ON R^*-CONTINUOUS AND R^*-IRRESOLUTE MAPS IN TOPOLOGICAL SPACES.

Basavaraj M. Ittanagi1 and Raghavendra K2.

1. Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-03, Affiliated to VTU, Belagavi, Karnataka state, India.
2. Department of Mathematics, ACS College of Engineering, Bengaluru-74, Affiliated to VTU, Belagavi, Karnataka state, India.

Abstract

In this paper, a new class of continuous functions called R^*-continuous maps in topological spaces are introduced and studied. Also some of their properties have been investigated. We also introduce R^*-irresolute maps, strongly R^*-continuous maps, perfectly R^*-continuous maps and discussed some of their properties.

Manuscript Info

Keywords:
R^*-closed sets, R^*-open sets, R^*-continuous maps, R^*-irresolute maps, strongly R^*-continuous maps and perfectly R^*-continuous maps.

Introduction:

In general topology continuous functions play a very vital role. The regular continuous and completely continuous functions are introduced and studied by Arya S P [2]. Later, R S Walli et al [33] introduced and investigated $\alpha r w$-continuous functions in topological space. Recently, Basavaraj M Ittanagi et al [5] introduced and studied the basic properties of R^*-closed sets in topological space. The aim of this paper is to introduce R^*-continuous and irresolute maps in topological space.

Preliminaries:

In this paper X or (X, τ) and Y or (Y, σ) denote topological spaces on which no separation axioms are assumed. For a subset A of a topological space X, $\text{cl}(A)$, $\text{int}(A)$, $X-A$ or A^c represent closure of A, interior of A and complement of A in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called a

i. Regular open set [26] if $A=\text{int}(\text{cl}(A))$ and regular closed if $A=\text{cl}(\text{int}(A))$
ii. Regular semi open set [9] if there exists a regular open set U such that $U \subseteq A \subseteq \text{cl}(U)$
iii. Generalized closed set (g-closed) [18] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
iv. R^*-closed set [5] if $\text{gcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is R^* open in (X, τ).

The complement of the closed sets mentioned above are their open sets respectively and vice versa.

Corresponding Author:- Basavaraj M. Ittanagi.
Address:- Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-03, Affiliated to VTU, Belagavi, Karnataka state, India.
Definition 2.2: A function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is called a
i. Continuous if \(f^{-1}(V) \) is closed in \(X \) for every closed subset \(V \) of \(Y \).
ii. Regular continuous \([2]\) if \(f^{-1}(V) \) is \(r \)-closed in \(X \) for every closed subset \(V \) of \(Y \).
iii. Completely continuous \([2]\) if \(f^{-1}(V) \) is regular closed in \(X \) for every closed subset \(V \) of \(Y \).
iv. \(\alpha \)-continuous \([14]\) if \(f^{-1}(V) \) is \(\alpha \)-closed in \(X \) for every closed subset \(V \) of \(Y \).
v. Semi continuous \([15]\) if \(f^{-1}(V) \) is semi closed in \(X \) for every closed subset \(V \) of \(Y \).
vi. Semi pre continuous \([1]\) if \(f^{-1}(V) \) is semi pre closed in \(X \) for every closed subset \(V \) of \(Y \).
vii. Strongly Continuous \([24]\) if \(f^{-1}(V) \) is clopen in \(X \) for every subset \(V \) of \(Y \).
viii. \(g \)-continuous \([4]\) if \(f^{-1}(V) \) is \(g \) closed in \(X \) for every closed subset \(V \) of \(Y \).
ix. \(w \)-continuous \([28]\) if \(f^{-1}(V) \) is \(w \) closed in \(X \) for every closed subset \(V \) of \(Y \).
x. \(gr \)-continuous \([22]\) if \(f^{-1}(V) \) is \(gr \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xi. \(g^* \)-continuous \([30]\) if \(f^{-1}(V) \) is \(g^* \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xii. \(swg^* \)-continuous \([19]\) if \(f^{-1}(V) \) is \(swg^* \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xiii. \(\beta wg^* \)-continuous \([11]\) if \(f^{-1}(V) \) is \(\beta wg^* \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xiv. \(r^g \)-continuous \([21]\) if \(f^{-1}(V) \) is \(r^g \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xv. \(rwg \)-continuous \([20]\) if \(f^{-1}(V) \) is \(rwg \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xvi. \(\beta wg^{**} \)-continuous \([25]\) if \(f^{-1}(V) \) is \(\beta wg^{**} \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xvii. \(g \alpha \)-continuous \([10]\) if \(f^{-1}(V) \) is \(g \alpha \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xviii. \(swg \)-continuous \([20]\) if \(f^{-1}(V) \) is \(swg \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xix. \(ag \)-continuous \([17]\) if \(f^{-1}(V) \) is \(ag \) closed in \(X \) for every closed subset \(V \) of \(Y \).
x. \(g \alpha \)-continuous \([18]\) if \(f^{-1}(V) \) is \(g \alpha \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xii. \(w \)-continuous \([28]\) if \(f^{-1}(V) \) is \(w \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xiii. \(w \alpha \)-continuous \([7]\) if \(f^{-1}(V) \) is \(w \alpha \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xiv. \(\alpha \alpha \)-continuous \([31]\) if \(f^{-1}(V) \) is \(\alpha \alpha \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xv. \(\rho \)-continuous \([9]\) if \(f^{-1}(V) \) is \(\rho \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xvi. \(cg \)-continuous \([26]\) if \(f^{-1}(V) \) is \(cg \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xvii. \(g \alpha \)-continuous \([3]\) if \(f^{-1}(V) \) is \(g \alpha \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xviii. \(rps \)-continuous \([23]\) if \(f^{-1}(V) \) is \(rps \) closed in \(X \) for every closed subset \(V \) of \(Y \).
xix. \(gsp \)-continuous \([12]\) if \(f^{-1}(V) \) is \(gsp \) closed in \(X \) for every closed subset \(V \) of \(Y \).

