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This paper investigates an eco-system with two prey species and a predator. 

The model equations constitute a set of three first order non-linear coupled 

difference equations. All possible positive equilibrium points of the system 

are computed and criteria for the stability of all equilibrium states are 

established. Time series plots and phase portraits are obtained for different 

sets of parameter values. Bifurcation diagrams are provided for selected 

range of growth parameter. 
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INTRODUCTION 
Mathematical properties and ecological meaning of continuous and discrete models have been investigated 

qualitatively and numerically in order to explain mutual interactions between populations. Prey-predator models are 

of great interest to both ecologists and mathematicians, because the problem attempts to model the complex 

relationship in the populations of different species that share the same environment. In recent decades, many 

researchers [2, 6, 8, 11] have focused on the ecological models with three and more species to understand complex 

dynamical behaviors of ecological systems in the real world. The models have demonstrated very complex dynamic 

nature of the models, including cycles, periodic doubling and chaos. The discrete time models produce much richer 

patterns [1, 4, 7, 5, 9]. Discrete time models are ideally suited to describe the population dynamics of species, which 

are characterized by discrete generations. 

 

Mathematical Model 

 
In this paper, we consider the discrete-time prey-predator system describing the interactions among three 

species by the following system of difference equations: 

 ( 1) ( ) 1 ( ) ( ) ( ) ( ) ( )x n x n rx n ax n y n bx n z n      

 ( 1) ( ) 1 ( ) ( ) ( ) ( ) ( )y n sy n y n cx n y n d y n z n        (1) 

 ( 1) 1 ( ) ( ) ( ) ( ) ( )z n e z n f x n z n g y n z n      

where the densities of prey species are denoted by x(n), y(n) and z(n) represents predator population density and all 

parameters are non - negative. It is assumed that all the species in the model grow logistically. Also the prey species 

help each other against predator. This is a discrete version of a model discussed in [3]. 

 

http://www.journalijar.com/


ISSN 2320-5407                               International Journal of Advanced Research (2015), Volume 3, Issue 4, 627-634 

 

628 

 

 

Existence of Equilibrium 
 

The equilibrium points of (1) are the solutions of the equations 

     1 ; 1 ; 1 .x x rx axy bxz y sy y cxy d yz z e z fxz g yz             

The equilibrium points are 

0 (0,0,0)E  , 
1

1
0, 0

s
E

s

 
  
 

, 
2

( 1)
0, ,

e g s es
E

g gd

  
  
 

, 
3

( 1) ( 1)
, ,0

a s r s
E

ca sr sr ca

  
  

  
and  * * *

4 , ,E x y z . Where, 

* ( ) ( 1)

( ) ( )

e ad bs bg s
x

f ad bs g cb rd

  


  
, 

* ( ) ( 1)

( ) ( )

e bc rd fb s
y

f ad bs g cb rd

  


  
and

* ( ) ( 1)( )

( ) ( )

e rs ca s fa rg
z

f ad bs g cb rd

   


  
. 

Interior equilibrium point 4E  corresponds to the coexistence of all species. 

 

Dynamical Behavior of the Model 
 

In this section, we investigate the local behavior of the system (1) around each equilibrium point. The local 

stability analysis of the system (1) can be studied by computing the variation matrix corresponding to each 

equilibrium point. The variation matrix for the system (1) is 

1 2

( , , ) (1 2 ) (2)

1

rx ay bz ax bx

J x y z cy s y cx dz dy

fz gz e fx gy

     
 

     
 
    

 

Since we are interested in the nontrivial equilibrium points, we neglect 0E . 

Theorem 1: The equilibrium point 
1E  is locally asymptotically stable if 1

2

a
s

a
 


, 1 3s  and 

2

g g
s

g e g e
 

  
, otherwise unstable equilibrium point. 

Proof: The Jacobian matrix J for the system evaluated at the equilibrium point 
1E  is given by 

1

(1 )
1 0 0

(1 ) (1 )
( ) 2

(1 )
0 0 1

a s

s

c s d s
J E s

s s

g s
e

s

 
 

 
  

 
 
 

   
 

. 

Hence the eigenvalues of the matrix 
1( )J E  are

1

(1 )
1

a s

s



  , 

2 2 s   and
3

(1 )
1

g s
e

s



   . Hence 

1E is 

locally asymptotically stable when1
2

a
s

a
 


, 1 3s  and 

2

g g
s

g e g e
 

  
, and unstable when 

2

a
s

a



, 

3s  and 
2

g g
s

g e g e
 

  
. 
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Figure 1: Time Series Plot at 

1E  

Theorem 2: The equilibrium point 
2E is locally asymptotically stable if 

( )

adc bg
s

b e g





and 0  where es  

such that 2 2( 4 ) 4 (1 )e s s g eg s     , otherwise unstable equilibrium point. 

Proof: The Jacobian matrix evaluated at 
2E  is given by 

2

( 1)
1 0 0

2 ( 1)
( ) 1 .

( 1) ( 1)
1

ae bes bg s

g gd

ce e es g s ed
J E s

g g g g

gf s fes g s es

gd d

  
  

 
    

      
  

    
  
 

 

Hence the eigenvalues of the matrix 
2( )J E  are 1

( 1)
1

ae bes bg s

g gd


 
   and

2,3

2

2

g es

g




 
 . Hence 

2E is 

locally asymptotically stable when 
( )

ade bg
s

b e g





and 0  , and unstable when 

( )

ade bg
s

b e g





and 0  . 

