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In Bayesian statistics, the choice of the prior distribution is often controversial. 

Different rules for selecting priors have been suggested in the literature, this is 

broadly classified into objective (non-informative) and subjective (informative) 
priors. A fundamental feature of the Bayesian approach to statistics is the use of prior 

information in addition to the (sample) data. A (proper) subjective Bayesian analysis 

will always incorporate genuine prior information that genuinely represents prior 

beliefs, which will help to strengthen inferences about the true value of the parameter 
and ensure that relevant information about it is not wasted. The (improper) objective 

Bayesian analysis is not able to do that, since the non-informative prior adds nothing 

to the likelihood. Data on Diabetic cases (Biomedical Laboratory Medical School 

University of Verona, Italy) was used for illustration.  
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INTRODUCTION 
Broadly speaking, there are two views on Bayesian probability that interpret the 'probability' concept in different ways. For 

objectivists, probability objectively measures the plausibility of propositions, i.e. the probability of a proposition corresponds to 

a reasonable belief everyone sharing the same knowledge should share in accordance with the rules of Bayesian statistics, which 

can be justified by requirements of rationality and consistency (Jaynes, 1986 and Cox, 2001). Requirements of rationality and 
coherence are important for subjectivists, for which the probability corresponds to a 'personal belief' (de Finetti, 1974). For 

subjectivists however, rationality and coherence constrain the probabilities a subject may have, but allow for substantial variation 

within those constraints. The objective and subjective variants of Bayesian probability differ mainly in their interpretation and 

construction of the prior probability.  
The paper is aimed at making a comparative study between the use (or attitude to use) of informative and non-informative priors, 

digging into the meaning of the two classes of priors and the different reasons in support of one or the other, and use data on the 

cases of diabetes in order to illustrate the theoretical points. 

 

PRIOR INFORMATION 

A random variable can be thought of as a variable that takes on a set of values with specified probability. In Frequentist statistics, 

parameters are not repeatable random things but are fixed (albeit unknown) quantities, which means that they cannot be 

considered as random variables. In contrast, in Bayesian statistics anything about which we are uncertain, including the true value 
of a parameter, can be thought of as being a random variable to which we can assign a probability distribution, known 

specifically as prior information. A fundamental feature of the Bayesian approach to statistics is the use of prior information in 

addition to the (sample) data. A proper Bayesian analysis will always incorporate genuine prior information, which will help to 

strengthen inferences about the true value of the parameter and ensure that any relevant information about it is not wasted. 

There are two types of priors: informative and non-informative. Box and Tiao (1973) defined a non-informative prior as one that 

provides little information relative to the experiment - in this case, the diabetic cases data. Informative prior distributions, on the 

other hand, summarize the evidence about the parameters concerned from many sources and often have a considerable impact on 
the results. 

http://www.journalijar.com/
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INFORMATIVE PRIOR 

In general, the argument against the use of prior information is that it is intrinsically subjective and therefore has no place in 
science. Of particular concern is the fact that an unscrupulous analyst can concoct any desired result by the creative specification 

of prior distributions for the parameters in the model.  

However, the potential for manipulation is not unique to Bayesian statistics. The scientific community (Bolstad, 2004) and 

regulatory agencies (Gilks and Spiegelhalter, 1996) have developed sophisticated safeguards and guidance to avoid conscious or 
unconscious biases.  

NON-INFORMATIVE PRIOR 

To avoid having to use informative prior distributions while still being able to use Bayesian tools, some authors have suggested 

using non-informative prior distributions to represent a state of prior ignorance (Briggs, 1999). In so doing the analyst obtains 
some of the benefits of a Bayesian approach, particularly that the results are presented in the intuitive way in which one would 

like to make inferences. Another way to represent prior information is to specify skeptical prior distributions for the parameters in 

the model. In this context, the prior distribution is specified in such a way that it automatically favors the standard treatment. 

Such a proposal is tempting, particularly in a regulatory framework where rigorous standards and safeguards are demanded. 
However, both ideas suffer from serious objections, and both fail to exploit the full potential of the Bayesian approach. In 

addition, there is no unique way to implement either idea, and hence subjectivity is not removed.  

