0,1). That leads to using the Gaussian-Hermite quadrature method to
cvaluate the integral over the bridge random effects and estimate MLE parameters. In ad-
dition, Parzen et al. (2011) have improved this model of bridge distribution for the random
offect in the logistic model. Their contribution has two primary advantages. First, they
constructed a model for distinet and correlated random bridge intercepts by, at each time
point. T'he response Y, given bridge random intercepts follows the Bernoulli distribution
P(Yy; = 1|bi;, Xij, ) instead of P(Y; = 1|b, Xij, 4,). Their method leads to better asso-
ciation modeling for within cach subject correlation. T'hen, they use Copula to model the
multivariate bridge random variables. Second, Parzen et al. (2011) recommend using Poear-
son correlation in terms of Kendall's 7 to present the association between the Z's random
variables due its advantage of invariance of the monotone transformation.

We exploit the advantage of the Hexibility in the association structure in Parzen et al,

1416



ISSN: 2320-5407 Int. J. Adv. Res. 5(12), 1410-1426

(2011)’s method between the bridge random effects. It is a beneficial method to generate
multivariate longitudinal data, controlling the within subject correlation over the outcomes
and occasions using marginal model. We will generate it from mixed model using multivariate
bridge random effects. First, Let Y;;; be the binary response that measured at time j, j =

1,2, 3 for observation i, 7 = 1,2, 3...N and for outcome k = 1, 2:
lO_(]it(E(Y;jle,']’. b,jjk)) e IO(/IIL(P(Y,)‘ — llbijk~ )"z‘j)) = -‘3()1\? + A“j,]kX,’]‘ + b,jjk (11)

where b;;;. is for distinct and correlated random bridge intercepts for each outcome k = 1,2
at each occasion or time j = 1,2,3. Given the vector of the random effect b, the Y for
subject 7 is assumed to be independent Bernoulli random variables, Y;x|bijx ~ Ber(P(Yjrx =

1)). The marginal model will be:

logit(E(Y:x| Xi;)) = 1/ 0k (Bor + B1xXij) (12)

where the parameter 0 < ¢;. < 1 is assumed to be toward zero to ensure the maximum
heterogeneity of the random effect (clusters) for the response at time j for outcome k. For
some reasons will be explained in the next section, we referred to ¢, as ¢ which means all
the bridge parameter have the same value. The contribution of subject i to the likelihood

function is given by:

2 3

Li= /, (TTTT PYViik = wiselbi, Xi5) 1 fu(bi) b, (13)

k=1 j=1

where fi(b;) is the joint density of (b1, bioy, bis1, bit2, bisa, biza). To simplify the notations,

we will refer to the joint bridge random intercepts as (b;y, b;s, biz. big. bis, big). The likelihood
Al\‘v

function will be [ L;. The multivariate density of bridge random variables can be modeled
i=1

using Copula model, a multivariate joint cumulative distribution function used to joint

univariate marginal distribution when the inverse cumulative of each variable is uniform

distribution on the interval |0,1]|, Sklar (1959). Here we use the Gaussian Copula to joint

bridge random variables.
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If Fi(by). Fy(by), F3(bs), Fy(by), F5(bs). Fg(bg) are the cumulative distribution functions for
the random effect variables (b;;, bia, biz, bis, bis, big), then there exist a function C such that

the joint CDF is:

Cu, ug, ug, ug, ug, us, ug) = P(Uy < uy,Us < uq, Uy < ug, Uy < ug, Us < us, U < ug)

where Uy, U, ...Us variables are Fy(by), Fa(b)...., F5(bg) has uniformly distributed CDF’s and

C is the density of Gaussian Copula is given by:

C'uy, ug, uz, us, uq, us, Ug) = Q’ZI,Z.‘,‘_”ZG‘E(@_](ul),<I>_](u.2). O (ug), ® " (ug), @ (us), P (ug

(14)
where &7 7, 7 s is the CDF of a multivariate normal distribution with mean zero vector
and variance covariane matrix is 3. Then, the bridge variable can be obtained by b, =
G Y®(Z,)), where r = 1,2,...6 and ®(.) is the CDF of univariate standard normal and
G7Y(.) is inverse cumulative distribution of marginal bridge distribution. To specify the
correlation matrix X, we need to specify the Pearson correlation p;g, = Corr(Zs, Zi) for
each pair of Z’s random variables. Parzen et al. (2011) recommend using Pearson correlation
in terms of Kendall's 7 to present the association between the the Z’s random variables due

its advantage of invariance of the monotone transformation, as discussed in Hougaard (2000).

