

RESEARCH ARTICLE

THE STUDY OF AMINO-ACIDE COMPOSITION OF HELIANTHUS TUBEROSUSE BLOOMS AND ORGANIC SOLVENTS' EXTRACTS BY PHYSIC-CHEMICAL METHODS.

B.M.Izteleu, G.E.Azimbaeva, G.N.Kudaybergenova and B.Zh.Dzhiembaev.

Abstract
In this article the definition of Helianthus tuberosuse blooms' amino- acid composition by the gas-chromotographe using "Karlo-Erba-
4200" device is given. As a result, 20 amino acids such as glutamine, aspartate, lactamic acide, proline, arginine, leusine, serine, isoleucine, tyrosine, etc. were defined. Also, UV-spectra of organic solvents'
extracts were made with the usage of "Evolution 600" device. It is determined that the basic components of the extracts are lipochromes (vitamin A) and α -chlorophyll.
Copy Right, IJAR, 2016,. All rights reserved.

Bioligically active substances are such substances that affect biological processes in a human and animal body. They can be product of primary (vitamins, fats, carbohydrates, albumens) and secondary (alkaloids, glycosidas, tannins) biosynthesis. Plant always contain a complex of biologically active substances, but only one or few of them have therapeutic effect. They are called active substances and used in production of medicinal drugs.

Plants also contain called accompanying substances. This a conventional name of plants' primary and secondary synthesis products (menthol, papaverine, tanning agants). Some accompanying substances positively influence a human body as they have a supplement effect to basic active substances. For example, vitamins, mineral substances, flavavanoids increase absorbability of active substances and their useful effect, and decrease a harmful effect of strong bonds [1,5].

Nowadays plants' generating biologically active substances arouses a great interest. Among these are Helianthus tuberosuse composite plants.

Research methods and Materials:-

The purpose of this work is the Helianthus tuberosuse blooms' definition of amino-acid composition and study of their organic extracts by the UV-spectroscopy method.

The object of the research is Almaty and Tashkent regions "Interes" cultivar's blooms picked in the end of September-middle of October 2013-2015.

To cany out UV-spectroscopic research the exctacts of organic solvents (chloroform, benzole, acetone, hexane) were used, as well as the definition of amino-acid composition by the gas-chromotography with the usage of "Karlo-Erba-4200" device (Italy-USA) [2]. The results of amino-acid composition are listed n table 1.

Result and their Consideration:-

Table 1:- Amino-acid composition of Helianthus tuberosuse plant's blooms.

