RESEARCH ARTICLE

A REVIEW ARTICLE ON THE FORMATION, MECHANISM AND BIOCHEMISTRY OF MDA AND MDA AS A BIOMARKER OF OXIDATIVE STRESS.

Saima Jadoon and Arif Malik.
Institute of Molecular Biology and Biotechnology, University of Lahore, Pakistan.

Abstract

Malondialdehyde (MDA) as a biomarker is widely used for examining oxidative stress in biomedical field where Lipid peroxidation is a chain phenomenon resulting in the formation of various active compounds that result in cellular damage. Bio monitoring of MDA is used as a biomarker in different diseases like in vivo and in vitro. MDA is also used in various types of diseases like hypertension, diabetes, heart failure and cancer etc. Higher level of MDA was found in patients that suffer from various types of diseases including lung cancer, complex original pain syndrome. In finding the oxidative stress MDA is used as a reliable biomarker. MDA is found in high levels in patients that suffer with goiter. MDA determination can take place by different methods. The determination of MDA was studied in goiter patients through a simple, and rapid but sensitive scientific method. This review is aimed to study the biochemical mechanism of formation of malondialdehyde and the role of Malondialdehyde as a biomarker for the diagnosis of several biochemical competition.

Corresponding Author:- Saima Jadoon.
Address:- Institute of Molecular Biology and Biotechnology, University of Lahore, Pakistan.
results into variety of carbonyl compounds. The most widespread is malondialdehyde (Massey and Nicolaou.,
2011, Massy and Nicolaou., 2013). MDA is a compound, the target of the reactive specie is the C-C double bond of
poly-unsaturated fatty acids which weakens C-H bond, a free radical is formed which can obstruct the hydrogen
atom and a liquid free radical is formed which suffers oxidation generating peroxyl radical. This peroxyl radical
reacts with other polyunsaturated fatty acids. This process can be propagated continually in a chain reaction
(Jornayvaz and Shulman, 2012). During this process the formation of lipydrohydro peroxide is unstable and its
fragmentation yields products such as malondialdehyde. Lipid peroxidation is well-established mechanism, of
 cellular energy in both plants and animals. Therefore, the presence of lipid peroxidation is used as a measure of
MDA. Enol is the most common form MDA is usually found in both plants and animals. However, a cis-trans
system is present in organic solvents. But it shows that the malondialdehyde is present in both forms (Yang and
Kaznietz., 2013). Malondialdehyde is commonly observed in the form of 1, 1, 3, 3 tetramethoxypropane When this
compound is hydrolyzed then malondialdehyde is produced. In the synthesis of thromboxane A2, MDA is a
byproduct. In cyclogenase 1 or cyclogenase 2 metabolizes arachnoic acid to prostaglandin H2 by platelets the
product is further metabolized to thromboxane A2, 12 hydroxyhepataedacrinioic acid and MDA (Banumann et al.,
2013).

MDA, Lipid Peroxidation and Mutation In Huma main Cells:-
MDA is the indicator of lipid per oxidation. During the process of lipid per oxidation many different products are
formed. Among these products, MDA is also formed which is mutagenic (Fisher et al., 2002). MDA plays a vital
role in damaging DNA and endogenously mutation occurs in cells. MDA modifies the replication process of single
stand DNA and causes mutation of Guanine → Thymine, Adenine → Guanine and Cytosine → Thymine (Conway
& Miller, 2007, Takuwa et al., 2012).