Pish = SIN(TTien/2)

Then, inducing the correlation in Copula random variables using Kendall’s 7, will be pro-
duced in bridge random variables because the bridge random variable are monotone trans-
formation of Z’s random variables. The maximum likelihood estimates of the parameter
can be obtained by maximizing the likelihood function using Copula method. Because the
method does not have a closed form, maximum likelihood estimates can be implemented

using numerical approximations.
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3.2 Natural constraints

Most of the simulation methods for the binary data have some constraints related to response
means or the correlation structure. Using bridge distribution for the random effect is also
has some constraints. To explore the limitations, we assumed just two bridge random effects

to generate correlated binary data for the GEE model:

l()glf(P(};A s 1|l)l‘ {3)) — .Bllk + ;Blk )(k + bik (15)

where the parameters Sy = 1, B2 = 1, Sy = 1, 312 = 1, and b; = (bi1, biz) are distinct
and correlated random bridge intercepts and X = 1,2. Under the bridge distributional
assumption, the rescalling parameter ¢ is the connection between the regression parameters

in the marginal and the conditional logistic model such that:

f‘/p = B * &

where ¢ is the parameter that measures the heterogeneity between the clusters. Also, ¢ is
related to the variance of bridge random effect, o = 7°(jz — 1/3). As we see in figure 2,
the variability of bridge random effect convergences to zero when ¢ is larger for both the

theatrical and empirical relationship. In the context of generating artificial binary responses,

we are looking to assume the best ¢ value that leads to better estimations.

based on the samples based on the equation
e ~ e
.
o . -« .
-
.
L .. w
Ll .
52 N 52 .
. .,
- - P - -
e 0.'
., -,
.,
‘“ Y v - e,
- .,
"
., \\~
\
© [ =
T 1 I I | I 1 I I I
] 02 04 08 0B 00 02 04 o6 0y
phi phi

Figure 2: The relationship between the bridge parameter and its variance
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In order to reach good estimation, it is important to investigate the connection between
the correlation of the bridge random effects and the correlation of the binary responses.
The efficiency of this method is based on the good induction of the desired correlation from
bridge random effects into the binary responses corr(Y,;. Ya) == corr(b;, bs). In figure 3. we
explore the relationship between the Kendall's tau of the bridge random effect corr(b,,, bs)
and the Kendall's tan for the binary responses corr(Y;,, YY) for the range of correlation
[-0.9.0.9] and for sample size—1000. The relationship is implemented for different values
of ¢, o = 0.05,0.30,0.60,080. The best relationship is considered close to 45° degree
line between the associations of bridge random effect and the binary responses. Thus, we

recommend assuming ¢ = 0.05 to induce the desired correlation from bridge random effect

into the binary responses,

corr(Yy, Ya)

corr(Y,, Yo)

05

05

0s

05

phe=0 80

N o "~

T T T
05 00 05

comiby,, by)

05 00 05
comby,, by)

Cﬂ'(vlh Vo)

corr(Y,, Yg)

05

05

0s

05

phe=0 50
“'J
-
’f
-ﬂ”
1 R B
45 00 05
comb,, by)
hi=005| o
‘J
g
. o’
Cd
..0'
’”
1 1 1
45 00 05
comib,, by)

Figure 3: The relationship between the associations of (Y, Y,) and the associations of (b, b,4) for
different values of bridge parameter

Secondly, the restriction on the estimation parameter 3, is imposed by o since 3, = 3,+0.

Wang and Lonis (2003) said that the marginal parameter shrink toward zero when the
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heterogeneity is larger. Consequently, it is better to assume smaller values of 3 when o
is smaller. The last constraint is related to using Copula method of estimation. The R

correlation matrix should be positive definite to generate Copula random variables.