Definition 2.3:
A map \(f: (X, \tau) \rightarrow (Y, \sigma) \) is called a
i. Irresolute if \(f^{-1}(V) \) is semi closed in \(X \) for every semi closed subset \(V \) of \(Y \).
ii. \(w \)-Irresolute \([28]\) if \(f^{-1}(V) \) is \(w \)-closed in \(X \) for every \(w \)-closed subset \(V \) of \(Y \).
iii. \(gc \)-Irresolute \([27]\) if \(f^{-1}(V) \) is \(gc \) closed in \(X \) for every \(gc \)-closed subset \(V \) of \(Y \).
iv. Contra \(w \)-Irresolute \([28]\) if \(f^{-1}(V) \) is \(w \) open in \(X \) for every \(w \)-closed subset \(V \) of \(Y \).
v. Contra Irresolute \([14]\) if \(f^{-1}(V) \) is semi open in \(X \) for every semi closed subset \(V \) of \(Y \).
vi. Contra \(r \)-irresolute \([2]\) if \(f^{-1}(V) \) is regular open in \(X \) for every regular closed subset \(V \) of \(Y \).
vii. Contra continuous \([13]\) if \(f^{-1}(V) \) is open in \(X \) for every closed subset \(V \) of \(Y \).

Results 2.4[5]:
i. Every closed (respectively regular closed, \(g \)-closed, \(w \)-closed, \(\bar{g} \)-closed set) set is \(R^8 \)-closed set in \(X \).
ii. Every \(R^8 \)-closed set in \(X \) is \(rg \)-closed (respectively \(gpr \)-closed, \(rwg \)-closed, \(gspr \)-closed, \(r^g \)-closed, \(rg \beta \)-closed) set in \(X \).

Results 2.5[5]:
Let \(A \) be a subset of a topological space \((X, \tau)\)
i. If \(A \) is regular open and \(rg \)-closed set in \((X, \tau)\) then \(A \) is \(R^8 \)-closed set in \((X, \tau)\).
ii. If \(A \) is \(g \)-open and \(rg \)-closed set in \((X, \tau)\) then \(A \) is \(R^8 \)-closed set in \((X, \tau)\).
iii. If \(A \) is a regular-open and \(rwg \)-closed set in \((X, \tau)\) then \(A \) is \(R^8 \)-closed in \((X, \tau)\).
iv. If \(A \) is a regular-open and \(gpr \)-closed set in \((X, \tau)\) then \(A \) is \(R^8 \)-closed in \((X, \tau)\).
v. If \(A \) is regular open and \(r^g \)-closed set in \((X, \tau)\) then \(A \) is \(R^8 \)-closed in \((X, \tau)\).
vi. If \(A \) is regular open and \(\beta wg^{**} \)-closed set in \((X, \tau)\) then \(A \) is \(R^8 \)-closed set in \((X, \tau)\).

\(R^8 \)-Continuous Functions:-
Definition 3.1:
A function f from a topological space X to a topological space Y is called a R^k-continuous if inverse image of every closed set in Y is a R^k-closed set in X.

Example 3.2: Let $X=Y=[a,b,c]$. Let $\tau=\{\emptyset,X,\{a\},\{b\},\{a, b\},\{a, c\}\}$ be a topology on X and $\sigma=\{\emptyset,Y,\{a\},\{b\},\{a, b\}\}$ be a topology on Y. $R^kC(X)=(X,\emptyset,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\})$ and closed set of Y are $\sigma=\{Y,\emptyset,\{c\},\{a, c\},\{b, c\}\}$. Let $f:X\rightarrow Y$ be defined by $f(a)=a, f(b)=c, f(c)=c$ is R^k-continuous.

Theorem 3.3: Every continuous function is R^k-continuous but not conversely.

Proof: Let $f:X\rightarrow Y$ be continuous and F be any closed set in Y. Then $f^{-1}(F)$ is closed set in X. Since every closed set in X is R^k-closed then $f^{-1}(F)$ is R^k-closed set in X. Therefore f is R^k-continuous.

Example 3.4: Let $X=\{a, b, c\}$. Let $\tau=\{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$ be a topology on X and $\sigma=\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$ be a topology on Y, closed set of X are $\tau=\{X, \emptyset, \{a\}, \{b\}\}$, closed set of Y are $\sigma=\{Y, \emptyset, \{c\}, \{a, c\}, \{b, c\}\}$. $R^kC(X)=(X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\})$. Let $f:X\rightarrow Y$ defined by $f(a)=a, f(b)=c, f(c)=c$ is R^k-continuous.

Theorem 3.5:

i. Every g-continuous is R^k-continuous but not conversely.

ii. Every w-continuous is R^k-continuous but not conversely.

iii. Every \tilde{g}-continuous is R^k-continuous but not conversely.

iv. Every r-continuous is R^k-continuous but not conversely.