THE BAYESIAN APPROACH 

A Bayesian analysis synthesizes two sources of information about the unknown parameters of interest. The first of these is the 
sample data, expressed formally by the likelihood function. The second is the prior distribution, which represents additional 

(external) information that is available to the investigator (Figure 1). Whereas the likelihood function is also fundamental to 

Frequentist inference, the prior distribution is used only in the Bayesian approach.  

 
 

 

 

   

 

 

 

 
 

 

 

 
Figure 1: The Bayes Method 

 

If we represent the data by the symbol X and denote the set of unknown parameters by Θ, then the likelihood function is L θ/x ; 
the probability of observing the data X being conditional on the values of the parameter θ. If we further represent the prior 

distribution for θ as π θ , giving the probability that θ takes any particular value based on whatever additional information might 

be available to the investigator, then, with the application of Bayes’ theorem, (Senn, 2003) an elementary result about conditional 

probability named after the Reverend Thomas Bayes, we synthesize these two sources of information through the equation: 

     P θ/x   π θ L θ/x            (1) 

The proportionality symbol  expresses the fact that the product of the likelihood function and the prior distribution on the right 

hand side of Equation (1) must be scaled to integrate to one over the range of plausible θ values for it to be a proper probability 

distribution. The scaled product P θ/x , is then called the posterior distribution for θ (given the data), and expresses what is now 

known about θ based on both the sample data and prior information. 

BAYESIAN INFERENCE 

The Bayesian statistical inference can be approached from two different angles: from the Subjectivist point of view and from the 

Frequentist (Objectivist) point of view. 

The Subjective approach is the one by which the prior probability density function is defined as a subjective opinion of the 
person involved in the inferential process, while the Frequentist approach (sometimes referred to as the Objective approach) is 

the one by which the prior density function is defined in terms of some empirical evidence only. This is the main concern of this 

study. 

OBJECTIVE BAYESIAN APPROACH 
Usually, the Researcher supporting this type of approach would like to work with non-informative prior in order not to change 

the information brought by the likelihood. Consequently, to make the posterior probability density function using only the 

information brought by the likelihood. 

In the vast literature concerned with the problem of a non-informative prior, there are three (3) major proposals. The easiest one 
to use is the Uniform prior probability density function and then the Harold Jeffrey’s Prior and more recently the Reference prior 

(Berger-Bernardo). 
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UNIFORM PRIOR 
About 200 years ago, both Bayes (1763) and Laplace (1814) postulated that: “When nothing is known about θ in advance, let the 

prior π(θ), be a uniform distribution, that is,  let all possible outcomes of θ have the same probability”, and this is also known as 

the “principle of insufficient reason”, Laplace (1814). 

R. A. Fisher (similar to the Subjectivist) did not support the Bayes/Laplace postulate; he argued that “not knowing the chance of 
mutually exclusive events and knowing the chance to be equal are two quite different states of knowledge”. He accepted Bayes’ 

theorem only for informative priors (Syversveen, 2003). 

Laplace (1812), judged that, it worked exceptionally well to simply always choose the prior for θ to be the constant {π(θ) = k} on 

the parameter space Θ. 

The Uniform prior (non-informative for) distribution of θ is: 

              π θ = k =
1

(b−a)
 ,  π θ dθ

b

a
= 1;   θ ∈ Θ = I a;b              (2)  

The posterior probability density function of parameter β obtained by a Uniform prior probability density function  π β   and a 

Likelihood function for a given data vector  x n =    x1 ,… , xn  represented by a Gamma function, is:   
  

           P β/x  ∝  π β L α,β = 1 × L α,β = Gamma α,β             (3) 

 L α,β ∝  T2
α−1e−βT1              (4) 

Where T1 =   xi  
n
i=1  and    T2 =   xi

n
i=1        

Which is equal to the density kernel of the Gamma distribution with parameters α and β. Hence, the posterior distribution given 

data is a Gamma (α,β). 

 The uniform prior is a diffused prior. 

 The domain of the parameter θ in the experiment (likelihood) is the sub-domain of the prior. 

JEFFREY’S PRIOR 

 NOTE: 

 Jeffrey noted the weakness of constant prior: accepting a state of ignorance about the parameter θ for all the 

parameter space Θ. For example, consider making an inference about the probability θ of getting Head from 

tossing a coin, we may feel that, the prior probability density function to be uniformly distributed around 0.5, 

but the prior probability density function should not be the same for values of θ nearby 0 or nearby 1. 

 Jeffrey did not want to use and to mix personalistic opinions about the parameters with the information 

brought by the data (alias: the Likelihood). 

 He chose to use the Fisher information because it tells us how much information is in the likelihood about θ. 

In other words, Fisher information I(θ) is an indicator of the amount of information brought by the model 

(observations) about θ. 

 Hence, he (Jeffrey) developed a prior that is not dependent upon the set of parameter variables that is chosen 

to describe parameter space Θ, this is to favor the values for θ of which I(θ) is large is equivalent to 
minimizing the influence of the prior. 

Jeffrey’s prior distribution is defined as the density of the parameter proportional to the square root of the determinant of the 

Fisher Information, is given by: 

                                    π θ   In θ              (5)  

Where  In θ =  Eθ   
∂ log f θ 

∂θ
 

2
   

 In θ =  −Eθ  
∂2 log e L θ 

∂θ
  

 THE LIKELIHOOD FUNCTION 

The likelihood principle states that, all evidence which is obtained from an experiment, about an unknown quantity θ, is 

contained in the likelihood function of θ for the given data. 

DEFINITION: Let x n =    x1,… , xn  have joint density f x n ;θ =  f x1,… , xn ;θ .  
The likelihood function L: Θ →  0,∞  is defined by 

  L θ ≡ L θ; x n =   f x n ;θ             (6) 

 Where x n  is fixed and θ varies in Θ. 

 The likelihood function is a function of θ. 

 The likelihood function is not a probability density function. 

 If the data are iid, then the likelihood is 

L θ =   f x n ;θ n
i=1 , iid case only.          (7) 

 The likehood function is only defined up to a constant of proportionality. 

 The likelihood function is used (i) to generate estimators (the maximum likelihood estimator) and (ii) as a key 

ingredient in Bayesian inference. 

Let a random variable X having parameters α and β follow the Gamma distribution. So the probability density function (p.d.f) of 
the Gamma distribution for α and β is: 

  f x;α, β =  
βα

Γ α 
xα−1e−βx ,  x > 0 , α > 0 , β > 0         (8) 
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The Gamma p.d.f is used here because; the data used as example for this work follows a Gamma p.d.f. The shape parameter (α) 

is assumed to be known and the scale parameter (β) is unknown. 

The likelihood function for an independently and identically distributed (iid) random variable Xi , i = 1,2, … , n of size n is given 
by: 

 L α,β =   f xi|α,β n
i=1      

 L α,β =    
βα

Γ 𝛼 
𝑥𝛼−1𝑒−𝛽𝑥  ∝ 𝑇2

𝛼−1𝑒−𝛽𝑇1n
i=1            (9) 

         𝑙𝑜𝑔𝑒 𝐿 𝛼, 𝛽 = 𝑛𝛼 𝑙𝑜𝑔𝑒 𝛽 − 𝑛 𝑙𝑜𝑔𝑒 𝛤(𝛼) +   𝛼 − 1  𝑙𝑜𝑔𝑒 𝑥𝑖 
𝑛
𝑖=1 − 𝛽𝑇1                                                                          (10) 

            
𝜕 𝑙𝑜𝑔 𝑒 𝐿 𝛼 ,𝛽 

𝜕𝛼
= 𝑛 𝑙𝑜𝑔𝑒 𝛽 − 𝑛

𝛤 ′ (𝛼)

𝛤(𝛼)
+  𝑙𝑜𝑔𝑒 𝑥𝑖

𝑛
𝑖=1  

           
𝜕 𝑙𝑜𝑔 𝑒 𝐿 𝛼 ,𝛽 

𝜕𝛽
=  

𝑛𝛼

𝛽
−  𝑇1 

           
𝜕2 𝑙𝑜𝑔 𝑒 𝐿 𝛼 ,𝛽 

𝜕𝛽
=  −

𝑛𝛼

𝛽2
            (11) 

Hence, the Fisher information for 𝛽 is: 

            𝐼𝑛 𝛽 =  −𝐸𝛽  
𝜕2 𝑙𝑜𝑔 𝑒 𝐿 𝛼 ,𝛽 

𝜕𝛽
 =

𝑛𝛼

𝛽2
          (12) 

The likelihood function is: 

 𝐿 𝛼, 𝛽 ∝  𝑇2
𝛼−1𝑒−𝛽𝑇1            (13) 

Where 𝑇1 =   𝑥𝑖  
𝑛
𝑖=1  and    𝑇2 =   𝑥𝑖

𝑛
𝑖=1  

In the situation where one does not have much information about the parameters, Jeffrey (1946), suggested a non-informative 
prior.  

The Jeffrey’s prior for 𝛽 is: 

 𝜋 𝛽  ∝   𝐼𝑛 𝛽 =   −𝐸𝛽  
𝜕2 𝑙𝑜𝑔 𝑒 𝐿 𝛼 ,𝛽 

𝜕𝛽
   =  

𝑛𝛼

𝛽2
 ∝ 1        (14) 

Hence the posterior distribution using (14) and (13) is given by: 

 𝑃 𝛽/𝑥  ∝  𝜋 𝛽 𝐿 𝛼, 𝛽 = 1 × 𝐿 𝛼, 𝛽 = 𝐺𝑎𝑚𝑚𝑎 𝛼,𝛽         (15) 

 𝑃 𝛽/𝑥  ∝  𝑇2
𝛼−1𝑒−𝛽𝑇1            (16) 

Which is the density kernel of the Gamma distribution with parameters α  and 𝛽. Hence, the posterior distribution given data is 

Gamma (α,β). 

SUBJECTIVE BAYESIAN APPROACH  

The two-parameter Gamma distribution has one shape parameter and one scale parameter. The random variable 𝑋 follows 
Gamma distribution with the shape and the scale parameters as α >0 and β >0 respectively, if it has the probability density 

function (p.d.f.) as given in equation (5) above. It will be denoted by 𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽 . Hence, 𝛤(𝛼) is the Gamma function and it 

is expressed as 

 𝛤 𝛼 =   𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0
           (17) 

It is well known that the p.d.f. of 𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽  can take different shapes but it is always unimodal. The moments of 𝑋can be 

obtained in explicit form as; 

 𝐸 𝑋 =  
𝛼

𝛽
 ,      𝑎𝑛𝑑    𝑉 𝑋 =  

𝛼

𝛽2 
          (18) 

It is assumed that  𝑥1,𝑥2,… ,𝑥𝑛  is a random sample from 𝑓(./𝛼, 𝛽). It is also assumed that 𝛽 has a prior 𝜋1(𝛽), and 𝜋1(𝛽) 

follows 𝐺𝑎𝑚𝑚𝑎 𝛼0,𝛽0 = 𝐺𝑎𝑚𝑚𝑎(2, 1). 

 𝜋1 𝛽 =  
𝛽0

𝛼0

𝛤(𝛼)
𝛽𝛼0−1𝑒−𝛽0𝛽 , 𝛼0 > 0, 𝛽0 > 0 , 𝛽 > 0                           (19) 

 At this moment we do not assume any specific prior on α. It is simply assumed that the prior on α is 𝜋2(. ) and the density 

function of 𝜋2(. ) is log-concave and it is independent of 𝜋1(. ). 

The likelihood function of the observed data is 

   𝐿 𝛼,𝛽 =  
𝛽𝑛𝛼

 𝛤(𝛼) 𝑛
𝑒−𝛽𝑇1𝑇2

𝛼−1 ,              (20)   

Where 𝑇1 =   𝑥𝑖  
𝑛
𝑖=1  and    𝑇2 =   𝑥𝑖

𝑛
𝑖=1  . Note that  𝑇1,𝑇2  are jointly sufficient for  𝛼, 𝛽 .  

Therefore, the joint density function of the observed 𝑑𝑎𝑡𝑎, α and β is 

  𝐿 𝑑𝑎𝑡𝑎;𝛼, 𝛽  ∝  
1

 𝛤(𝛼) 𝑛
𝛽𝛽0+𝑛𝛼−1 𝑒−𝛽 𝛼0+𝑇1 𝑇2

𝛼−1𝜋2(𝛼)                         (21) 

The posterior density function of  𝛼, 𝛽  given the data is 

          𝑃 𝛼,𝛽;𝑑𝑎𝑡𝑎 =

1

 𝛤(𝛼) 𝑛
𝛽𝛼0+𝑛𝛼 −1 𝑒−𝛽 𝛽0+𝑇1 𝑇2

𝛼−1𝜋2(𝛼)

  
1

 𝛤(𝛼) 𝑛
𝛽𝛼0+𝑛𝛼 −1  𝑒−𝛽 𝛽0+𝑇1 𝑇2

𝛼−1𝜋2(𝛼)𝑑𝛼𝑑𝛽
∞

0

∞

0

 

Therefore, posterior density function of 𝛽 given the data is 

    𝑃 𝛽;𝑑𝑎𝑡𝑎 =  
1

 𝛤(𝛽0+𝑛𝛼 ) 𝑛
𝛽𝛼0+𝑛𝛼−1 𝑒−𝛽 𝛽0+𝑇1 𝑇2

𝛼0+𝑛𝛼−1
                                                                                             (22)  

         𝑃 𝛽;𝑑𝑎𝑡𝑎  ∝ 𝛽𝛼0+𝑛𝛼−1 𝑒−𝛽 𝛽0+𝑇1 𝑇2
𝛼0+𝑛𝛼−1

                                                                                                                             (23)  

Hence, the posterior density function of 𝛽 given the data is  

 𝐺𝑎𝑚𝑚𝑎 𝛼0 + 𝑛𝛼, 𝛽0 + 𝑇1 = 𝐺𝑎𝑚𝑚𝑎(𝛼∗,𝛽∗).          (24) 

Where 𝛼∗ =  𝛼0 + 𝑛𝛼 and 𝛽∗ =  𝛽0 + 𝑇1 
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CREDIBLE INTERVAL (PROBABILITY INTERVAL) 

If 𝑃 𝜃/𝑥   is the posterior density of θ, then any interval  𝑎, 𝑏  satisfying  

           𝑃 𝜃𝜖 𝑎,𝑏 /𝑥  =   𝑃 𝜃/𝑥  𝑑𝜃 = 𝑝
𝑏

𝑎
,          (25) 

Where p is a constant, is called a 100p% Credible Interval. 

 EQUAL-TAILED INTERVAL 

The Equal-tailed 100p% Credible Interval for which 𝑎 and 𝑏 are chosen to satisfy the equation; 

 𝑃 𝜃/𝑥  𝑑𝜃

𝑎

−∞

=   𝑃 𝜃/𝑥  𝑑𝜃

∞

𝑏

=  
1

2
 1 − 𝑝                                                                                                                   (26) 

Now, the posterior density here is a Gamma density function. The Gamma posterior distribution can be converted to a Chi-

squared distribution since the gamma table values are not readily available. 