4 Application to Simulation Design

We conducted a simulation study for the five correlation scenarios in order to explore the
properties of using the proposed method. Specifying bridge distribution for the random
effects is to generate multivariate longitudinal binary data. One of the goals of designing the
simulation study was to determine the efficient sample size for specified model that leads to
statistically- significant result in the treatment effect between the outcomes. A larger sample
size certainly leads to more accurate parameter estimations, but would raise the research
budget. Further, in clinical trials, it would require more human subjects who would be
exposed to new treatments that may be harmful. In this section, we conducted a simulation
study to estimate the efficient sample size in clinical trails needed to detect statistically
significant results for the treatment using the proposed method.

Let X; = 0,1 is the treatment covariate and ¢; = 1,2,3 is time covariate for three
occasions. Let Y be the binary response that measured at time j, j = 1,2, 3 for observation

i, 1 =1,2,3...N and for outcome k = 1,2. Then, the true logistic model be
logit(E(Yix| Xi, b)) = logit(Piji) = Bor + Bk Xi + Bort; + biji (16)

where b; = (biy, bio, biz, bia, bis, big) are distinct but correlated random bridge intercept for
each outcome at each occasion or time. Given the vector of the random effect b;, the Y for
subject 7 are assumed to be independent Bernoulli random variables, Y;;x|b; ~ Ber(P(Yx =
1)). The marginal model will be:

[Oglf(E(y'l]”X,)) = 1/@’) (.30/\' + !'Blk/\’i + ngktj) (]7)

where the parameters ¢ = 0.05, 301 =4, Bz =2, fiu =1, fia=-3. Bar =1, PBaa=—5.
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IFor the random effect model, we conducted the simulation study based on the GEL model
of Sholton et al, (2001) to separate the estimated effects for each outcomes using Kronecker
product. The simulation for the five correlation scenarios to explore the properties of the
model when the corvelation is induced over the ontcomes and the oceasions.  Additional
gonl of this study was to estimate the effect sample size to reject the null hypothesis of the

treatment group for the two outcomes, Hy o 4y = iy = 0,

5 The Results

We ran o simulation method for N 200 samples. The elinieal trinl is balance for each
arm For 200 samples, we computed the correlation mean for each correlation parameter
and the results arve in fignree 4. The correlation meany are calenlated for the five sconarios.
Starting from sconario L, it can be seen as o reference sconario sinee we agsume there is no
correlation over occagions or outcomes. It soems it has good convergence close to zoro of all
its parameters, The correlation scenarios is 2 and 3 are supposed to be induced over the
outcomes’ parameters o and sconario 4 and 5 over the oceasions’ parameters o, From figure
A, the estimated correlation matrix in scenarios 4 and 5 has o good results. Also, it is clear
that the parameter estimation of the correlation matrix for scenarios 2 and 3 have inereased
bhiag over the time, meaning that the correlation between the outeomes in time 1 s bettor

than time 3. Adding the time dependent covariate in the longitudinal response model may

effects the correlation for the hinary responses,

Yie Yiao Y Yo Vg Y Yin Via Yin Yy Yaa Y Yinb2 Yia Yia Yu Yia Yau

\'Il 1 \ ) ” v M | Q000 0 aon 0 obn s aon | Q004 0000 0 RTY ool 0 oo

Yy ) ' v " ' | RN Hom oo o | Goonk ol o han oo

" Yin ' v v w ] ool e aan | URILY] 0B 0. aur

Vo | “ Vv | Hooon oy 1 [T T )

Yau | v | [ERI \ ||u||
You | 1

wile 9

YR (o |

Yoo Yia o Yin Y1 Yau Yin Vihn. Mg Yia Y Y Yay Yieb Y Y Ya Yau Yan
'," | 0.0on (o3 0. 770 oA 009 1 LURMLUR B B L I VT T oo wog | ALY AT ou ool 0.ano
Yia 1 n.A00 001 0,008 0000 \ ARG G000 000 i \ L TR T i
Yia | .00 O oo nhaT 1 0noong 0nan (R | o Hoa o
Yau 1 ok oo 1 R L T R TR | Homan n¥an
Y 1 0o 0 AND | U Nan
Vaa 1 ! !

