

RESEARCH ARTICLE

ON R[#]-CONTINUOUS AND R[#]-IRRESOLUTE MAPS IN TOPOLOGICAL SPACES.

Basavaraj M. Ittanagi¹ and Raghavendra K².

- 1. Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-03, Affiliated to VTU, Belagavi, Karnataka state, India.
- 2. Department of Mathematics, ACS College of Engineering, Benagaluru-74, Affiliated to VTU, Belagavi, Karnataka state, India.

Manuscript Info

Manuscript History

Abstract

Received: 07 December 2017 Final Accented: 09 January 201

.....

Final Accepted: 09 January 2018 Published: February 2018

Keywords:-

R[#]-closed sets, R[#]-open sets, R[#]continuous maps, R[#]irresolute maps, strongly R[#]continuous maps and perfectly R[#]-continuous maps.

.....

In this paper, a new class of continuous functions called $R^{\#}$ -continuous maps in topological spaces are introduced and studied.

Also some of their properties have been investigated. We also introduce

R[#]-irresolute maps, strongly R[#]-continuous maps,

R[#]-continuous maps and discussed some of their properties

Copy Right, IJAR ,2018, All rights reserved.

perfectly

Introduction:-

In general topology continuous functions play a very vital role. The regular continuous and completely continuous functions are introduced and studied by Arya S P [2]. Later, R S walli et all [33] introduced and investigated α rw-continuous functions in topological space. Recently, Basavaraj M Ittanagi et all [5] introduced and studied the basic properties of R[#]-closed sets in topological space. The aim of this paper is to introduce R[#]-continuous and irresolute maps in topological space.

Preliminaries:-

In this paper X or (X,τ) and Y or (Y,σ) denote topological spaces on which no separation axioms are assumed. For a subset A of a topological space X, cl(A), int(A), X-A or A^c represent closure of A, interior of A and complement of A in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called a

- i. Regular open set [26] if A=int(cl(A)) and regular closed if A=cl(int(A))
- ii. Regular semi open set [9] if there exists a regular open set U such that $U \subseteq A \subseteq cl(U)$
- iii. Generalized closed set (g-closed) [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- iv. $R^{\#}$ -closed set [5] if gcl(A) $\subseteq U$ whenever A $\subseteq U$ and U is R* open in (X, τ).

The complement of the closed sets mentioned above are their open sets respectively and vice versa.

Corresponding Author:- Basavaraj M. Ittanagi.

Address:- Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-03, Affiliated to VTU, Belagavi, Karnataka state, India.

Definition 2.2: A function f $(X \tau) \rightarrow (Y \sigma)$ is called a

Deminitio	12.2. A function 1. (X,t) $(1,0)$ is called a
i.	Continuous if $f^{-1}(V)$ is closed in X for every closed subset V of Y.
ii.	Regular continuous [2] if $f^{-1}(V)$ is r-closed in X for every closed subset V of Y.
iii.	Completely continuous [2] if $f^{-1}(V)$ is regular closed in X for every closed subset V of Y.
iv.	α -continuous [14] if $f^{-1}(V)$ is α -closed in X for every closed subset V of Y.
v.	Semi continuous [15] if $f^{-1}(V)$ is semi closed in X for every closed subset V of Y.
vi.	Semi pre continuous [1] if $f^{-1}(V)$ is semi pre closed in X for every closed subset V of Y.
vii.	Strongly Continuous [24] if $f^{-1}(V)$ is clopen in X for every subset V of Y.
viii.	g-continuous [4] if $f^{-1}(V)$ is g closed in X for every closed subset V of Y.
ix.	w-continuous [28] if $f^{-1}(V)$ is w closed in X for every closed subset V of Y.
X.	gr-continuous [22] if $f^{-1}(V)$ is gr closed in X for every closed subset V of Y.
xi.	g*-continuous [30] if $f^{-1}(V)$ is g* closed in X for every closed subset V of Y.
xii.	swg*-continuous [19] if $f^{-1}(V)$ is swg* closed in X for every closed subset V of Y.
xiii.	β wg*-continuous [11] if $f^{-1}(V)$ is β wg* closed in X for every closed subset V of Y.
xiv.	r^g-continuous [21] if $f^{-1}(V)$ is r^g closed in X for every closed subset V of Y.
XV.	rwg-continuous [20] if $f^{-1}(V)$ is rwg closed in X for every closed subset V of Y.
xvi.	β wg**-continuous [25] if $f^{-1}(V)$ is β wg** closed in X for every closed subset V of Y.
xvii.	g α -continuous [10] if $f^{-1}(V)$ is g α closed in X for every closed subset V of Y.
xviii.	swg-continuous [20] if $f^{-1}(V)$ is swg closed in X for every closed subset V of Y.
xix.	α g-continuous [17] if $f^{-1}(V)$ is α g closed in X for every closed subset V of Y.
XX.	gp-continuous [18] if $f^{-1}(V)$ is gp closed in X for every closed subset V of Y.
xxi.	wg-continuous [20] if $f^{-1}(V)$ is wg closed in X for every closed subset V of Y.
xxii.	g*p-continuous [29] if $f^{-1}(V)$ is g*p closed in X for every closed subset V of Y.
xxiii.	w α -continuous [7] if $ff^{-1}(V)$ is w α closed in X for every closed subset V of Y.
xxiv.	α rw-continuous [31] if $f^{-1}(V)$ is α rw closed in X for every closed subset V of Y.
XXV.	ρ -continuous [9] if $f^{-1}(V)$ is ρ closed in X for every closed subset V of Y.
xxvi.	sg-continuous [26] if $f^{-1}(V)$ is sg-closed in X for every closed subset V of Y.
xxvii.	gs-continuous [3] if $f^{-1}(V)$ is gs closed in X for every closed subset V of Y.
xxviii.	rps-continuous [23] if $f^{-1}(V)$ is rps closed in X for every closed subset V of Y.
xxix.	gsp-continuous [12] if $f^{-1}(V)$ is gsp closed in X for every closed subset V of Y.