Proof: The proof follows from the fact that every g-closed (resp. w-closed, \tilde{g}-closed and r-closed) set is R^k-closed set.

Similarly we can prove ii, iii, iv.

Example 3.6: Let $X=Y=\{a, b, c, d\}$, let $\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ be a topology on X and $\sigma=\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$ be a topology on Y. Closed sets of $X=\{X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$, closed sets of $Y=\{Y, \emptyset, \{a\}, \{b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. Let $f:X\rightarrow Y$ defined by $f(a)=a, f(b)=d, f(c)=d, f(d)=b$ is R^k-continuous function, as the closed set $\{d\}$ in Y, then $f^{-1}(\{d\})=\{a, b, c\}$ is not g-closed set in X.

Theorem 3.7: Every R^k-continuous function is rg-continuous but not conversely.

Proof: Let $f:X\rightarrow Y$ be R^k-continuous and F be a closed set in Y, by definition $f^{-1}(F)$ is R^k-closed set in X. Since every R^k-closed set is rg-closed, then $f^{-1}(F)$ is rg closed in X. Hence f is rg-continuous.

Theorem 3.8:

i. Every R^k-continuous function is $f\tilde{g}$ continuous but not conversely.

ii. Every R^k-continuous function is $gspr$ continuous but not conversely.

iii. Every R^k-continuous function is gp continuous but not conversely.

iv. Every R^k-continuous function is rg continuous but not conversely.

v. Every R^k-continuous function is rwg continuous but not conversely.

vi. Every R^k-continuous function is wgr continuous but not conversely.

Proof: The proof follows from the fact that every R^k-closed set is $f\tilde{g}$-closed (resp. $gspr$-closed, gpr-closed, rg-closed, rwg-closed, wgr-closed) set in X.

Similarly we can prove (i), (iii), (iv), (v) and (vi).

Example 3.9: Let $X=Y=\{a, b, c\}$. Let $\tau=\{\emptyset, X, \{a\}, \{b\}\}$ be a topology on X and $\sigma=\{\emptyset, Y, \{a\}, \{b\}, \{a, c\}\}$ be a topology on Y. Closed sets of $X=\{X, \emptyset, \{a\}, \{b\}, \{a, c\}\}$, Y=\{Y, \emptyset, \{c\}\}. $R^kC(X)=(X, \emptyset, \{a\}, \{b\}, \{a, c\})$. Let $f:X\rightarrow Y$ defined by $f(a)=a, f(b)=a, f(c)=b$ is rg continuous, r^*g-continuous, $gspr$-continuous, gp-continuous, g^*p-continuous, wgr-continuous, $pgpr$-continuous, $wpsp$-continuous and gr^{**}-continuous in X, as $f^{-1}(d)=\{a, b, c\}$ is not a rs-closed set.
gs-closed set, \(\alpha\)-closed set, gp-closed set, \(g^*\)-closed set, \(g^*p\)-closed set, \(w\alpha\)-closed set, pgpr-closed set, rps-closed set and \(g\alpha^*\)-closed set in \(X\).

Example 3.12: Let \(X=\{a, b, c, d\}\), let \(\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}\) be a topology on \(X\) and \(\sigma=\{\emptyset, Y, \{a\}, \{a, b\}, \{a, b, c\}\}\) be a topology on \(Y\). Closeds sets of \(X=\{X, \emptyset, \{d\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}\) and closed sets of \(Y=\{Y, \emptyset, \{d\}, \{c, d\}, \{b, c, d\}\}\). \(R^\#\)-C(X)=\{X, \emptyset, \{d\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}. Let \(f: X\to Y\) defined by \(f(a)=d, f(b)=d, f(c)=b, f(d)=d\) is pre continuous. Semi continuous, sp continuous, b-continuous, swg-continuous, g\(\alpha\)-continuous, sgb-continuous, rg\(^*\)b-continuous, wrg-continuous, g\(\alpha^*\)-continuous, g\(s^*\)-continuous and \(#g\alpha\)-continuous, but not \(R^\#\)-continuous in \(X\) as \(f^{-1}(a, b) = \{c\}\) is pre closed set, Semi pre closed set, sp pre closed set, b pre closed set, swg- pre closed set, g\(\alpha\)-pre closed set, sgb- pre closed set, rg\(^*\)b- pre closed set, wrg- pre closed set, g\(\alpha^*\)-pre closed set, g\(s^*\)-pre closed set and \(#g\alpha\)-closed set in \(X\) but not \(R^\#\)-closed set in \(X\).

Remark 3.13: From the above discussions and known facts, the relation between \(R^\#\)-continuous and some existing continuous functions in topological space is shown in the following figure.

![Diagram showing the relation between \(R^\#\)-continuous and other continuous functions.]

Theorem 3.14: Let \(f: X\to Y\) be a map. Then the following statements are equivalent
i. \(f\) is \(R^\#\)-continuous
ii. The inverse image of each open set in \(Y\) is \(R^\#\)-open in \(X\).