CUCTOTUCEN wennneio 4 ISR T ]

Figure 4: The estimated correlation struetures using the proposed method

The second output is for the parameter estimations. Assuming the log odds the responses

1422
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changes curvilinerly with the time and X, we got the means of estimated regression coeffi-
cients over 200 samples in table 2. Starting from scenario 1, we found the estimated effect
of intercept means for the outcomes 1 and 2 respectively are 0.206, 0.089 over 200 samples
and each sample size is n—400. The parameter estimations Sy, J11, P21 are the log odds of
P(Y; = 1) for intercepts, treatment and time covariates respectively and Sy, 312, 522 are for
the second ontcome. Generally for all the scenarios, the parameter estimations are approx-
imately close to the true values unless in scenario 4 and 5. The standard deviation std in
scenario 4 and 5 for treatment effect is large comparing with the other scenarios. That leads
to conclude the strong correlation in the time factor may affects the bias of the regression

coeflicients especially in scenarios 4 and 5.

Table 2: The covariate parameter estimations

senario 1 senario2 senariod senariod senariod

True 3 mean std  mean std  mean std mean std  mean std

Hop = 0.2 0.206 0.168 0.205 0.166  0.210 0.162 0.213 01539 0.215 0.148
Foz = 0.1 0.089 0178 0.120 0.166 0.114 0.156 0.1068 0.083 0.079 0.162

11 = 0.05 0.059 0112 0.046 0.117  0.063 0.111 0.051 0171 0.035 0.221
e = —0.15 -0.152 0.117 -0.163 0.130 -0.138 0.114 -0.130 0.173 -0.121  0.214

321 = 0.05 0.046 0077  0.048 0.073 0.043  0.070 0.046  0.044 0.051 0.027
Hap = —0.256 -0.245 0.074 -0.259 0.072 -0.258 0.063 -0.249 0.045 -0.249 0.038

One of the goals of this case study was to estimate the best sample size for to detect signifi-
cant treatment effect in outcome 1 or outcome 2. We applied the proposed method in the clin-
ical trial model for range of sample sizes n = (400, 800, 1200, 1600, 2000, 2400, 2800, 5000, 8000
and counted how many times the null hypothesis Hy : 51, = G12 = 0 is rejected for each
sample size versus at a least one of the parameter estimation is not zero. To get the study
power, we estimated the power as a function of the sample size in order to estimate the
best sample size leads to get 0.80 power value. In graph 5, we present the effect sample size
for each scenario. In scenario 1, the best sample size for two arms is n—2200 that means
approximately 1100 for each study arm. It is clear the effect sizes for scenarios 2 and 3,
which expressed the correlation between the outcomes in each occasion, are lower than other
scenarios. This happens may because this model is designed to separate the effects of the

parameter for each outcome, then the correlation over occasions required higher sample size.
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The highest required sample sizes are approximately n=8850, 4880 for scenarios 4 and 5,

respectively, when the correlation is induced over the occasions for each outcome.

Test power versus sample size
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Figure 5: The sample size estimations over the correlation scenarios

In conclusion, the multivariate longitudinal data potentially has complicated correlation.

The correlation among the responses comes from the repeated measurements and the out-

comes that are measured from the same observation. The estimations of each correlation

pattern in multivariate structure for the five scenarios is computed. Scenarios 4 and 5 present
the induced correlation over the occasions while scenarios 2 and 3 present the induced cor-
relations between the outcomes. We saw in scenarios 2 and 3 the bias increases gradually
over the time and maybe this due to the existence of the dependent coviarate in the model.
Also, the parameter estimations over the five scenarios did not changed dramatically when
we changed the source and the strength of the correlation over the scenarios unless in the
treatment effects. It is clear the strong correlation produce more bias estimates. In fact,
The effect sample size for the study model is also effected by the scenario. Based on our

model, clinical trials require higher sample sizes for high correlations over the occasions, as
we saw in scenarios 4 and 5.
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6 Conclusion

Researchers have discussed variety methods to address problems related to generating corre-
lated binary data for marginal models. In this paper, we describe a simple computed method
using a linear mixed model via bridge distribution for the random effect. Using bridge distri-
bution, it has the advantage to keep the same logistic shape for the marginal and conditional
models. This method could reach good convergence for a desired R correlation matrix. It
could be a good future work to study a comparison between the proposed method and Em-
rich and Piedmonte (1991) and Qaqish (2003) methods. Choosing the appropriate bridge
parameter and parameter estimation of the marginal model would effect the results con-
vergence of using bridge distribution. In conclusion, generate the binary responses for the

marginal model using bridge distribution for the random effect could be good approach.
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