Definition 2.3:

A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a

- i. Irresolute if $f^{-1}(V)$ is semi closed in X for every semi closed subset V of Y.
- ii. w-Irresolute [28] if $f^{-1}(V)$ is w-closed in X for every w-closed subset V of Y.
- iii. gc-Irresolute [27] if $f^{-1}(V)$ is g-closed in X for every g-closed subset V of Y.
- iv. Contra w Irresolute [28] if $f^{-1}(V)$ is w open in X for every w-closed subset V of Y. v. Contra Irresolute [14] if $f^{-1}(V)$ is semi open in X for every semi closed subset V of Y.
- vi. Contra r-irresolute [2] if $f^{-1}(V)$ is regular open in X for every regular closed subset V of Y.
- vii. Contra continuous [13] if $f^{-1}(V)$ is open in X for every closed subset V of Y.

Results 2.4[5]:

- i. Every closed (respectively regular closed, g-closed, w-closed, \hat{g} -closed set) set is $\mathbb{R}^{\#}$ -closed set in X.
- ii. Every R[#]-closed set in X is rg(respectively gpr-closed, rwg-closed, gspr-closed, r^g-closed, rgβclosed) set in X.

Results 2.5[5]:

Let A be a subset of a topological space (X,τ)

- If A is regular open and rg-closed set in (X,τ) then A is R[#]-closed set in (X,τ) . i.
- If A is g-open and rg-closed set in (X,τ) then A is R[#]-closed set in (X,τ) . ii.
- If A is a regular-open and rwg-closed set in (X,τ) then A is R[#]-closed in (X,τ) . iii.
- If A is a regular-open and gpr-closed set in (X,τ) then A is R[#]-closed in (X,τ) . iv.
- If A is regular open and r^g-closed set in (X,τ) then A is R[#]-closed set in (X,τ) . v.
- If A is regular open and $\beta w g^{**}$ -closed set in (X, τ) then A is R[#]-closed set in (X, τ). vi.

R[#]-Continuous Functions:-

Definition 3.1:

A function f from a topological space X in to a topological space Y is called a $R^{\#}$ -continuous if inverse image of every closed set in Y is a $R^{\#}$ -closed set in X.

Example 3.2: Let $X=Y=\{a,b,c\}$. Let $\tau=\{\emptyset,X,\{a\},\{b\},\{a, b\},\{a, c\}\}$ be a topology on X and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}\)$ be a topology on Y. $\mathbb{R}^{\#}$ -C(X)= $\{X,\emptyset, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}\)$ and closed set of Y are $\sigma=\{Y,\emptyset,\{c\},\{a,c\},\{b,c\}\}$. Let f: X \rightarrow Y defined by f(a)=a, f(b)=c, f(c)=c is $\mathbb{R}^{\#}$ -continuous.

Theorem 3.3: Every continuous function is R[#]-continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ be continuous and F be any closed set in Y. Then $f^{-1}(F)$ is closed set in X.Since every closed set in X is $R^{\#}$ -closed then $f^{-1}(F)$ is $R^{\#}$ -closed set in X. Therefore f is $R^{\#}$ -continuous.

Example 3.4: Let $X = Y = \{a, b, c\}$. Let $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ be a topology on X and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$ be a topology on Y, closed set of X are $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}$, closed set of Y are $\sigma = \{Y, \emptyset, \{c\}, \{a, c\}, \{b, c\}\}$, $R^{#}$ -C(X)={X, \emptyset , {a}, {b}, {c}, {a, c}, {b, c}}. Let f: X \rightarrow Y defined by identity function, then is $R^{#}$ -continuous but not continuous function, as the closed set {c} in Y, then $f^{-1}(\{c\}) = c$ is not a closed set in X.

Theorem 3.5:

- i. Every g-continuous is R[#]-continuous but not conversely.
- ii. Every w-continuous is R[#]-continuous but not conversely.
- iii. Every \hat{g} -continuous is R[#]-continuous but not conversely.
- iv. Every r-continuous is $R^{\#}$ -continuous but not conversely.

Proof: The proof follows from the fact that every g-closed (resp. w-closed, \hat{g} -closed and r-closed) set is $R^{\#}$ - closed set.

Similarly we can prove ii,iii,iv

Example 3.6: Let $X = Y = \{a, b, c, d\}$, let $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ be a topology on X and

 $\sigma = \{ \emptyset, Y, \{a\}, \{a, b\}, \{a, b, c\} \} \text{ be a topology on Y. Closed sets of } X=\{X, \emptyset, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}, closed sets of Y=\{Y, \emptyset, \{d\}, \{c, d\}, \{b, c, d\}\}, R^{\#}-C(X)=\{X, \emptyset, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}, g-C(X)=\{X, \emptyset, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}, Let f: X \to Y defined by f(a)=d, f(b)=d, f(c)=d, f(d)=b is R^{\#}-continuous function, as the closed set \{d\} in Y, then f^{-1}(\{d\}) = \{a, b, c\}$ is not g-closed set in X.

Theorem 3.7: Every R[#]-continuous function is rg-continuous but not conversely.

Proof: Let f: $X \to Y$ be $\mathbb{R}^{\#}$ -continuous and F be a closed set in Y, by definition $f^{-1}(F)$ is $\mathbb{R}^{\#}$ closed set in X. Since every $\mathbb{R}^{\#}$ -closed set is rg-closed, then $f^{-1}(F)$ is rg closed in X. hence f is rg -continuous.

Theorem 3.8:

- i. Every $R^{\#}$ -continuous function is \widehat{rg} continuous but not conversely
- ii. Every $R^{\#}$ -continuous function is *gspr* continuous but not conversely
- iii. Every $R^{\#}$ -continuous function is *gpr* continuous but not conversely
- iv. Every R[#]-continuous function is $rg\beta$ continuous but not conversely
- v. Every $R^{\#}$ -continuous function is rwg continuous but not conversely
- vi. Every $R^{\#}$ -continuous function is $wgr\alpha$ continuous but not conversely.