leusine isoleucine valine glutamate Threonine proline Methionine Serine aspartate	leusine isoleucine valine glutamate Threonine proline Methionine Serine aspartate Sisteyn	leusine isoleucine valine glutamate Threonine proline proline Methionine Serine aspartate aspartate Sisteyn Hydroxy-pro	leusine leusine valine glutamate Threonine proline Methionine Serine Sisteyn Hydroxy-pro Phenylalanin Thyrosinum	leusine isoleucine valine glutamate Threonine proline proline Methionine Serine Serine Sisteyn Hydroxy-pro Phenylalanin Thyrosinum	leusine leusine valine glutamate Threonine proline proline Methionine Serine Serine Sisteyn Hydroxy-prol Hydroxy-prol Hydroxy-prol Hydroxy-prol Hydroxy-prol Hydroxy-prol Hydroxy-prol Ornitine	leusine leusine valine glutamate Threonine proline proline Methionine Serine Serine aspartate Sisteyn Hydroxy-proj Hydroxy-proj Hydroxy-proj Hydroxy-proj Hydroxy-proj Arginine Arginine	leusine leusine valine glutamate Threonine proline proline Methionine Serine Serine Sisteyn Hydroxy-prol Hydroxy-prol Hydroxy-prol Hydroxy-prol Hydroxy-prol Hydroxy-prol Hydroxy-prol Zisteyn Hydroxy-prol Hydroxy-prol Lysine Lysine
isoleuc valine glutam Threor Proline Methic Serine asparta	isoleuc valine glutam Threor proline Methic Serine asparta	isoleuc valine glutam Threor Proline Derine Serine asparta Sisteyu Hydro	isoleuc valine glutam Threor Proline proline Serine asparta Sisteyı Hydro Phenyl	isoleuc valine glutam glutam Threor Proline Serine asparta asparta Sisteyı Hydro: Thyros Histidi	isoleuc valine glutam glutam proline proline Serine Serine Aydro Hydro Thyros Histidi Histidi	isoleuc valine glutam glutam proline proline Serine Serine asparta Sisteyı Hydro: Hydro: Hydro: Hyros Argini Argini	isoleuc valine glutam glutam Droline proline Nethic Serine asparta Serine Hydro Hydro Phenyl Histidi Histidi Argini Lysine Lysine
valin gluta Three Prolii Meth Serin aspar	valin gluta Three proli Meth Serin aspar Siste	valin gluta Three proli Meth Serin sspar siste	valin, gluta gluta Three prolii Meth Meth Serin aspar Siste Hydr Thyr	valin, gluta Three Prolii Meth Serin Serin Siste Phen Thyr	valin gluta Three Prolii Meth Meth Serin Serin Sste Siste Thyr Thyr Ornit	valin gluta Three prolii Meth Meth Meth Neth Neth Hydr Thyr Thyr Thyr Argii	valin, gluta Three proli Meth Meth Serin Serin aspar aspar Hydr Hydr Thyr Thyr Argin Lysir Lysir
Threoni Proline Methiol Serine aspartat	Threoni proline Methioi Serine aspartat Sisteyn	Threoni proline Methioi Serine aspartat Sisteyn Hydrox	Threoni proline Methion Serine aspartat Sisteyn Hydrox Phenyls Thyrosi	Threoni Proline Methio Serine aspartat Hydrox Hydrox Thyrosi Histidir	Threoni Proline Methio Serine Sserine aspartat Hydrox Hydrox Thyrosi Histidir Histidir Ornitino	Threoni Proline Methio Serine aspartat Aydrox Hydrox Thyrosi Histidir Histidir Arginin	Threoni proline Methio Serine aspartat aspartat Hydrox Hydrox Thyrosi Histidir Histidir Arginin Arginin
Methioni Serine aspartate	Methioni Serine aspartate Sisteyn	Methioni Serine aspartate Sisteyn Hydroxy	Methioni Serine aspartate Sisteyn Hydroxy Phenylal Thyrosin	Methioni Serine Serine aspartate Sisteyn Hydroxy Phenylal Thyrosin Histidinu	Methioni Serine Serine aspartate Sisteyn Hydroxy Phenylal Thyrosin Histidinu Ornitine	Methioni Serine Serine aspartate Bydroxy Hydroxy Phenylal Thyrosin Histidinu Arginine Arginine	Methioni Serine Serine aspartate Bisteyn Hydroxy Phenylal Thyrosin Histidinu Histidinu Arginine Lysine
Serine aspartate	Serine aspartate Sisteyn	Serine aspartate Sisteyn Hydroxy-	Serine aspartate Sisteyn Hydroxy- Phenylala Thyrosinu	Serine aspartate Sisteyn Hydroxy- Phenylala Thyrosinu Histidinuu	Serine aspartate Sisteyn Hydroxy- Phenylala Thyrosinu Histidinuu Ornitine	Serine aspartate Sisteyn Hydroxy- Phenylala Thyrosinu Histidinuu Histidinuu Arginine Arginine	SerineaspartateaspartateSisteynHydroxy-Hydroxy-ThyrosinuThyrosinuHistidinuHistidinueArginineLysineLysine
	Sisteyn	Sisteyn Hydroxy-p	Sisteyn Hydroxy-p Phenylalar Thyrosinu	Sisteyn Hydroxy-F Phenylalar Thyrosinur Histidinur	Sisteyn Hydroxy-F Phenylalar Thyrosinun Histidinur Ornitine	Sisteyn Hydroxy-p Phenylalar Thyrosinuu Histidinurr Ornitine Arginine	Sisteyn Hydroxy-p Phenylalar Thyrosinur Histidinur Ornitine Arginine Lysine