Proof:

i. Let \(f: X\to Y\) be a \(R^\#\)-continuous, let \(U\) be an open set in \(Y\). Since \(f\) is \(R^\#\)-continuous, \(f^{-1}(U)\) is \(R^\#\)-closed in \(X\). But \(f^{-1}(U^c) = X - f^{-1}(U)\). Thus \(f^{-1}(\emptyset)\) is \(R^\#\)-open set in \(X\).

ii. Suppose that inverse image of each open set in \(Y\) is \(R^\#\)-open in \(X\). Let \(V\) be any closed set in \(Y\). By assumption \(f^{-1}(V^c)\) is \(R^\#\)-open set in \(X\). But \(f^{-1}(V^c) = X - f^{-1}(V)\). Thus \(f^{-1}(V^c)\) is \(R^\#\)-closed in \(X\). Thus \(f\) is \(R^\#\)-continuous. Hence the proof.

Theorem 3.15: If \(f: (X, \tau) \to (Y, \sigma)\) is a map then the following holds
i. If \(f\) is contra \(r\)-irresolute and \(r\)-continuous map then \(f\) is \(R^\#\)-continuous.
Theorem 3.16: If \(f : X \rightarrow Y \) is \(R^k \)-continuous then \(f(R^k(cl(A)) \subseteq cl(f(A)) \) for every subset \(A \) of \(X \).

Proof: Let \(f: X \rightarrow Y \) be \(R^k \)-continuous. Let \(A \) be a subset of \(X \). Then \(cl(f(A)) \) is closed in \(Y \), this implies \(f^{-1}[cl(f(A))] \) is \(R^k \)-closed in \(X \). Also \(f(A) \subseteq cl(f(A)) \) and \(A \subseteq f^{-1}[cl(f(A))] \). Hence \(R^k(cl(A)) \subseteq f^{-1}[cl(f(A))] \). Therefore \(f(R^k(cl(A)) \subseteq cl(f(A)) \).

Theorem 3.17: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a map. Then the following statements are equivalent

i. For each point \(x \in X \) and each open set \(V \) in \(Y \) with \(f(x) \in V \), there is a \(R^k \)-open set \(U \) in \(X \) such that \(x \in U \) and \(f(U) \subseteq V \).

ii. For each subset \(A \) of \(X \), \(f(R^k(cl(A)) \subseteq cl(f(A)) \)

iii. For each subset \(B \) of \(Y \), \(R^k(cl(f^{-1}(B)) \subseteq f^{-1}(cl(B)) \)

Proof:

(i) \rightarrow (ii): Suppose (i) holds and let \(y \in f(R^k(cl(A))) \) and \(V \) be an open set containing \(y \). From (i), there exists \(x \in R^k(cl(A)) \) such that \(f(x)=y \) and \(R^k \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \) and \(x \in R^k(cl(A)) \). Then we know that for a subset \(A \) of a topological space \(X \), \(cl(R^k(cl(A))) \) and only if \(U \cap A \neq \emptyset \) for every \(R^k \)-open set \(A \) containing \(x \). That is \(\emptyset \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq f(U) \). Therefore \(f(R^k(cl(A)) \subseteq cl(f(A)) \).

(ii) \rightarrow (i): Suppose (ii) holds and let \(A \) be an open set in \(Y \) containing \(f(x) \). Let \(A \subseteq f^{-1}(V) \). This implies that \(x \in A \). Since \(f(R^k(cl(A)) \subseteq cl(f(A)) \subseteq V \). This implies that \(R^k(cl(A)) \subseteq f^{-1}(V)=A \). Since \(x \in A \) implies that \(x \in R^k(cl(A)) \) and we know that for a subset \(A \) of a topological space \(X \), \(x \in R^k(cl(A)) \) if and only if \(U \cap A \neq \emptyset \) for every \(R^k \)-open set \(A \) containing \(x \). Therefore \(f(R^k(cl(A)) \subseteq cl(f(A)) \).

Definition 3.18: Let \((X, \tau) \) be a topological space and \(\tau^{g}_{g}=\{V \subseteq X \cap R^k(cl(V))=V \} \) is a topology on \(X \).

Definition 3.19: A topological space \((X, \tau) \) is called a \(R^k \)-space if every \(R^k \)-closed is closed.

Definition 3.20: A topological space \((X, \tau) \) is called a \(R^k \)-space if every \(R^k \)-closed is g-closed in \(X \).

Remark 3.21: The composition of two \(R^k \)-continuous maps need not be continuous.

Example 3.22: Let \(X=\mathbb{Z}=\{a, b, c, d \} \) and \(\tau=\{\emptyset, X, \{a, b, c, d \}, \{a, b \}, \{a, c \}, \{a, d \}, \{b, c \}, \{b, d \}, \{c, d \} \} \). Then \(f:X \rightarrow Y \) is \(R^k \)-continuous and \(g : Y \rightarrow Z \) is \(R^k \)-continuous but \(gof:X \rightarrow Z \) is not \(R^k \)-continuous.

Theorem 23.23: Let \(f: X \rightarrow Y \) be \(R^k \)-continuous and \(g: Y \rightarrow Z \) be \(R^k \)-continuous then \((gof): X \rightarrow Z \) is \(R^k \)-continuous.

Theorem 23.24: Let \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \) be \(R^k \)-continuous and \(Y \) be \(T^g_{g} \)-space then \(g: X \rightarrow Z \) is \(R^k \)-continuous.

Proof: Let \(V \) be an open set in \(Z \) since \(g \) is continuous, \(g^{-1}(V) \) is open in \(Y \). Since \(f \) is \(R^k \)-continuous, \(f^{-1}(g^{-1}(V))=gof^{-1}(V) \) is \(R^k \)-open in \(X \). Hence \(g \) is \(R^k \)-continuous.