Proof: The proof follows from the fact that every $\mathbb{R}^{\#}$ -closed set is \widehat{rg} -closed (resp. *gspr*-closed, *gpr*-closed, *rgβ*-closed, *rwg*-closed, *set* in X.

Similarly we can prove (ii), (iii), (iv), (v) and (vi).

Example 3.9: Let X=Y={a, b, c}. Let $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\$ be a topology on X and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\$ be a topology on Y. Closed sets of X={X, $\emptyset, \{c\}, \{a, c\}, \{b, c\}\}$, Y={Y, $\emptyset, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\$. Let f : X→Y defined by f(a)=a, f(b)=a, f(c)=b is rg continuous, r^g-continuous, gspr-continuous, rwg-continuous, wgr α -continuous but not R[#]-continuous function, as the closed set F={a,c} in Y then $f^{-1}(F) = \{a, b\}$ is not R[#]closed set in X.

Remark 3.10: The following example shows that R[#]-continuous is independent with some existing continuous functions in topological spaces

Example 3.11: Let $X=Y=\{a, b, c, d\}$, let $\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ be a topology on X and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, b, c\}\}$ be a topology on Y. Closed sets of $X=\{X, \emptyset, \{d\}, \{c, d\}, \{a, c, d\}\}$ and closed sets of $Y=\{Y, \emptyset, \{d\}, \{c, d\}, \{b, c, d\}\}$ and closed sets of $Y=\{Y, \emptyset, \{d\}, \{c, d\}, \{b, c, d\}\}$. Let $f: X \rightarrow Y$ defined by f(a)=d, f(b)=d, f(c)=d, f(d)=b is $\mathbb{R}^{\#}$ -continuous function but not a rs-continuous, gs-continuous, α g-continuous, gsp-continuous, gp-continuous, α g-continuous, α g-continuous, α g-continuous and α **-continuous X, as $f^{-1}(d) = \{a, b, c\}$ is not a rs-closed set,

gs-closed set, αg - closed set, gsp- closed set, gp- closed set, g*- closed set, g*p- closed set, w α - closed set, pgpr- closed set, rps- closed set and $g\alpha$ **- closed set in X.

Example 3.12: Let $X=Y=\{a, b, c, d\}$, let $\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ be a topology on X and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, b, c\}\}$ be a topology on Y. Closed sets of $X=\{X, \emptyset, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ and closed sets of $Y=\{Y, \emptyset, \{d\}, \{c, d\}, \{b, c, d\}\}$, $R^{\#}$ -C(X)={X, $\emptyset, \{d\}, \{c, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$.

Let f:X \rightarrow Y defined by f(a)=d,f(b)=d,f(c)=b,f(d)=d is pre continuous. Semi continuous, sp continuous,b-continuous, swg-continuous, gw α -continuous, sgb-continuous, rg*b-continuous, w α g-continuous, g α *-continuous, g*s-continuous and #g α -continuous,but not R[#]-continuous in X as $f^{-1}(a, b) = \{c\}$ is pre closed set, Semi pre closed set, sp pre closed set, b pre closed set, swg- pre closed set, gw α - pre closed set, sgb- pre closed set, rg*b- pre closed set, $\chi \alpha \hat{g}$ - pre closed set, g α *- pre closed set, set in X but not R[#]-closed set in X.

Remark 3.13: From the above discussions and known facts, the relation between $R^{\#}$ -continuous and some existing continuous functions in topological space is shown in the following figure.

A→ B Means the set A implies the set B but not conversely

A ← B Means the set A and the set B are independent of each other.

Theorem 3.14: Let f: $X \rightarrow Y$ be a map. Then the following statements are equivalent

- i. f is $R^{\#}$ -continuous
- ii. The inverse image of each open set in Y is $R^{\#}$ -open in X.

Proof:

- i. Let f: $X \to Y$ be a R[#]-continuous, let U be an open set in Y. Then U^c is closed in Y. Since f is R[#]-continuous, $f^{-1}(u^c)$ is R[#]-closed in X. But $f^{-1}(u^c) = X f^{-1}(u)$. Thus $f^{-1}(u)$ is R[#] open set in X.
- ii. Suppose that inverse image of each open set in Y is $R^{#}$ -open in X. Let V be any closed set in Y. By assumption $f^{-1}(v^c)$ is $R^{#}$ -open set in X. But $f^{-1}(v^c) = X f^{-1}(v)$. Thus $[X f^{-1}(v)]$ is $R^{#}$ -closed in X. Thus f is $R^{#}$ -continuous. Hence the proof.

Theorem 3.15: If $f: (X,\tau) \rightarrow (Y,\sigma)$ is a map then the following holds

i. f is contra r- irresolute and rg-continuous map then f is $R^{\#}$ -continuous.

- f is contra r- irresolute and rwg-continuous map then f is R[#]-continuous. ii.
- f is contra r- irresolute and gpr-continuous map then f is R[#]-continuous. iii.
- f is contra r- irresolute and r^g-continuous map then f is $R^{\#}$ -continuous. iv.

Proof:

- Let V be any regular closed set of Y. Since every regular closed set is closed, V is closed set in Y. Since F i. is rg-continuous and contra r-irresolute map, $f^{-1}(V)$ is rg-closed and regular open in X, by results 2.5(i), $f^{-1}(V)$ is R[#]-closed in X. Thus f is R[#]-continuous.
- Let V be any regular closed set of Y. Since every regular closed set is closed, V is closed set in Y. Since F ii. is rg-continuous and contra r-irresolute map, $f^{-1}(V)$ is rwg-closed and regular open in X. Now by results 2.5 [5] $f^{-1}(V)$ is R[#]-closed in X. Thus f is R[#]-continuous. Similarly we can prove iii,iv

Theorem 3.16: If $f: X \rightarrow Y$ is $R^{\#}$ -continuous then $f(R^{\#}cl(A) \subseteq cl(f(A)))$ for every subset A of X.