According to the table, a considerable amount of glutamate, aspartate, lactamic acid and proline was found: in Tashkent region - 2194mg/100g, 1820mg/100g, 1675mg/100g, 1295mg/100g, and in Almaty region - 2015mg/100g, 2015mg/100g, 1550mg/100g, 1248mg/100g respectively.

Amino acids are the organic compounds that act as construction materials for protein and muscular tissues. Amino acids perform a lot of important functions in a human body. Glutamate is considered an indispensable amino acid for a human organism. It is quite common in nature, thus it can be synthesised in sufficient volumes. Its concentration in blood reaches 500-900 mcM/l, which exceeds the concentration of any other amino acid. In an organism, aspartate and glutamate are used by all cells for the synthesis of purine and pyrimidine bases.

Amid derivatives of these amino acids are the transportation forms of ammonia from tissues to kidneys and liver. Additionally, glumatic acid is a part of glutathione - the substance, that performs two different functions: amino acids transfer through a membrane and a key part of a cell antioxidant system.

Alanine (lactamic acid) controls blood sugar level, taking part in gluconeogenesis (glucose synthesis) and in the exchange of sugar and organic acids. It also facilitates concentration of glycogen in liver and muscles. Alanine is used as an energy source by brain cells and participates in generating immunoglobulin and antibodies.

Proline is the main component of collagen, that strenghtens chordas and ligaments, provides a good functioning of joints, and when coupled with redoxon helps to heal wounds and traumas [3].

Also the UV-spectra of Helianthus tuberosuse blooms' extracts from organic solvents of chloroform, benzole, acetone, hexane on the "Evolution 600" device was made. The results are given in pictures 1-4 and table 2.

According to table 2, the basic component is liprochome's α-chlorophyll (vitamin A).

Picture 1:- UV -spectra of Helianthus tuberosuse blooms' acetone extracts in Almaty (A) and Tashkent (B) regions.

Picture 2:- UV -spectra of Helianthus tuberosuse blooms' hexane extracts in Almaty (A) and Tashkent (B) regions.

Picture 3:- UV -spectra of Helianthus tuberosuse blooms' chloroform extracts in Almaty (A) and Tashkent (B) regions.

Picture 4:- UV -spectra of Helianthus tuberosuse blooms' benzole extracts in Almaty (A) and Tashkent (B) regions.

The name of sample	Wave length, nm	Intensity, A	the bond type
1	2	3	4
Spectra of Helianthus tuberosuse	375	0,402	
blooms' chloroform extracts	401	0,544	
(Tashkent region)	422	0,664	
	445	0,749	lipochrome
	473	0,615	lipochrome
	536	0,105	
	667	0,087	α-chlorophyll
	700	0,083	
Spectra of Helianthus tuberosuse	375	0,510	
blooms' benzole extracts (Tashkent	400	0,708	
region)	424	0,908	
	445	1,053	lipochrome
	474	0,874	lipochrome
	534	0,118	
	667	0,085	α-chlorophyll
Spectra of Helianthus tuberosuse	378	0,165	
blooms' hexane extracts (Tashkent	398	0,215	
region)	423	0,276	
	446	0,329	lipochrome
	472	0,280	lipochrome
	539	0,057	
	665	0,041	α-chlorophyll
	679	0,050	
Spectra of Helianthus tuberosuse	378	0,931	
blooms' acetone extracts (Tashkent	400	1,251	
region)	423	1,539	
	447	1,773	lipochrome
	475	1,443	lipochrome
	665	0,064	
Spectra of Helianthus tuberosuse	400	0,396	
blooms' chloroform extracts	425	0,538	

Table 2:- The UV-spectrum data.