Definition 3.25: A function \(f: X \rightarrow Y \) is called a perfectly \(R^k \)-continuous if \(f^{-1}(V) \) is clopen (open and closed) set in \(X \) for every \(R^k \)-open set \(V \) in \(Y \).

Theorem 3.26: If \(f: X \rightarrow Y \) is continuous then the following holds.

i. If \(f \) is perfectly \(R^k \)-continuous then it is \(R^k \)-continuous
ii. If \(f \) is perfectly \(R^\delta \)-continuous then it is rg-continuous (resp. \(r^\bullet g \)-continuous, gpr-continuous, gspr-continuous, rg\(\beta \)-continuous, rwg-continuous, wgr\(\alpha \)-continuous)

Proof:

i. Let \(U \) be open set in \(Y \). Since \(f \) is perfectly continuous then \(f^{-1}(U) \) is both open and closed in \(X \). Since every open is \(R^\delta \)-open, \(f^{-1}(U) \) is \(R^\delta \)-open in \(X \). Hence \(f \) is \(R^\delta \)-continuous.

ii. Let \(U \) be open set in \(Y \). Since \(f \) is perfectly continuous then \(f^{-1}(U) \) is both open and closed in \(X \). Since every open is \(rg \)-open (resp. \(r^\bullet g \)-open, gpr-open, gspr-open, \(rg\beta \)-open, rwg-open, wgr\(\alpha \)-open) set in \(X \). Hence \(f \) is rg-continuous (resp. \(r^\bullet g \)-continuous, gpr-continuous, gspr-continuous, \(rg\beta \)-continuous, rwg-continuous, wgr\(\alpha \)-continuous).

Definition 3.27: A function \(f: X \rightarrow Y \) is called \(R^\delta \)-continuous if \(f^{-1}(V) \) is \(R^\delta \)-closed set in \(X \) for every \(g \)-closed set \(V \) in \(Y \).

Theorem 3.28: If \(f: X \rightarrow Y \) is \(R^\delta \)-continuous then it is \(R^\delta \)-continuous but converse is not true.

Proof: Let \(f: X \rightarrow Y \) be \(R^\delta \)-continuous. Let \(F \) be any closed set in \(Y \). Since \(f \) is \(R^\delta \)-continuous, \(f^{-1}(F) \) is \(R^\delta \)-closed set in \(X \). Since every closed set in \(Y \) is \(g \)-closed set in \(Y \), then \(f^{-1}(F) \) is \(R^\delta \)-closed set in \(X \). Hence \(f \) is \(R^\delta \)-continuous.

Example 3.29: Let \(X=Y=\{a, b, c\} \), \(\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) be a topology on \(X \) and \(\sigma=\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\} \) be a topology on \(Y \). \(R^\delta \)-C(\(X=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \), \(R^\delta \)-C(\(Y=\{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function defined by \(f(a)=a \), \(f(b)=b \), \(f(c)=c \). Thus \(f \) is \(R^\delta \)-continuous but not a \(R^\delta \)-continuous function as the \(g \)-closed set \(F=\{a\} \) in \(Y \), \(f^{-1}(F)=\{a\} \) is not a \(R^\delta \)-closed set in \(X \).

R\(^\delta \)-Irresolute and strongly \(R^\delta \)-continuous functions

Definition 3.30: A function \(f: X \rightarrow Y \) is called \(R^\delta \)-irresolute map if \(f^{-1}(V) \) is \(R^\delta \)-closed set in \(X \) for every \(R^\delta \)-closed set \(V \) in \(Y \).

Definition 3.31: A function \(f: X \rightarrow Y \) is called a strongly \(R^\delta \)-irresolute map if \(f^{-1}(V) \) is closed set in \(X \) for every \(R^\delta \)-closed set \(V \) in \(Y \).

Theorem 3.32: If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(R^\delta \)-irresolute then it is \(R^\delta \)-continuous but not conversely.

Proof: Let \(f: X \rightarrow Y \) be \(R^\delta \)-irresolute. Let \(F \) be any closed set in \(Y \) and hence \(R^\delta \)-closed in \(Y \). Since \(f \) is \(R^\delta \)-irresolute, \(f^{-1}(F) \) is \(R^\delta \)-closed set in \(X \). Therefore \(f \) is \(R^\delta \)-continuous.

Example 3.33: Let \(X=Y=\{a, b, c\} \), \(\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) be a topology on \(X \) and \(\sigma=\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\} \) be a topology on \(Y \). \(R^\delta \)-C(\(X=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \), \(R^\delta \)-C(\(Y=\{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function defined by \(f(a)=a \), \(f(b)=b \), \(f(c)=c \). Thus \(f \) is \(R^\delta \)-irresolute map as the \(R^\delta \)-closed set \(F=\{a\} \) in \(Y \), \(f^{-1}(F)=\{a\} \) is not a \(R^\delta \)-closed set in \(X \).

Theorem 3.34: If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(R^\delta \)-irresolute if and only if \(f^{-1}(V) \) is \(R^\delta \)-open set in \(X \) for every open set \(V \) in \(Y \).

Proof: Suppose that \(f: X \rightarrow Y \) is \(R^\delta \)-irresolute and \(U \) be \(R^\delta \)-open set in \(Y \). Then \(U^c \) is \(R^\delta \)-closed in \(Y \). By the definition of \(R^\delta \)-irresolute, \(f^{-1}(U) \) is \(R^\delta \)-closed in \(X \). But \(f^{-1}(U^c)=X-f^{-1}(U) \). Thus \(f(U) \) is \(R^\delta \)-open in \(X \).

Conversely, suppose that \(f^{-1}(F) \) is \(R^\delta \)-open set in \(X \) for every \(R^\delta \)-open set \(F \) in \(Y \). Let \(F \) be any \(R^\delta \)-closed set in \(Y \). By the definition, \(f^{-1}(F) \) is \(R^\delta \)-open in \(X \). But \(f^{-1}(F)=X-f^{-1}(F) \). Thus \(f \) is \(R^\delta \)-irresolute in \(X \) and hence \(f^{-1}(F) \) is \(R^\delta \)-closed in \(X \). Therefore \(f \) is \(R^\delta \)-irresolute.

Theorem 3.35: If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(R^\delta \)-irresolute then it is \(R^\delta \)-continuous but not conversely.

Proof: Let \(f: X \rightarrow Y \) be \(R^\delta \)-irresolute. Let \(F \) be any \(g \)-closed set in \(Y \) and hence \(f \) is \(R^\delta \)-closed in \(Y \). By the definition of \(R^\delta \)-irresolute, \(f^{-1}(F) \) is \(R^\delta \)-closed set in \(X \). Therefore \(f \) is \(R^\delta \)-continuous.

Example 3.36: Let \(X=Y=\{a, b, c\} \), \(\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \), \(\sigma=\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\} \). \(R^\delta \)-C(\(X=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \), \(R^\delta \)-C(\(Y=\{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function defined by \(f(a)=a \), \(f(b)=b \), \(f(c)=c \). Thus \(f \) is \(R^\delta \)-irresolute map as the \(R^\delta \)-closed set \(F=\{a\} \) in \(Y \), \(f^{-1}(F)=\{a\} \) is not a \(R^\delta \)-closed set in \(X \).

Theorem 3.37: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be \(R^\delta \)-irresolute then \(f(R^\delta cl(A)) \subseteq gcl(f(A)) \) for every subset \(A \) of \(X \).

Proof: Let \(A \subseteq X \) and \(gcl(f(A)) \) is \(R^\delta \)-closed in \(Y \). Since \(f \) is \(R^\delta \)-irresolute, \(f^{-1}(R^\delta cl(A)) \) is \(R^\delta \)-closed in \(X \). Further \(A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(gcl(f(A))) \). By the definition of the \(R^\delta \)-closure, \(R^\delta cl(A) \subseteq f^{-1}(gcl(A)) \). Hence \(f(R^\delta cl(A)) \subseteq gcl(f(A)) \).
Theorem 3.38: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) be any two functions. Then

i. \(\text{gof}: (X, \tau) \rightarrow (Z, \eta) \) is \(R^k \)-irresolute if \(g \) is \(R^k \)-irresolute and \(f \) is \(R^k \)-irresolute

ii. \(\text{gof}: (X, \tau) \rightarrow (Z, \eta) \) is \(R^k \)-continuous if \(g \) is \(R^k \)-continuous and \(f \) is \(R^k \)-continuous.

Proof: (i) Let \(F \) be any \(R^k \)-closed set in \((Z, \eta)\). Since \(g \) is \(R^k \)-irresolute then \(g^{-1}(F) \) is \(R^k \)-closed in \((Y, \sigma)\). Since \(f \) is \(R^k \)-irresolute \(f^{-1}(g^{-1}(F)) \) is \(R^k \)-closed in \((X, \tau)\). But \((gof)^{-1}(F)=f^{-1}(g^{-1}(F))\) and hence gof is \(R^k \)-irresolute.

(ii) Let \(F \) be any \(R^k \)-closed set in \((Z, \eta)\). Since \(g \) is \(R^k \)-continuous then \(g^{-1}(F) \) is \(R^k \)-closed in \((Y, \sigma)\). Since \(f \) is \(R^k \)-irresolute \(f^{-1}(g^{-1}(F)) \) is \(R^k \)-closed in \((X, \tau)\). But \((gof)^{-1}(F)=f^{-1}(g^{-1}(F))\) and hence gof is \(R^k \)-continuous.

Theorem 3.39: If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is strongly \(R^k \)-continuous then \(f \) is continuous but converse is not true.

Proof: Let \(f: X \rightarrow Y \) be strongly \(R^k \)-continuous. Let \(F \) be any closed set in \(Y \). Since every closed set is \(R^k \)-closed and hence \(F \) is \(R^k \)-closed set in \(Y \). Since \(f \) is strongly \(R^k \)-continuous then \(f^{-1}(F) \) is closed set in \(X \). Therefore \(f \) is continuous.

Example 3.40: Let \(X=Y=\{a, b, c\} \). Let \(\tau=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) be the topology on \(X \), and \(\sigma=\{\emptyset, Y, \{a\}, \{b\}, \{c\}\} \) be the topology on \(Y \). Closed sets of \(X=\{\emptyset, X, \{a\}, \{b\}, \{b, c\}\} \). \(R^k \)-continuous functions in \(Y \) are \(\{\emptyset, \{a\}, \{b\}, \{c\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function defined by \(f(a)=a, f(b)=b, f(c)=c \) is continuous but not strongly \(R^k \)-continuous as the \(R^k \)-closed set \(F=\{a\} \) in \(Y \), \(f^{-1}(F)=\{a\} \) is not a closed set in \(X \).