Biochemistry Of Malondialdehyde:-
Reactive oxygen species degrade the polyunsaturated lipids. The malondialdehyde are prepared by the
polyunsaturated lipids. Inside DNA, they react with deoxylaenosenosine and deoxyguanosine. Malondialdehyde
measures oxidative stress in human body. In human body malondialdehyde plays an important role (Maltson., 2003)
in which aldehyde is one of the most reactive electrophile. The amount of tissues is helpful in eliminating the
degree of lipid peroxidation in malondialdehyde. The malondialdehyde plays very important role in human body.
DNA in which deoxyaenosenosine is the derivative of nucleoside adenosine. It accumulates T-Lymphocytes in the
human body. It kills those cells resulting in a genetic disorder which is called as adenosine deminase (Hannun and
Obeid et al., 2008). The other is deoxyguanosine. The deoxyguanosine is an adduct of MDA and DNA bases.
Malondialdehyde measures the oxidative stress in human body. Any disturbance between the reactive oxygen
species and the ability of the biological to remove the harmful substances and repair the resulting damage is known
depends upon oxidative stress. Oxidative metabolism causes base damage in the DNA. The reactive oxygen species
are the main factor that induce and cause serious damage in DNA. On other hand, reactive oxygen species play very
important role in immune system in attacking and killing pathogens, and hinders the aging process (Kalinski., 2012).
The malondialdehyde is prepared by polyunsaturated lipids. The polyunsaturated lipids are hydrocarbon chains
having two or more C = C bond. Nuts, seeds and fish etc are most common source of polyunsaturated fats.

The unsaturated fats refer the fact that the molecules have fewer quantity of hydrogen. Malondialdehyde and other
thiobarbituric acid reactive substances give fluorescence. The thiobarbituric acid is an oxygenic compound and the
hetroacyclic. It is used as a reagent in assaying malondialdehyde. It is mostly used in the lipid peroxidation. It is
also used as a biomarker in the malondialdehyde (Kay and Grinstein et al., 2013).

Malondialdehyde is the end product of lipid peroxidation. As said earlier, MDA is reactive in nature and has the
potential for causing mutation. Edibles like sunflower and palm oil contain MDA in good quantity. The reactive
oxygen species in MDA cause serious damage to cell structures. Certain known reasons play key role in increasing
the degree of reactive oxygen species. These are the demise species containing oxygen. The examples of reactive
oxygen species are presidepuperenide, hydroxyl radicals and single oxygen (Pluchino et al., 2013). Malondialdehydedialdehyde are common in organic chemistry. Many fragrances are aldehydes. Under isolated
conditions, MDA can be directly measured by using HPLC. MDA which is an indicator of cell membrane injury is
the most common residue produced during the process of lipid per oxidation. Peroxidation, oxidative stress can be
measured and evaluated by means of the level of malondialdehyde in different tissues (Moldovan and N.I
Moldovan, 2004).
In malondialdehyde, the concentrations of adenine nucleotide derivatives were also obtained in the same chromatographic run. Under the experimental conditions no detachable amount of malondialdehyde was observed (Halliwell and Gutteridge, 1984). MDA formed as a result of the breakdown of poly unsaturated lipids by reactive oxygen species forming malondialdehyde represents an aldehyde family as electrophile specie and has the ability to cause toxic stress in cells and form covalent protein adduct.

Inside DNA, MDA reacts with deoxyadenosine to form a mutagenic DNA adduct known as MG which is an indicator of oxidative stress in organism (Venero et al., 2003).

Increased Level of Lipid Peroxidation Assosiated With Variety of Diseases:

Malondialdehyde in combination with other thiobarbituric reactive substances (TBARS) form bio substances that are the root cause of several chronic and other diseases in humans (Castellani et al., 2004). Many diseases of liver are the result of oxidative stress. Also there exist a relationship of oxidative stress indicator among hepatic tissue, hepatic and peripheral veins and urine. Aging, neurodegerative diseases, chronic inflammatory disease and several types of cancers are caused by oxidative stress. Biomedical research has shown that MDA is also found in tissues, and sections of joints in patients suffering from osteoarthritis (Lipinski and Pretorius,., 2012). Some other diseases caused by oxidative stress include (but not limited to) Parkinson’s disease, Alzheimer’s disease, atherosclerosis, heart failure, myocardial infarction etc. (Bielski et al., 1983).