That is, if 𝜃 ~ 𝛤 𝛼, 𝛽 =  𝜃 ~ 𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽 ,  then 

  2𝛽𝜃 ~ 𝜒2 𝛼   
2   

  𝜃 ~ 
𝜒2 𝛼   

2

2𝛽
 

Let  𝑎, 𝑏  be the 95% Credible Interval for θ. Then,  

  𝑃 𝑎 ≤ 𝜃 ≤ 𝑏 = 0.95  

  𝑃  𝑎 ≤
𝜒2 𝛼   

2

2𝛽
≤ b = 0.95 

  𝑃 2𝛽𝜃𝑎 ≤ 𝜒2 𝛼   
2 ≤ 2𝛽𝜃𝑏 = 0.95 

  2𝛽𝑎 =  𝜒1(0.975,2𝛼)  
2   and 2𝛽𝑏 =  𝜒2(0.025,2𝛼)  

2  

  𝑎 =  
𝜒1(0.975 ,2𝛼)  

2  

2𝛽
 and 𝑏 =  

𝜒2(0.025 ,2𝛼)  
2  

2𝛽
  

Thus, the 95% Credible Interval for 𝜃 is  𝑎,𝑏 .  That is, the probability that 𝜃 lies between  𝑎, 𝑏  is (1 − 𝑝).   

 DATA ANALYSIS 
 Software used: EasyFit 5.5 and R. 

 Table1: Descriptive Statistics 

Sample Size (n) 139 

Range 129 

 𝑿𝒊 
19931 

Mean 143.39 

Variance 841.83 

Standard Deviation 29.014 

Coefficient Of Variation 0.20235 

Standard Error 2.461 
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Skewness 1.0425 

Excess Kurtosis 0.77583 

 

Figure2: Showing the Histogram (the empirical distribution) and Gamma model (the theoretical distribution) 

 
GOODNESS OF FIT DETAILS 
 Table2a 

lmogorov-Smirnov Test 

Sample Size 139 

Statistic 0.10366 

P-value 0.09389 

α 0.05 0.02 0.01 

Critical Value 0.11518 0.12876 0.13817 

Reject? No No No 
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 Table2b 

 
 

 

 

 

   

 

 
 

 

 

 

 

Table2c 

Chi-Squared  Test 

Deg. Of Freedom 7 

Statistic 16.507 

P-value 0.02086 

Α 0.05 0.02 0.01 

Critical Value 14.067 16.622 18.475 

Reject? Yes No No 

 

The tables (2a, 2b and 2c) shows that the data follows a Gamma p.d.f. 

THE MODEL PARAMETERS 

The model is a Gamma distribution with the following parameters: 

α = 24.4193, β = 0.1703  

That is; 

  𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽 =  𝐺𝑎𝑚𝑚𝑎 24.4193, 0.1703  
The Maximum Likelihood Estimate of β is given as; 

  𝛽 =  
𝛼

𝑋 
=  

24.4193

143.39
= 0.1703             

 SUMMARISING THE OBJECTIVE POSTERIOR DENSITIES 

The posterior density is a Gamma probability density function using the two types of objective (Uniform and Jeffrey’s) priors  

considered. 

From equation (4) and equation (16), the Gamma posteriors have the following estimates; 

      𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑀𝑒𝑎𝑛 =  
𝛼

𝛽
 

      𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
𝛼

𝛽2
 

            𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑆𝐷 =   
𝛼

𝛽2
 

                         𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑀𝑜𝑑𝑒 =  
𝛼−1

𝛽
 

Table3  

Anderson-Darling Test 

Sample Size 139 

Statistic 2.1471 

  

Α 0.05 0.02 0.01 

Critical Value 2.5018 3.2892 3.9074 

Reject? No No No 
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 Posterior Density Estimates      

 Using uniform prior Using Jeffrey’s prior 

Posterior Mean 143.39 143.39 

Posterior Variance 841.93 841.93 

Posterior SD 29.014 29.014 

Posterior Mode 137.52 137.52 

 

 

SUMMARISING THE SUBJECTIVE POSTERIOR DENSITY 

The posterior density is a Gamma probability density function using the subjective priors considered. 

From equation (24), the Gamma posterior p.d.f., 𝐺𝑎𝑚𝑚𝑎(𝛼∗,𝛽∗) have the following estimates; 

                                                      𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑀𝑒𝑎𝑛 =  
𝛼∗

𝛽 ∗
 

                                                     𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
𝛼∗

 𝛽 ∗ 2
 

                                                     𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑆.𝐷 =   
𝛼∗

 𝛽 ∗ 2
 

                                                      𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑀𝑜𝑑𝑒 =  
𝛼∗−1

𝛽 ∗
 

Table4  

 

 

COMPARISON BASED ON BAYESIAN POINT ESTIMATES (MEAN AND MODE) 

The Bayesian Point estimates are presented below. The posterior mean and mode using the two approaches are clearly different. 
Hence, the subjective approach have a better performance because it estimate described our parameter β of interest better. 

 Table5 

 Bayes Estimate 

 Objective 

Approach 

143.39 

Posterior Mean Subjective 

Approach 

0.1704 

Posterior Mode Objective 

Approach 

137.52 

 Subjective 

Approach 

0.1703 

 

COMPARISON OF THE TWO APPROACHES (POSTERIOR PDFs) USING THEIR CREDIBLE INTERVALS. 

i) Objective Approach: 

The two pdfs have the same parameters, hence 
 The 95% Credible interval for the posterior mean: 

  qgamma(.025, 24.4193, 0.1703) 

[1] 92.26539 

> qgamma(.975, 24.4193, 0.1703) 
[1] 205.6045 

Posterior Mean 0.1704 

Posterior Variance 8.5487 𝑋 10−6 

Posterior SD 2.9238 𝑋 10−3 

Posterior Mode 0.1703 
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Thus, the 95% Credible interval is (92.26539, 205.6045). This means that, there is a 95% chance that the mean is in the interval 

(92.26539, 205.6045).  

ii) Subjective Approach: 

The 95% Credible interval for the posterior mean: 

> qgamma(0.025, 3396.2827, 19932) 

[1] 0.1647106 
> qgamma(0.975, 3396.2827, 19932) 

[1] 0.1761714 

Thus, the 95% Credible interval is (0.1647, 0.1762). This means that, there is a 95% chance that the mean is in the interval 

(0.1647, 0.1762).  
Again it can be seen above that, the Bayesian Credible interval using the subjective approach describes (or is about) the 

parameter of interest better as compared it objective counterpart.  

 

COMPARISON OF THE TWO APPROACHES (POSTERIOR PDFs) USING COEFFICIENT     OF SKEWNESS 

(COS) 

 

                                       𝐶𝑂𝑆 = 𝛾 = 2 
1

𝛼
          (27) 

Table6  

 Posterior parameter  Coefficient Of       

Skewness  

        (𝛼, 𝛽) 𝛾 

The Approach  Objective  (24.4193, 0.1703)            0.40470  

Subjective (3396.2827, 19932)            0.03432  

 

From table6, it is observed that  𝛾 > 0  therefore, the posterior distributions based on the Objective Approach are not 

symmetrical; rather they are both slightly positively and equally skewed. The posterior distribution based on the Subjective 
Approach approximately symmetrical, this ensures it better performance. 

COMPARISON OF THE TWO APPROACHES (POSTERIOR PDFs) WITH RESPECT TO THEIR POSTERIOR 

VARIANCES. 

  Table7  

Variance Using 

Objective Approach Subjective Approach  

841.93  8.5487 𝑋 10−6 

 
From the table7 above, it is obvious that using the Objective Approach, the posterior variance (841.93) is high; this implies low 

(small) precision. But with the Subjective Approach, the posterior variance (8.5487 X 10−6) is very small this implies very high 

precision. This means that, the posterior density function which uses the Subjective Approach have much more information about 
the parameter β of interest. Hence, the Subjective Approach is more efficient. 

  

SUMMARY  
In this study, the relative performance of the two approaches to Bayesian Inference (Objective and Subjective) was examined 

using different performance measures. The comparison of the two approaches is based on the Bayes point estimates, posterior 
variance, Bayesian credible interval and the coefficient of skewness of the posterior distribution. 

 

CONCLUSION  
It has been found that the relative performance of the subjective approach (informative prior) is more efficient than its objective 

(non-informative priors) counterpart using different performance measures. In fact, it was observed that, while the posterior 

probability density function obtained using the subjective approach effectively described the unknown parameter β, the posterior 
probability density function obtained using the objective approach failed to do that. 
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