 

Figure 2: Time Series Plot at 
2E  
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Theorem 3: The equilibrium point 
3E  is locally asymptotically stable if 33 1a   and 0  where 

11 22 2a a     such that 2 2

11 11 22 22 12 212 4a a a a a a     , otherwise unstable equilibrium point. 

Proof: The Jacobian matrix evaluated at 3E  is given by 

11 12 13

3 21 22 23

33

( ) .

0 0

a a a

J E a a a

a

 
 

  
 
 

 

Where, 
11

( 1)
1

ar s
a

sr ca


 


,  

2

12

( 1)a s
a

sr ca





,   

13

( 1)ab s
a

sr ca





, 

21

(1 )cr s
a

sr ca





22

( 1)( 2 )s ac rs
a s

sr ca

 
 


, 

23

(1 )dr s
a

sr ca





 and 

33

( 1)( )
1

s gr fa
a e

sr ca

 
  


. Hence the eigenvalues of the matrix 

3( )J E  are 1 33a  and

11 22

2,3
2

a a 


 
 . Hence 3E is locally asymptotically stable when 33 1a   and 0  , and unstable when 33 1a   

and 0  . 

 

Figure 3: Time Series Plot at 
3E  

 

Local Stability and Dynamical Behavior around Interior Fixed Point E4 
 

We now investigate the local stability and bifurcation of interior fixed point
4E . The Jacobian matrix J at 

4E has the form 

11 12 13

4 21 22 23

31 32 33

( ) . (3)

b b b

J E b b b

b b b

 
 

  
 
 

 Where, * * *

11 1 2b rx ay bz    , *

12b ax  , *

13b bx  , *

21b cy  , * * *

22 (1 2 )b s y cx dz    , *

23b dy  , 
*

31b fz , 

*

32b gz  and * *

33 1b e fx gy    .

 

Its characteristic equation is 
3 2 0 (4)A B C       

with 11 22 33( )A b b b    , 11 33 22 33 11 22 12 21 13 31 23 32B b b b b b b b b b b b b       and 

23 32 22 33 11 21 33 23 31 12 22 31 21 32 13( ) ( ) ( )C b b b b b b b b b b b b b b b      .  

By the Routh-Hurwitz criterion, 
4E  is locally asymptotically stable if and only if A, C, and AB-C are positive. 
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Phase-Plane & Bifurcation Diagram Analysis 

 

In this section, we provide the phase-plane diagrams for the prey system and also we present the bifurcation 

diagrams of the model (1) that have been obtained with data from 500 iterations with time-step of 0.001 units. The 

bifurcation diagrams are presented with the presence of predator and the plots have been generated using MATLAB 

7 [10]. 

In Figure (4) and (5) shows that the Trajectories of the solutions around the positive equilibrium point for all the 

systems, they showed the stabilizing and destabilizing effect of the discrete prey predator system. We now assume 

the parameter values 500, 3.66,t s  0.03,r  0.01, 0.02, 2.99,a b c   2.34,d  0.19f  and 1.99g  are 

taken together with the initial values for prey and predator population 0.2, 0.3x y  and 0.4z  . Hence the system 

(1) is unstable. 

 

 

 

 

 

Figure 4: Time series plot and Phase Portrait are Instability at 
4E  

While with 300,t  3.56,s  0.003, 0.001,r a  0.002, 2.39, 0.89b d f    and keeping all other parameter 

same, the phase portrait shows a sink and the trajectory spirals towards an interior equilibrium point. We observe the 

system (1) is stable (see Figure - 5). 
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Figure 5: Time series plot and Phase Portrait are Stability at 
4E  

Finally in Figure 6 indicates, the bifurcation diagrams for predator densities of the system (1) with initial 

conditions 0.4, 0.3x y   and 0.5z  as above and we consider the parameter values 1.91,r 

0.69, 1.39, 0.69,a b c   0.29,d  0.83, 0.31,e f  0.29g  and 2.6 4s   . It can be observed from Figure 6 

(a) shows that there is no period-doubling bifurcation for intrinsic growth rate 2.6 to 2.9s  , with only one predator, 

(b) shows the bifurcation that bifurcates 2 cycles when the intrinsic growth rate = 3 with one predator and the prey 

population bifurcates 4 cycles at 3.5 and (c) shows when intrinsic growth rate = 2.6  to 4 with one predator, the prey 

population bifurcate 2 cycle at  3s   and bifurcate 4 cycles at 3.5s   and chaos after 3.5s  that is increasing the 

parameters effectively makes the bounds on the system tighter and pushes it from stability towards unstable 

behavior. This unstability manifests itself as a period-doubling bifurcation as a result of which the single equilibrium 

level of the population splits into two and the population starts oscillating between two levels which are quite 

different in their relative magnitudes.  
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Figure 6: Bifurcation diagram for the prey system with intrinsic growth rate s, in the presence of predator          

           (a) when s = 2.6 to 2.9; (b) when s = 2.6 to 3.5; (c) when s = 2.6 to 4. 

 

As we keep on increasing the parameters, these levels individually split up more and more frequently, until 

all order is lost and we found an infinite number of possible equilibrium states visited by the population. At this 

point, the population behavior seems to lose any stability. This appearance of non-periodic behavior from 

equilibrium population levels may be referred to as the “period-doubling route to chaos”, the non-periodic dynamics 

being described as chaotic [Figure 6 (c)]. 
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