Malondialdehyde (MDA) As A Diagnostic Biomarker:

Malondialdehyde is most commonly used as an indicator in some experiments like lipid peroxidation (Dizdaroglu and Jaruga et al., 2012). It is a chain of reactions which takes place during the oxidative stress including propanediol and 4-hydroxyronenal (HNE) resulting in the cellular damage. Issues related with the validity of biomarker have hindered the process of lipid peroxidation. The plasma concentration of malondialdehyde (P-MDA) is frequently used biomarker for the study of lipid peroxidation. (Kanno et al., 2012). It is one of several by-products of lipid peroxidation process. Smoking is one of the risk factors for increased lipid peroxidation; it is due to the presence of free radical in cigarette smoke. The level of plasma malondialdehyde (P-MDA) also increases in cigarette smokers. reactive oxygen species produced in human body are protected by the antioxidant sytem present in the body. Superoxide radicals after being converted into hydrogen peroxide (H₂O₂) are released from the body with the help of superoxide dismutases (SOD). In the presence of catalyze (enzyme) hydrogen peroxide is converted into water and oxygen. Similar function is performed by glutathione peroxidases in the removal of H₂O₂ from the body.

Malondialdehyde is a major lipid peroxidation process and acts as an indicator in the assessment of cancer risk in human beings. In order to detect DNA damage in human oral mucosa a special monoclonal antibody which is specific for MDA, DNA adduct has been developed and is also useful for the endogenous agent in oxidative stress and carcinogenesis. MDA as an endogenous product participates in various biochemical reaction i.e., covalent bonds in protein. Cyclic adducts are generated when MDA reacts with deoxygenases. The major DNA adduct is a pyrimidopurinone of deoxyguanosine. In bacterial and mammalian cells MDA is mutagenic and can cause cancer in rats (Schneider et al., 2008). MDA is still used as a biomarker of oxidative stress in clinical investigation. MDA is the biomarker of oxidative stress in many health problem such as cancer, psychiatry, chronic obstructive pulmonary disease and asthma or cardiovascular problems. Thiobarbituric acid the most commonly used method for the determination of MDA in biological fluid. This assay based on the condensation reaction of TBA and MDA in which reaction rate depend on temperature, pH and concentration. The reaction takes place in acidic solution. Most of MDA is produced during reaction process from decomposition of products. The rapidity ease of use and cost of TBA made it the most common method (Browne and Armstrong., 2000). Non specificity of TBA reactivity on MDA and production of MDA from reactivity of MDA from other than lipid peroxidation effect of procedural modification on MDA-TBA reactive substances act as a biomarker of oxidative stress instead of MDA values of oxidative stress instead of MDA value. Effect of procedural modification on MDA –TBA adducts development. Low stability of MDA in biological samples is due to the reason of its high tendency for reaching with protein, amino acid (Yin et al., 2011).

Malondialdehyde As Diagnosis of Diabetes Mellitus:

Malondialdehyde is the by-product of the lipid oxidation which is present in the free radical. Malondialdehyde is the very toxic by product which is derived from the lipid oxidation. The studies has revealed that its high concentration is present in the diabetes mellitus. The patients that are suffered from the diabetes mellitus have the high quantity of
the malondialdehyde. Malondialdehyde react irreversible and reversible with the proteins and phosphorus to obtain the good result (Volinsky and Kinnunen., 2013).

Malondialdehyde is Mutagenic In Human Cell:-
Malondialdehyde is a genotoxic product of different activities like enzymatic activities or oxygen radical-induced lipid peroxidation. The analysis of the sequences revealed that MDA include some mutations that take place at base pairs. The most common mutations that happened are insertions and deletions. MDA is completely abolished when the adducted shuttle vector was replicated lacking nucleotide excision repair (Kinnunen et al., 2012).