Proof: Let f: $X \rightarrow Y$ be R[#]-continuous. Let A be a subset of X. Then cl(f(A)) is closed in Y, this implies $f^{-1}[cl(f(A))]$ is R[#]-closed in X. Also $f(A) \subseteq cl(f(A))$ and $A \subseteq f^{-1}[cl(f(A))]$. Hence $R^{\#}cl(A) \subseteq f^{-1}[cl(f(A))].$ Therefore $f(R^{\#}cl(A)) \subseteq cl(f(A))$.

Theorem 3.17: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map. Then the following statements are equivalent

- For each point $x \in X$ and each open set V in Y with $f(x) \in V$, there is a R[#]-open set U in X such that $x \in U$ i. and $f(U) \subseteq V$.
- For each subset A of X, $f(R^{\#}cl(A)) \subseteq cl(f(A))$ ii.
- For each subset B of Y, $R^{\#}cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$ iii.

Proof:

(i) \rightarrow (ii) : Suppose (i) holds and let $y \in f(\mathbb{R}^{\#}cl(A))$ and V be an open set containing Y. From (i), there exists x $\in \mathbb{R}^{\#}$ cl(A) such that f(x)=y and $\mathbb{R}^{\#}$ -open set U containing x such that f(U) $\subseteq V$ and $x \in \mathbb{R}^{\#}$ cl(A). Then we know that for a subset A of a topological space X. Then $x \in R^{\#}cl(A)$ if and only if $U \cap A \neq \emptyset$ for every $R^{\#}$ -open set U containing x. That is $\emptyset \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$. Therefore $f(R^{\#}cl(A)) \subseteq cl(f(A))$.

(ii) \rightarrow (i): Suppose (ii) holds and V be an open set in Y containing f(x). Let $A \in f^{-1}(V^c)$. This implies that $x \notin A$. Since $f(\mathbb{R}^{\#}cl(A)) \subseteq cl(f(A)) \subseteq \mathbb{V}^{c}$. This implies that $\mathbb{R}^{\#}cl(A) \subseteq f^{-1}(\mathbb{V}^{c}) = A$. Since $x \notin A$ implies that $x \notin \mathbb{R}^{\#}cl(A)$ and we know that for a subset A of a topological space X. Then $x \in R^{\#}cl(A)$ if and only if $U \cap A \neq \emptyset$ for every $R^{\#}$ -open set U containing x, there exists a R[#]-open set U containing x such that $U \cap A = \emptyset$ then $U \subseteq A^c$ and hence $f(U) \subseteq f(A^c) \subseteq V$.

(ii) \rightarrow (iii): Suppose(ii) holds. Let B be any subset of Y. Replacing A by $f^{-1}(B)$ in (ii) we get $f(R^{\#}cl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$. Hence $R^{\#}cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

(iii) \rightarrow (ii): Suppose (iii) holds. Let B=f(A) where A is a subset of X. Then from (iii) we get $R^{\#}cl(f^{-1}(f(A))) \subseteq$ (iii) Suppose (iii) holds. Let D=I(X) where X is a subset of X. Then from (iii) we get $X \in f^{-1}(cl(f(A)))$. That is $R^{\#}cl(A) \subseteq f^{-1}(cl(f(A)))$. Therefore $R^{\#}cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$. **Definition 3.18:** Let (X, τ) be a topological space and $\tau_{R^{\#}} = \{V \subseteq X / R^{\#}cl(V^{c}) = V^{c}\}$ is a topology on X. **Definition 3.19:** A topological space (X, τ) is called a $T_{R}^{\#}$ space if every $R^{\#}$ -closed is closed. **Definition 3.20:** A topological space (X, τ) is called a $R^{\#}_{R}$ space if every $R^{\#}$ -closed is g-closed in X.

Remark 3.21: The composition of two R[#]-continuous maps need not be continuous.

Example 3.22: Let X=Y=Z={a, b, c, d}. Let $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ be a topology on X. $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}, \{a$ $\{a\}, \{a, b\}, \{a, b, c\}\}$ be a topology on Y and $\eta = \{\emptyset, Z, \{a, b\}, \{c, d\}\}$ be a topology on Z. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are identity functions, then f and g are R[#]-continuous but gof: $(X, \tau) \rightarrow (Z, \eta)$ is not a $R^{\#}$ -continuous map as the closed set $F=\{a, b\}$ in Z, $(gof)^{-1}(F)=\{a, b\}$ is not $R^{\#}$ -closed set in X.

Theorem 3.23: Let f: $X \rightarrow Y$ is $R^{\#}$ -continuous and g: $Y \rightarrow Z$ is continuous then gof: $X \rightarrow Z$ is $R^{\#}$ -continuous.

Proof: Let V be any open set in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. Since f is R[#]-continuous, $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is R[#]-open in X. Hence gof is R[#]-continuous.

Theorem 3.24: Let f: X \rightarrow Y and g: Y \rightarrow Z be R[#]-continuous functions and Y be T_R[#] space then gof: X \rightarrow Z is R[#]continuous.

Proof: Let V be any open set in Z. Since g is $\mathbb{R}^{\#}$ -continuous, $g^{-1}(V)$ is $\mathbb{R}^{\#}$ -open in Y and Y is $T_{\mathbb{R}}^{\#}$ space, then $g^{-1}(V)$ is open in Y. Since f is $\mathbb{R}^{\#}$ -continuous $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is $\mathbb{R}^{\#}$ -open in X. Hence gof is $\mathbb{R}^{\#}$ continuous.

Definition 3.25: A function f: $X \rightarrow Y$ is called a perfectly R[#]-continuous if $f^{-1}(V)$ is clopen (open and closed) set in X for every $R^{\#}$ -open set V in Y.

Theorem 3.26: If f: $X \rightarrow Y$ is continuous then the following holds.

i. If f is perfectly R[#]-continuous then it is R[#]-continuous

If f is perfectly R[#]-continuous then it is rg-continuous (resp. r^g-continuous, gpr-continuous, gsprii. continuous, rg β -continuous, rwg-continuous, wgr α -continuous)

Proof:

- Let U be open set in Y. Since f is perfectly continuous then $f^{-1}(U)$ is both open and closed in X. Since i. every open is $\mathbb{R}^{\#}$ -open, $f^{-1}(U)$ is $\mathbb{R}^{\#}$ -open in X. Hence f is R[#]-continuous.
- Let U be open set in Y. Since f is perfectly continuous then $f^{-1}(U)$ is both open and closed in X. Since ii. every open is rg- open (resp. r^g- open, gpr- open, gspr- open, rg β - open, rwg- open, wgr α - open) set in X. Hence f is rg-continuous (resp. r^g-continuous, gpr-continuous, gspr-continuous, rg β -continuous, rwgcontinuous, wgr α -continuous).

Definition 3.27: A function f: $X \rightarrow Y$ is called $R^{\#}$ -continuous if $f^{-1}(V)$ is $R^{\#}$ -closed set in X for every gclosed set V in Y.

Theorem 3.28: If f: $X \rightarrow Y$ is $R^{\#}$ -continuous then it is $R^{\#}$ -continuous but converse is not true.

Proof: Let f: $X \rightarrow Y$ be $R^{\#}$ -continuous. Let F be any closed set in Y. Since f is $R^{\#}$ -continuous, $f^{-1}(F)$ is $R^{\#}$ -closed set in X. Since every closed set is g-closed set in Y, then the inverse image $f^{-1}(F)$ is R[#]-closed set in X. Hence f is R[#]-continuous.

Example 3.29: Let X=Y={a, b, c}, let $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ be a topology on X and $\sigma = \{\emptyset, Y, \{a\}, \{b, c\}\}$ be a topology on Y. $\mathbb{R}^{\#}$ -C(X)={X, \emptyset , {c}, {a, c}, {b, c}}, $\mathbb{R}^{\#}$ -C(Y)={Y, \emptyset , {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Let f: (X, $\tau \to (Y, \sigma)$ be a function defined by f(a)=a, f(b)=b, f(c)=c is R[#]-continuous but not a R[#]*-continuous function as the g-closed set $F=\{a\}$ in Y, $f^{-1}(F)=\{a\}$ is not a R[#]-closed set in X. R[#]-irresolute and strongly R[#]-continuous functions

Definition 3.30: A function f: $X \rightarrow Y$ is called a R[#]-irresolute map if $f^{-1}(V)$ is R[#]-closed set in X for every R[#]-closed set V in Y.

Definition 3.31: A function f: $X \rightarrow Y$ is called a strongly R[#]-continuous map if $f^{-1}(V)$ is closed set in X for every $R^{\#}$ -closed set V in Y.

Theorem 3.32: If f: $(X,\tau) \rightarrow (Y, \sigma)$ is R[#]-irresolute then it is R[#]-continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ be R[#]-irresolute. Let F be any closed set in Y and hence R[#]-closed in Y. Since f is R[#]-irresolute, $f^{-1}(V)$ is R[#]-closed set in X. Therefore f is R[#]-continuous.

Example 3.33: Let $X=Y=\{a, b, c\}$. Let $\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ be a topology on X and $\sigma=\{\emptyset, Y, \{a\}, \{b, c\}\}$ be a topology on Y.R[#]-C(X)={X, \emptyset ,{c},{a,c},{b,c}}, R[#]-C(Y)={Y, \emptyset ,{a},{b},{c},{a,c},{b,c}}. Let f: (X, τ) \rightarrow (Y, σ) be a function defined by f(a)=a, f(b)=b, f(c)=c is $R^{\#}$ -continuous but not a $R^{\#}$ -irresolute map as the $R^{\#}$ -closed set $F=\{a\}$ in Y, $f^{-1}(F)=\{a\}$ is not a R[#]-closed set in X.

Theorem 3.34: If f: $(X,\tau) \rightarrow (Y, \sigma)$ is R[#]-irresolute if and only if $f^{-1}(V)$ is R[#]-open set in X for every open set V in Y.

Proof: Suppose that f: $X \rightarrow Y$ is R[#]-irresolute and U be R[#]-open set in Y. Then U^c is R[#]-closed in Y. By the definition of $\mathbb{R}^{\#}$ -irresolute, $f^{-1}(\mathbb{U}^c)$ is $\mathbb{R}^{\#}$ -closed in X. But $f^{-1}(\mathbb{U}^c) = X^- f^{-1}(\mathbb{U})$. Thus $f(\mathbb{U})$ is $\mathbb{R}^{\#}$ -open in X. Conversely, suppose that $f^{-1}(F)$ is $\mathbb{R}^{\#}$ -open set in X for every $\mathbb{R}^{\#}$ -open set F in Y. Let F be any

R[#]-closed set in Y. By the definition, $f^{-1}(F^c)$ is R[#]-open in X. But $f^{-1}(F^c)=X=f^{-1}(F)$. Thus X- $f^{-1}(F)$ is R[#]-open in X and hence $f^{-1}(F)$ is R[#]-closed in X. Therefore f is R[#]-irresolute.

Theorem 3.35: If f: $(X,\tau) \rightarrow (Y,\sigma)$ is R[#]-irresolute then it is R[#]*-continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ be R[#]-irresolute. Let F be any g-closed set in Y and hence f is R[#]-closed in Y. By the definition of R[#]-irresolute, $f^{-1}(F)$ is R[#]-closed set in X. Therefore f is R[#]*-continuous.

Example 3.36: Let X=Y={a, b, c}. Let $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, c\}\}$. R#- $C(X) = \{X, \emptyset, \{c\}, \{a, c\}, \{b, c\}\}, R^{\#}-C(Y) = \{Y, \emptyset, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. Let $f:(X, \tau) \to (Y, \sigma)$ be a function defined by f(a)=a, f(b)=b, f(c)=c is $\mathbb{R}^{\#*}$ -continuous but not a $\mathbb{R}^{\#}$ -irresolute map as the $\mathbb{R}^{\#}$ -closed set $F=\{a\}$ in Y, $f^{-1}(F) = \{a\}$ is not a R[#]-closed set in X.

Theorem 3.37: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ is R[#]-irresolute then $f(R^{\#}cl(A)) \subseteq gcl(f(A))$ for every subset A of X.

Proof: Let $A \subseteq X$ and gcl(f(A)) is $R^{\#}$ -closed in Y. Since f is $R^{\#}$ -irresolute, $f^{-1}(R^{\#}cl(A))$ is $R^{\#}$ -closed in X. Further $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(gcl(f(A)))$. By the definition of $R^{\#}$ -closure, $R^{\#}cl(A) \subseteq f^{-1}(gcl(A))$. Hence $f(R^{\#}cl(A)) \subseteq gcl(f(A)).$

Theorem 3.38: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\eta)$ be any two functions. Then

- i. gof: $(X, \tau) \rightarrow (Z, \eta)$ is R[#]-irresolute if g is R[#]-irresolute and f is R[#]-irresolute
- ii. gof: $(X, \tau) \rightarrow (Z, \eta)$ is R[#]-continuous if g is R[#]-continuous and f is R[#]-irresolute.

Proof: (i) Let F be any R[#]-closed set in (Z, η). Since g is R[#]-irresolute then $g^{-1}(F)$ is R[#]-closed set in (Y, *σ*). Since f is R[#]-irresolute $f^{-1}(g^{-1}(F))$ is R[#]-closed set in (X,τ) . But $(gof)^{-1}(F)=f^{-1}(g^{-1}(F))$ and hence gof is R[#]irresolute.

(ii) Let F be any R[#]-closed set in (Z, η). Since g is R[#]-continuous then $g^{-1}(F)$ is R[#]-closed set in (Y, σ). Since f is $\mathbb{R}^{\#}$ -irresolute $f^{-1}(g^{-1}(F))$ is $\mathbb{R}^{\#}$ -closed set in (X,τ) . But $(gof)^{-1}(F)=f^{-1}(g^{-1}(F))$ and hence gof is $\mathbb{R}^{\#}$ -continuous.

Theorem 3.39: If f: $(X,\tau) \rightarrow (Y, \sigma)$ is strongly R[#]-continuous then f is continuous but converse is not true.

Proof: Let f: $X \rightarrow Y$ be strongly R[#]-continuous. Let F be any closed set in Y. Since every closed set is R[#]-closed and hence F is R[#]-closed set in Y. Since f is strongly R[#]-continuous then $f^{-1}(F)$ is closed set in X. Therefore f is continuous.

Example 3.40: Let $X=Y=\{a, b, c\}$. Let $\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ be the topology on X, and $\sigma=\{\emptyset, Y, \{a\}, \{b, c\}\}$

{a, b}, {a, c}, {b, c}}. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a)=a, f(b)=b, f(c)=c is continuous but not strongly R[#]-continuous as the R[#]-closed set $F=\{a\}$ in Y, $f^{-1}(F)=\{a\}$ is not a closed set in X.

Theorem 3.41: Every strongly R[#]-continuous is strongly g-continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ be strongly R[#]-continuous. Let F be any g-closed set in Y. Since every g-closed set is R[#]-closed and hence F is R[#]-closed set in Y. Since f is strongly R[#]-continuous then $f^{-1}(F)$ is closed set in X and hence gclosed set in X. Therefore f is g-continuous.

Example 3.42: In example 3.40, f is strongly g-continuous but not a strongly R[#]-continuous as the R#closed set $F=\{a\}$ in Y, $f^{-1}(F)=\{a\}$ is not a closed set in X.

Theorem 3.43: If a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly R[#]-continuous if and only if $f^{-1}(U)$ is open set in X for every R[#]-open set U in Y.

Proof: Suppose that f: $X \rightarrow Y$ is strongly R[#]-continuous. Let U be any R[#]-open set in Y and hence U^c is R[#]-closed set in Y. Since f is strongly R[#]-continuous, $f^{-1}(U)$ is closed set in X. But $f^{-1}(U^c)=X-f^{-1}(U)$. Thus $f^{-1}(U)$ is open in Χ.

Conversely, suppose that $f^{-1}(U)$ is open set in X for every R[#]-open set U in Y. Let F be any R[#]-closed set in Y and hence F^c is $R^{\#}$ -open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is open in X and so $f^{-1}(F)$ is closed in X. Therefore f is strongly $R^{\#}$ -continuous.

Theorem 3.44: Every strongly continuous is strongly $R^{\#}$ -continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ is strongly continuous. Let G be any $R^{\#}$ -open set in Y and also any subset of Y. Since f is strongly continuous then $f^{-1}(G)$ is both open and closed in X, say $f^{-1}(G)$ is open in X. Therefore f is strongly R[#]continuous.

Example 3.45: Let X=Y={a, b, c}. Let $\tau = \{\emptyset, X, \{a\}, \{b, c\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function defined by f(a)=a, f(b)=b, f(c)=c is strongly R[#]- continuous but not a strongly continuous as the set $F=\{c\}$ in Y, $f^{-1}(F)=\{c\}$ is not a clopen set in X

Theorem 3.46: Every strongly R[#]-continuous is R[#]-continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ be strongly R[#]-continuous. Let F be any closed set in Y and hence R[#]-closed in Y. Since f is strongly R[#]-continuous, then $f^{-1}(F)$ is closed set in X and hence R[#]-closed set in X. Therefore f is R[#]-continuous. **Example 3.47:** In example 3.40, f is R[#]-continuous but not strongly R[#]-continuous as the R[#]-closed set F={a} in Y,

 $f^{-1}(F) = \{a\}$ is not a closed set in X.