Theorem 3.41: Every strongly \(R^k \)-continuous is strongly \(g \)-continuous but not conversely.

Proof: Let \(f: X \rightarrow Y \) be strongly \(R^k \)-continuous. Let \(F \) be any \(g \)-closed set in \(Y \). Since every \(g \)-closed set is \(R^k \)-closed and hence \(F \) is \(R^k \)-closed set in \(Y \). Since \(f \) is strongly \(R^k \)-continuous then \(f^{-1}(F) \) is closed set in \(X \) and hence \(g \)-closed set in \(X \). Therefore \(f \) is \(g \)-continuous.

Example 3.42: In example 3.40, \(f \) is strongly \(g \)-continuous but not a strongly \(R^k \)-continuous as the \(R^k \)-closed set \(F=\{a\} \) in \(Y \), \(f^{-1}(F)=\{a\} \) is not a closed set in \(X \).

Theorem 3.43: If a mapping \(f: (X, \tau) \rightarrow (Y, \sigma) \) is strongly \(R^k \)-continuous if and only if \(f^{-1}(U) \) is open set in \(X \) for every \(R^k \)-open set \(U \) in \(Y \).

Proof: Suppose that \(f: X \rightarrow Y \) is strongly \(R^k \)-continuous. Let \(U \) be any \(R^k \)-open set in \(Y \) and hence \(U^c \) is \(R^k \)-closed set in \(Y \). Since \(f \) is strongly \(R^k \)-continuous, \(f^{-1}(U^c) \) is closed set in \(X \). But \(f^{-1}(U^c)=X- f^{-1}(U) \). Thus \(f^{-1}(U) \) is open in \(X \).

Conversely, suppose that \(f^{-1}(U) \) is open set in \(X \) for every \(R^k \)-open set \(U \) in \(Y \). Let \(F \) be any \(R^k \)-closed set in \(Y \) and hence \(F^c \) is \(R^k \)-open in \(Y \). But \(f^{-1}(F^c)=X- f^{-1}(F) \). Thus \(X- f^{-1}(F) \) is open in \(X \) and so \(f^{-1}(F) \) is closed in \(X \). Therefore \(f \) is strongly \(R^k \)-continuous.

Theorem 3.44: Every strongly continuous is strongly \(R^k \)-continuous but not conversely.

Proof: Let \(f: X \rightarrow Y \) be strongly continuous. Let \(G \) be any \(R^k \)-open set in \(Y \) and also any subset of \(Y \). Since \(f \) is strongly continuous then \(f^{-1}(G) \) is both open and closed in \(X \), say \(f^{-1}(G) \) is open in \(X \). Therefore \(f \) is strongly \(R^k \)-continuous.

Example 3.45: Let \(X=Y=\{a, b, c\} \). Let \(\tau=\{\emptyset, X, \{a\}, \{b\}, \{c\}\} \) and \(\sigma=\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function defined by \(f(a)=a, f(b)=b, f(c)=c \) is strongly \(R^k \)-continuous but not a strongly continuous as the set \(F=\{c\} \) in \(Y \), \(f^{-1}(F)=\{c\} \) is not a clopen set in \(X \).

Theorem 3.46: Every strongly \(R^k \)-continuous is \(R^k \)-continuous but not conversely.

Proof: Let \(f: X \rightarrow Y \) be strongly \(R^k \)-continuous. Let \(F \) be any closed set in \(Y \) and hence \(R^k \)-closed in \(Y \). Since \(f \) is strongly \(R^k \)-continuous, then \(f^{-1}(F) \) is closed set in \(X \) and hence \(R^k \)-closed set in \(X \). Therefore \(f \) is \(R^k \)-continuous.

Example 3.47: In example 3.40, \(f \) is \(R^k \)-continuous but not strongly \(R^k \)-continuous as the \(R^k \)-closed set \(F=\{a\} \) in \(Y \), \(f^{-1}(F)=\{a\} \) is not a closed set in \(X \).

Theorem 3.48: In discrete topological space, every strongly \(R^k \)-continuous is strongly continuous.

Proof: Let \(f: X \rightarrow Y \) be strongly \(R^k \)-continuous in a discrete topological space. Let \(F \) be any subset of \(Y \). Since \(F \) is both open and closed subset of \(Y \) in discrete space. We have the following two cases.
Case (i): Let F be any closed subset of Y and hence R^a-closed in Y. Since f is strongly R^a-continuous then $f^{-1}(F)$ is closed in X.

Case (ii): Let F be any open subset of Y and hence R^a-open in Y. Since f is strongly R^a-continuous then $f^{-1}(F)$ is open in X.

Therefore $f^{-1}(F)$ is both open and closed in X. Hence f is strongly continuous.

Theorem 3.49 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be any two functions. Then

i. $\text{gof}: X \rightarrow Z$ is strongly R^a-continuous if both f and g are R^a-continuous.

ii. $\text{gof}: X \rightarrow Z$ is strongly R^a-continuous if g is strongly R^a-continuous and f is continuous.

iii. $\text{gof}: X \rightarrow Z$ is irresolute if g is strongly R^a-continuous and f is R^a-continuous.

iv. $\text{gof}: X \rightarrow Z$ is continuous if g is R^a-continuous and f is strongly R^a-continuous.