(Almaty region)	445	0,638	lipochrome
	475	0,516	lipochrome
	535	0,082	
	665	0,068	α-chlorophyll
	698	0,064	
Spectra of Helianthus tuberosuse	378	0,422	
blooms' benzole extracts (Almaty	400	0,514	
region)	424	0,610	
	445	0,673	lipochrome
	472	0,557	lipochrome
	535	0,131	
	700	0,104	
Spectra of Helianthus tuberosuse	423	1,282	
blooms' hexane extracts (Almaty	446	1,667	lipochrome
region)	473	1,437	lipochrome
Spectra of Helianthus tuberosuse	402	0,354	lipochrome
blooms' acetone extracts (Almaty	442	0,444	lipochrome
region)	447	0,508	lipochrome
	473	0,418	lipochrome
	535	0,081	
	667	0,064	α-chlorophyll
	698	0,064	

According to the results of blooms' chloroform extracts in Almaty region, they are characterised by the absorption band's presence of 445-475 nm, and the intensity index is 0,638-0,516 A°; in Tashkent region the absorption band's presence of 445-475 nm, and the intensity index is 0,749-0,615 A°, which corresponds to lipochrome. Blooms' benzole extracts in Almaty region are characterised by the absorption band's presence of 445-472 nm, and the intensity index is 0,673-0,557 A°; in Tashkent region the absorption band's presence of 445- 474 nm, and the intensity index is 1,053-0,874 A°, which corresponds to lipochrome.

Blooms' hexane extracts in Almaty region are characterised by the absorption band's presence of 446- 473 nm, and the intensity index is 1,67-1,42 A°; in Tashkent region the absorption band's presence of 446-472 nm, and the intensity index is 0,32-0,280 A°, which corresponds to lipochrome.

Blooms' acetone extracts in Almaty region are characterised by the absorption band's presence of 446- 473 nm, and the intensity index is 0,508-0,418 A^0 ; in Tashkent region the absorption band's presence of 447-475 nm, and the intensity index is 1,77-1,44 A^0 , which corresponds to α -chlorophyll.

Blooms' chlorophormic extracts in Almaty region are characterised by the absorption band's presence of 665 nm, and the intensity index is 0,068 A°; in Tashkent region the absorption band's presence of 667 nm, and the intensity index is 0,86 A°, which corresponds to α -chlorophyll [4].

Conclusion:-

- 1. The definition of Helianthus tuberosuse blooms' amino-acid composition by gas-liquid chromotography with the usage of "Karlo-Erba -4200" device (Italy-USA) is given. As a result, a considerable amount of glutamate, aspartate, lactamic acid and proline is attained: in Tashkent region it reaches 2194 mg/100g, 1820mg/100g, 1675mg/100g, 1295mg/100g, and in Almaty region it reaches 2015mg/100g, 2015mg/100g, 1550mg/100g, 1248mg/100g.
- 2. Helianthus tuberosuse blooms' extracts of organic solvents of chloroform, benzole, acetone, hexane by the UVspectrum methods using "Evolution 600" device are studied. According to research, it is determined that the basic components of extracts are lipochromes (vitamin A) and α -chlorophyll.

Literature:-

- 1. Yagodka V .S. Medical plants in dermatology and cosmetology. M. 2008. p.98
- 2. Drozdova I.L., Denisov N.N . The study of Egyptian rose's herb's amino-acid composition// Traditional medicine. 2012. #29. p.49-51
- 3. Yakube H.D., Eshkayt H. Aminoacids. Peptides. Proteins. M. Mir, 1985. p.82
- 4. 4.Blinova O.L. The development of rational methods of medicinal vegetative raw materials' and subterraneous organs' herbal medicinal products' identification. Perm. 2000. p.15
- Stanley J. Kays, Stephen F. Nottingham Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L.August 13, 2007 by CRC Press. Reference - 496 Pages - 30 B/W Illustrations ,9781420044959 - CAT# 44958.