Theorem 3.48: In discrete topological space, every strongly R[#]-continuous is strongly continuous.

Proof: Let f: $X \rightarrow Y$ be strongly R[#]-continuous in a discrete topological space. Let F be any subset of Y. Since F is both open and closed subset of Y in discrete space. We have the following two cases.

Case (i): Let F be any closed subset of Y and hence $R^{\#}$ -closed in Y. Since f is strongly $R^{\#}$ -continuous then $f^{-1}(F)$ is closed in X.

Case (ii): Let F be any open subset of Y and hence $R^{\#}$ -open in Y. Since f is strongly $R^{\#}$ -continuous then $f^{-1}(F)$ is open in X.

Therefore $f^{-1}(F)$ is both open and closed in X. Hence f is strongly continuous.

Theorem 3.49 Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be any two functions. Then

- gof: $X \rightarrow Z$ is strongly $R^{\#}$ -continuous if both f and g are $R^{\#}$ -continuous. i.
- gof: $X \rightarrow Z$ is strongly R[#]-continuous if g is strongly R[#]-continuous and f is continuous. ii.
- gof: $X \rightarrow Z$ is R[#]-irresolute if g is strongly R[#]-continuous and f is R[#]-continuous. iii.
- gof: $X \rightarrow Z$ is continuous if g is R[#]-continuous and f is strongly R[#]-continuous. iv.

Proof:

- Let G be R[#]-closed set in (Z,η) . Since g is strongly R[#]-continuous then $g^{-1}(G)$ is closed set in (Y,σ) and i. hence R[#]-closed set in (Y, σ). Since f is also strongly R[#]-continuous then $f^{-1}(q^{-1}(G))$ closed set in (X, τ). But $(gof)^{-1}(G)=f^{-1}(g^{-1}(G))$ and hence gof is strongly R[#]-continuous.
- Let G be R[#]-closed set in (Z, η). Since g is strongly R[#]-continuous then $g^{-1}(G)$ is closed set in (Y, σ). Since ii. f is continuous then $f^{-1}(q^{-1}(G))$ closed set in (X,τ) . But $(qof)^{-1}(G)=f^{-1}(q^{-1}(G))$ and hence gof is strongly R[#]-continuous.
- Let G be any R[#]-closed set in (Z, η). Since g is strongly R[#]-continuous then $g^{-1}(G)$ is closed set in (Y, σ). iii. Since f is $\mathbb{R}^{\#}$ -continuous then $f^{-1}(g^{-1}(G))$ is $\mathbb{R}^{\#}$ -closed set in (X,τ) . But $(gof)^{-1}(G)=f^{-1}(g^{-1}(G))$. Hence gof is R[#]-irresolute.
- Let G be any closed set in (Z,η) . Since g is R[#]-continuous then $g^{-1}(G)$ is R[#]-closed set in (Y, σ) . Since f is iv. strongly $R^{\#}$ continuous then $f^{-1}(q^{-1}(G))$ closed set in (X,τ) . But $(qof)^{-1}(G)=f^{-1}(q^{-1}(G))$. Hence gof is continuous.

Theorem 3.50: Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be any two functions. Then

- gof: $X \rightarrow Z$ is strongly R[#]-continuous if g is perfectly R[#]-continuous and f is continuous. i.
- gof: $X \rightarrow Z$ is perfectly R[#]-continuous if g is strongly R[#]-continuous and f is perfectly R#ii. continuous.

Proof:

- Let G be any R[#]-open set in (Z, η). Since g is perfectly R[#]-continuous then $g^{-1}(G)$ is clopen set in (Y, σ), i. say $g^{-1}(G)$ is open set in (Y,σ) . Since f is continuous then $f^{-1}(g^{-1}(G))$ open set in (X,τ) . Thus $(gof)^{-1}(G)=f^{-1}(g^{-1}(G))$. Hence gof is strongly R[#]-continuous.
- Let G be a R[#]-open set in (Z,η) . Since g is strongly R[#]-continuous then $g^{-1}(G)$ is open set in (Y,σ) . Since f ii. is perfectly R[#]-continuous then $f^{-1}(q^{-1}(G))$ clopen set in (X,τ) . But $(qof)^{-1}(G)=f^{-1}(q^{-1}(G))$. Hence gof is perfectly R[#]-continuous.

Theorem 3.51: Let (X,τ) be a discrete topological space and (Y,σ) be any topological space. Let $f:(X,\tau) \to (Y,\sigma)$ be a function. Then the following statements are equivalent.

- i.
- f is strongly R[#]-continuous f is perfectly R[#]-continuous. ii.

Proof:

(i) \rightarrow (ii): Let G be any open set in (Y, σ). Since f is strongly R[#]-continuous then $f^{-1}(G)$ is open set in (X, τ). But in discrete space, $f^{-1}(G)$ is closed set in (X,τ) . Thus $f^{-1}(G)$ is both open and closed in (X,τ) . Hence f is perfectly R[#]continuous.

(ii) \rightarrow (i): Let U be any R[#]-open set in (Y, σ). Since f is perfectly continuous then $f^{-1}(G)$ is both open and closed set in (X,τ) . Hence f is strongly R[#]-continuous.

Theorem 3.52: Let (X,τ) be any topological space and (Y,σ) be $T_R^{\#}$ space and f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map. Then the following are equivalent.

- f is strongly R[#]-continuous i.
- ii. f is continuous

Proof:

(i) \rightarrow (ii): Let F be any closed set in (Y, σ). Since every closed set is R[#]-closed and hence F is R[#]-closed in (Y, σ). Since f is strongly R[#] continuous then $f^{-1}(F)$ is closed set in (X,τ) . Hence f is continuous.

(i) \rightarrow (ii): Let G be any R[#]-closed set in (Y, σ). Since (Y, σ) is T_R[#] space, F is closed set in (Y, σ). Since f is continuous then $f^{-1}(F)$ is closed set in (X, τ). Hence f is strongly R[#]-continuous.

Theorem 3.53: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map. Both (X,τ) and (Y,σ) are $T_R^{\#}$ space. Then the following are equivalent.

- i. f is $R^{\#}$ -irresolute
- ii. f is strongly $R^{\#}$ -continuous
- iii. f is continuous
- iv. f is R[#]-continuous

The proof is obvious.

Theorem 3.54: Let X and Y be $_{R}^{\#}T_{g}$ spaces. Then for the function f: $(X,\tau) \rightarrow (Y,\sigma)$ the following are equivalent.

- i) f is gc-irresolute
- ii) f is $R^{\#}$ -irresolute

Proof:

(i) \rightarrow (ii): Let f: X \rightarrow Y be gc-irresolute. Let F be a g-closed set in Y and hence R[#]-closed in Y. Since f is gc-irresolute then $f^{-1}(F)$ is g-closed set in X and hence R[#]-closed set in X. Therefore f is R[#]-irresolute.

(i) \rightarrow (ii): Let f:X \rightarrow Y be R[#]-irresolute. Let F be a g-closed set in Y and hence R[#]-closed in Y. Since f is R[#]-irresolute then $f^{-1}(F)$ is R[#]-closed set in X. But X is $_{R}^{\#}T_{g}$ space and hence $f^{-1}(F)$ is g-closed set in X. Therefore f is g-irresolute.

References:-

- 1. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β continuous mappings, Bull, Fac. Sci. Assut Univ., 12(1983), 77-90.
- 2. S P Arya and R Gupta, On strongly continuous functions, Kyungpook Math. J.14:131:143, 1974.
- 3. S. P. Arya and T. M. Nour, Charactarization of S-normal spaces, Indian J. Pure Appl. Math 21(1990), 717-719
- 4. K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Math., 12(1991), 5-13
- 5. Basavaraj M Ittanagi and Raghavendra K On R[#]-closed sets in Topological spaces, IJMA- 8(8),2017,134-141
- 6. Basavaraj M Ittanagi and Raghavendra K On R[#]-open sets in Topological spaces, JCMS- 8(11),2017,614-620
- S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, wα Closed sets in Topological spaces, The Global J. Appl. Math. and Math. sci. 2, 2009, 33-63.
- 8. D.E.Cameron, Properties of s-closed spaces Proc. Amer. Math. Soc., 72 (1978), 581-586.
- C. Devamanoharan, S. Pious Missier and S. Jafari, ρ-Closed sets in Topological Spaces, European Journal of Pure and Applied Mathematics, Vol. 5 No. 4, 2012, 554-566.
- 10. R. Devi, K. Balachandran and H. Maki, On generalized α continuous maps, Far East J. Math.Sci. Spacial volume, Part 1 (1997), 1-15
- C. Dhanapakyam , J. Subashini and K. Indirani, ON βwg* set and continuity in topological spaces, IJMA-5(5), 2014, 222-233
- 12. J. Dontchev, On generalizing semi pre open sets, Mem. Fac. Sci. Kochi Univ. Scr. A. Math.16:35:48, 1995.
- 13. J Dontchev, Contra continuous functions and Strongly s-closed spaces, Int. J. Math. Sci. 19(1996), 15-31
- 14. O. N. Jastad, On some classes of nearly open sets, Pacific J. Math, 15(1965), 961-970
- 15. N Levine, Semi open sets and Semi Continuity in Topological spaces, Amer. Math. Monthly, 70(1963) 36-41
- 16. N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- 17. H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α closed sets and α generalized closed sets, Mem Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63
- H. Maki. J Umehara and T. Noiri, Every Topological space is T¹/₂, Mem. Fac. Sci. Kochi. Univ. Math, 17 1996, 33-42
- 19. C. Mukundhan and N. Nagaveni, On semi weakly g* continuous function in topological spaces, Int. J of Math. Sci. and Eng. Appl., 1:361:370, 2011.
- 20. N. Nagaveni, Studies on on Generalizations of Homeomorphisms in Topological Spaces, Ph. D. Thesies, Bharathiar University, Coimbatore, 2000
- 21. Savithiri D and Janaki C, .On Regular^Generalized closed sets in topological spaces International Journal of Mathematical Archive-4(4), 2013, 162-169.
- 22. Sharmistha Bhattacharya, On Generalized Regular Closed Sets, Int. J. Contemp. Math. Sciences, Vol.6, 2011, no. 3, 145 152.

- 23. T. Shyla Isac Mary and P. Thangavelu, On Regular Pre-Semi closed sets in topological spaces, KBM J of Math. Sci. and Comp. Applications 2010(1), 9-17.
- 24. M.Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math Soci, 41 (1937), 374-481.
- 25. Subashini jesu rajan , On βwg** set and Continuity in Topological Spaces, International journal of computing, Vol 4 Issue 3, July 2014.
- P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi Fukuoka Univ. Ed. Part III 40, 33-40 1991.
- 27. P. Sundaram, Studies on Generalizations of Continuous maps in Topological Spaces, Ph. D. Thesies, Bharathiar University, Coimbatore, 1991
- 28. P. Sundaram and M.Sheik John, On w-closed sets in Topology, Acta Ciencia Indica, 4 (2000), 389-392.
- 29. M. K. R. S. Veera Kumar, g*p-closed sets, Acts Ciencia indica, 28(1), 2002, 51-60.
- 30. M.K.R.S. Veera Kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ., (Math.) 21(2000), 1-19.
- 31. R. S. Wali and Prabhavati S. Mandalgeri, Onαrw-Continuous and αrw-Irresolute Maps in Topological Spaces, IOSR Journal of MathematicsVol. 10, Issue 6, Ver. Vi Dec. 2014, 14-24.