Proof:

i. Let G be R^a-closed set in (Z, η). Since g is strongly R^a-continuous then $g^{-1}(G)$ is closed set in (Y, σ) and hence R^a-closed set in (Y, σ). Since f is also strongly R^a-continuous then $f^{-1}(g^{-1}(G))$ closed set in (X, τ). But $(gof)^{-1}(G)=f^{-1}(g^{-1}(G))$ and hence gof is strongly R^a-continuous.

ii. Let G be R^a-closed set in (Z, η). Since g is strongly R^a-continuous then $g^{-1}(G)$ is closed set in (Y, σ). Since f is continuous then $f^{-1}(g^{-1}(G))$ closed set in (X, τ). But $(gof)^{-1}(G)=f^{-1}(g^{-1}(G))$ and hence gof is strongly R^a-continuous.

iii. Let G be any R^a-closed set in (Z, η). Since g is strongly R^a-continuous then $g^{-1}(G)$ is closed set in (Y, σ). Since f is R^a-continuous then $f^{-1}(g^{-1}(G))$ is R^a-closed set in (X, τ). But $(gof)^{-1}(G)=f^{-1}(g^{-1}(G))$. Hence gof is irresolute.

iv. Let G be any closed set in (Z, η). Since g is R^a-continuous then $g^{-1}(G)$ is R^a-closed set in (Y, σ). Since f is strongly R^a-continuous then $f^{-1}(g^{-1}(G))$ closed set in (X, τ). But $(gof)^{-1}(G)=f^{-1}(g^{-1}(G))$. Hence gof is continuous.

Theorem 3.50: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be any two functions. Then

i. $\text{gof}: X \rightarrow Z$ is strongly R^a-continuous if g is perfectly R^a-continuous and f is continuous.

Proof:

i. Let G be any R^a-open set in (Z, η). Since g is perfectly R^a-continuous then $g^{-1}(G)$ is clopen set in (Y, σ), say $g^{-1}(G)$ is open set in (Y, σ). Since f is continuous then $f^{-1}(g^{-1}(G))$ open set in (X, τ). Thus $(gof)^{-1}(G)=f^{-1}(g^{-1}(G))$. Hence gof is strongly R^a-continuous.

Theorem 3.51: Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following statements are equivalent.

i. f is strongly R^a-continuous

ii. f is perfectly R^a-continuous.

Proof:

(i) \rightarrow (ii): Let G be any open set in (Y, σ). Since f is strongly R^a-continuous then $f^{-1}(G)$ is open set in (X, τ). But in discrete space, $f^{-1}(G)$ is closed set in (X, τ). Thus $f^{-1}(G)$ is both open and closed in (X, τ). Hence f is perfectly R^a-continuous.

(ii) \rightarrow (i): Let U be any R^a-open set in (Y, σ). Since f is perfectly continuous then $f^{-1}(G)$ is both open and closed in (X, τ). Hence f is strongly R^a-continuous.

Theorem 3.52: Let (X, τ) be any topological space and (Y, σ) be T_{R^a} space and $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map. Then the following are equivalent.

i. f is strongly R^a-continuous

ii. f is continuous

Proof:

(i) \rightarrow (ii): Let F be any closed set in (Y, σ). Since every closed set is R^a-closed and hence F is R^a-closed in (Y, σ). Since f is strongly R^a-continuous then $f^{-1}(F)$ is closed set in (X, τ). Hence f is continuous.
(i) \Rightarrow (ii): Let G be any R^*_s-closed set in (Y,σ). Since (Y,σ) is $T_{R^*_s}$ space, F is closed set in (Y,σ). Since f is continuous then $f^{-1}(F)$ is closed set in (X,τ). Hence f is strongly R^*_s-continuous.

Theorem 3.53: Let $f : (X,\tau) \rightarrow (Y,\sigma)$ be a map. Both (X,τ) and (Y,σ) are $T_{R^*_s}$ space. Then the following are equivalent.

i. f is R^*_s-irresolute

ii. f is strongly R^*_s-continuous

iii. f is continuous

iv. f is R^*_s-continuous

The proof is obvious.

Theorem 3.54: Let X and Y be R^*_s spaces. Then for the function $f : (X,\tau) \rightarrow (Y,\sigma)$ the following are equivalent.

i) f is gc-irresolute

ii) f is R^*_s-irresolute

Proof:

(i) \Rightarrow (ii): Let $f: X \rightarrow Y$ be gc-irresolute. Let F be a g-closed set in Y and hence R^*_s-closed in Y. Since f is gc-irresolute then $f^{-1}(F)$ is g-closed set in X and hence R^*_s-closed in X. Therefore f is R^*_s-irresolute.

(i) \Rightarrow (ii): Let $f : X \rightarrow Y$ be R^*_s-irresolute. Let F be a g-closed set in Y and hence R^*_s-closed in Y. Since f is R^*_s-irresolute then $f^{-1}(F)$ is R^*_s-closed in X. But X is R^*_s space and hence $f^{-1}(F)$ is g-closed set in X. Therefore f is gc-irresolute.

References:

5. Basavaraj M Ittanagi and Raghavendra K On R^*_s-closed sets in Topological spaces, IJMA- 8(8),2017,134-141

20. N. Nagaveni, Studies on on Generalizations of Homeomorphisms in Topological Spaces, Ph. D. Theses, Bharathiar University, Coimbatore, 2000

27. P. Sundaram, Studies on Generalizations of Continuous maps in Topological Spaces, Ph. D. Thesies, Bharathiar University, Coimbatore, 1991