Relation Of Lipid Peroxidation And DNA Oxidation:-
Lipid peroxidation is the free radical mediated which is in the form of chain reactions. These reactions initiated a number of toxic products when they are allowed to propagate in the biological membranes. MDA is produced by different mechanisms and it is a three carbon product with less molecular weight. In MDA the species mainly target at the C = C bond of the polyunsaturated fatty acids. This C = C bond affect the carbon-hydrogen bond and weaken them and due to this the hydrogen is easily abstracted. This lipid peroxidation is unstable and it form different products like malondialdehyde. For monitoring MDA level in different biological systems, lipid peroxidation serves as a vital tool both in-vitro (outside a living organism) and in-vivo (taking place in a living organism) for various health disorders (Reis and Spickett., 2012).

Malondialdehyde And Heavy Metals:-
Plants contain different types of microelements among these copper is considered an essential microelements. These micro elements are required for biological system such as structural and catalytical component of proteins and enzymes. Copper and zinc super oxide are also used and are involved in the process of electron transport chain in photosynthesis. The excess of heavy metals is harmful for plants as excess of heavy metal in cells cause molecular damage to plants in both ways either directly or indirectly. Along side these heavy metals, some protective enzymatic mechanisms and non-enzymatic mechanism are present. The antioxidant enzymes are superoxide dismutase, peroxides and catalase. Garlic (allium sativum) is reported because it has the ability to tolerate the heavy stresses including but not limited to heavy metal stress (Yin and Xu., 2011).
Fig. 1: Formation of MDA (Patra et al., 2011).

Lipid peroxidation

1. Initiation
2. Propagation
3. Termination

Enzymatic

Non-Enzymatic

PUFA

Arachidonic Acid

Cyclooxygenase enzyme

PGH2

TXA2 Synthase

Thromboxane

Lipid peroxides cyclation

Endoperoxide

MDA
Fig. 2: Formation of MDA on cell membrane of human beings due to heavy metals (Ayala et al., 2014, Giorg et al., 2010).

Explanation of Fig. 1, 2:- ROS are formed due to Fenton reaction and Haber weiss cycle. Polyunsaturated fatty acids (PUFA) inside the plasma membrane. Most strongly ROS attack on PUFA and lipid peroxidation happens. The enzymes lipoxygenase, cyclooxygenase, cytochroms P 450. It also causes membrane impairment. PUFA breaks double bond and forms lipidperoxide and hydrolipid peroxide. It further attacks on Glycolipids, Phosopholipids and cholesterol which are present as a secondary product and it forms MDA (Patra et al., 2011). MDA forms in two ways one is enzymatic and second is non enzymatic metabolism. In enzymatic MDA the arachidonic acid is present in our body and converts into the prostaglandin-H2 in the presence of cyclooxygenase enzyme. We can say that prostaglandin-H2 is indication of disease and then PGSH2 convert into thermobohepane and MDA in the presence of thermbohexane synthase. Oxidation of MDA occurs with the help of mitochondrial aldehyde as a result it produce acetaldehyde then through aldehyde dehydrogenaes enzyme acetyl CoA and covert in water and carbon dioxide. In case of non-enzymatic when ROS attack on PUFA and process of lipid peroxidation occurs. Lipid peroxides and through cyclosation process changes in to bicyclic endoperoxide and further changes in to MDA without any enzyme and further changes in to MDA without involvement of any enzyme. It reacts with protein and DNA in cell.
and then form adduct of MDA and cause cellular damage. MDA acts as a signaling messenger, regulate the genetic expression, cause the mutation and breaks DNA strand. It also arrests the cell cycle and induces the apoptosis (Ayala et al., 2014; Giorg et al., 2010).

Conclusion:
MDA is a byproduct of polyunsaturated fatty acids. It is the biomarker of lipid peroxidation. Heavy metals act as a ligand attached with receptor of plasma membrane and produce ROS. PUFA bonds break due to lipid peroxidation. MDA act as signaling messenger. It regulates genetic expression, cause mutation and break DNA strand. MDA acts as a signaling messenger regulating the gene expression, and increased level of MDA promot islets GSIS and elevate ATP, cytosolic Ca²⁺ and affect on protein activity.

References: