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Introduction:- 
Consider a family of linear positive convolution operators [1], 

 𝐸(𝑛 ,𝜂)𝑓  𝑥 =  𝑓 ∗ 𝑔(𝑛)  𝑥 =
1

𝜋
 𝑓 𝑡 𝑔(𝑛) 𝑥 − 𝑡 𝑑𝑡
𝜋

−𝜋
 , 𝑛 ∈ 𝑁 and 𝑥 ∈ 𝑅   (1)        

where 𝐶2𝜋   is the space of 2𝜋-periodic functions with norm, 

  𝑓 ≔ 𝑚𝑎𝑥 𝑓(𝑥)  

with kernel η=  𝑔𝑛 𝑥  𝑛>0
 ⊂𝐿2𝜋

1  

depending upon the parameters 𝑛 > 0 and 𝑛 → ∞. 
 

Here, kernel 𝜂 =  𝑔 𝑛  𝑛=1

∞
 be a sequence of even trigonometric polynomials of degree atmost  𝑚 𝑛 = 𝑂(𝑛) , 

which are normalized by,  

 
1

𝜋
 𝑔 𝑛  𝑡 𝑑𝑡 = 1
𝜋

−𝜋
  

 

 𝑔 𝑛  𝑥  =
1

2
+  𝜌 𝑘 ,𝑛 cos 𝑘𝑥

𝑚 (𝑛)
𝑘=1       (2)                                                                                        

Here, the operators are uniformly bounded, 

   𝐸(𝑛 ,𝜂)𝑓 
"
 ≤ 𝐴 𝑓       (3)                                                                                                              

and satisfy Bernstein type inequality, 

   𝐸(𝑛 ,𝜂)𝑓 
"
 ≤ 𝐴𝜑 𝑛 2  𝐸(𝑛 ,𝜂)𝑓      (4)                                                                                        

 

Also, we have, 

  𝐸(𝑛 ,𝜂)𝑓 
′
 𝑥 =  𝐸(𝑛 ,𝜂)𝑓

′ 𝑥           (5)                                                                                           

 

For all 𝑓 with 𝜑 𝑛 > 0 monotonely increasing to infinity such that, 
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𝑠𝑢𝑝
𝑛 > 0

  
𝜑 𝑛+1 

𝜑  𝑛 
 = 𝑘 < ∞ 

For 𝛿 > 0, 0 < 𝛼 ≤ 2, we have from [2], 

 ⍵2 𝑓; 𝛿 =
𝑠𝑢𝑝

0 <  ≤ 𝛿
 𝑓 𝑥 +  − 2𝑓 𝑥 + 𝑓 𝑥 −    

                 =
𝑠𝑢𝑝

0 <  ≤ 𝛿
 ∆

2𝑓 𝑥   

 𝐿𝑖𝑝2𝛼 =  𝑓 ∈ 𝐶2𝜋 ;⍵2 𝑓;𝛿 = 𝑂 𝛿𝛼 ,𝛿 → 0+  
 

By the monotonicity of the modulus of continuity, 

 ⍵2 𝑓;  ≤ 𝐴𝑡𝛼 + 𝐴2𝑡−2⍵2 𝑓; 𝑡       (6)                                                        

 

Inverse Results:- 
Lemma 2.1. Let Ω be monotonically increasing on  0,𝑐 . Then, 

 Ω 𝑡 = 𝑂 𝑡𝛼  , 𝑡 → 0+, if for some , 0 < 𝛼 < 𝑟 and all , 𝑡 ∈  0, 𝑐  
And 𝑚 ∈ 𝑁, such that ,  

 𝑚 ≤ 𝑡 ≤ 𝑚−1 

And 

 Ω 𝑡 ≤  Ω 𝑚−1 ≤ 𝐵𝑚−1
𝛼 = 𝐵 𝑀𝑚  

𝛼 ≤  𝐵 𝑀𝑡 𝛼  

 

Introducing the Steklov means for 𝛿 > 0,  

 𝑓𝛿 𝑥 =
1

𝛿2   𝑓
𝛿 2 

−𝛿 2 

𝛿 2 

−𝛿 2 
 𝑥 + 𝑠 + 𝑡 𝑑𝑠𝑑𝑡 

Also, we have from [3], 

  𝑓 − 𝑓𝛿 ≤ ⍵2 𝑓; 𝛿                               (7) 

  𝑓𝛿
" ≤ 𝛿−2⍵2 𝑓; 𝛿                                (8) 

 

Theorem 2.1. [4] If 0 < 𝛼 < 2, then we have, 

  𝐸(𝑛 ,𝜂)𝑓 − 𝑓 ≤ 𝐴𝜑 𝑛 −𝛼  

This implies that, 𝑓 ∈ 𝐿𝑖𝑝2𝛼 

 

Proof. By the assumption and using (3), (4), (5), (7) and (8), we have for  > 0, 

  ∆
2𝑓 ≤  ∆

2 𝑓 − 𝐸 𝑛 ,𝜂 𝑓  +    𝐸(𝑛 ,𝜂)𝑓 
" 2 

− 2 

 2 

− 2 
 𝑥 + 𝑠 + 𝑡 𝑑𝑠𝑑𝑡 

               ≤ 4 𝑓 − 𝐸 𝑛 ,𝜂 𝑓 + 2    𝐸 𝑛 ,𝜂  𝑓 − 𝑓𝛿  
”
 +  𝐸 𝑛 ,𝜂 𝑓𝛿

”   

                 ≤ 4𝐴𝜑 𝑛 −𝛼 + 𝐴2 𝜑 𝑛 2 𝑓 − 𝑓𝛿 +  𝑓𝛿
"   

                ≤ 4𝐴𝜑 𝑛 −𝛼 + 𝐴2  𝜑 𝑛 2 +
1

𝛿2 ⍵2 𝑓; 𝛿  

               ≤ 𝐴𝛿 𝑛 𝛼 + 𝐴 


𝛿 𝑛 
 

2

⍵2 𝑓;𝛿 𝑛   

for 𝛿 = 𝛿 𝑛 = 𝜑 𝑛 −1 

If we choose, 𝛿 𝑛 ≤ 𝑡 ≤ 𝛿 𝑛 − 1 ≤ 𝑘𝛿 𝑛 , 
then, 𝑓 ∈ 𝐿𝑖𝑝2𝛼 . 

 

Theorem 2.2. [5] For 0 < 𝛼 < 2,  we have, 

 𝐸 𝑛 ,𝜂 
∗ 𝑓 = 𝑂  

1

𝑛𝛼
  , then, 𝑓 ∈ 𝐿𝑖𝑝2𝛼 

where, for the polynomial 𝑒 𝑛,𝜂 
∗ 𝑓 of best approximation, 𝐸 𝑛 ,𝜂 

∗ 𝑓 is given by, 

 𝐸 𝑛 ,𝜂 
∗ 𝑓 =

𝑖𝑛𝑓
𝑒 𝑛,𝜂 ∈ 𝜋𝑛

 𝑓 − 𝑒 𝑛 ,𝜂 𝑓 =   𝑓 − 𝑒 𝑛 ,𝜂 
∗ 𝑓  

 𝜋𝑛  being the set of complex trigonometric polynomials of degree 𝑛. 
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Proof. Let 𝐽 𝑛 ,𝜂 , for 𝑛 ∈ 𝑁, be a sequence of convolution operators (1) satisfying (2), 

 𝐽 𝑛 ,𝜂 𝑓 ∈ 𝜋𝑛  ,   

 and  𝐽 𝑛 ,𝜂 𝑓 − 𝑓 ≤ 𝐴⍵2  𝑓;
1

𝑛
           (9)                        

using Bernstein inequality for trigonmetric polynomials, 

 𝑒 𝑛 ,𝜂 
∗ 𝑓 ≤ 𝑛2 𝑒 𝑛 ,𝜂 𝑓          

We have, 

    𝐽 𝑛 ,𝜂 𝑓 
"
 ≤  𝐽 𝑛 ,𝜂  𝑓 − 𝑓𝑛−1 

" +  𝐽 𝑛 ,𝜂 𝑓𝑛−1
"   

                        ≤ 𝑛2 𝐽 𝑛 ,𝜂  𝑓 − 𝑓𝑛−1  + 𝐴 𝑓𝑛−1
"   

                        ≤ 𝐴𝑛2⍵2  𝑓;
1

𝑛
              (10)                                                      

Using (9) , (10) and theorem 2.1, we have, 

  ∆
2𝑓 ≤  ∆

2 𝑓 − (𝑒 𝑛,𝜂 
∗ 𝑓 )  +     𝑒 𝑛 ,𝜂 

∗ 𝑓 
"
 𝑥 + 𝑠 + 𝑡  

 2 

− 2 
𝑑𝑠𝑑𝑡 

              ≤ 4 𝐸 𝑛 ,𝜂 
∗ 𝑓 + 2   𝑒 𝑛,𝜂 

∗  𝑓 − 𝐽 𝑛 ,𝜂 𝑓  
"
 + 2   𝐽 𝑛 ,𝜂 𝑓 

"
  

              ≤ 4𝐴  
1

𝑛𝛼
 + 𝑛22 𝑒 𝑛 ,𝜂 

∗  𝑓 − 𝐽 𝑛 ,𝜂 𝑓  + 𝑛22𝐴⍵2  𝑓;
1

𝑛
  

              ≤ 𝐴  
1

𝑛𝛼
+ 𝑛22𝐴⍵2  𝑓;

1

𝑛
   

              = 𝐴𝛿𝑛
𝛼 + 𝛿𝑛

−2⍵2 𝑓;𝛿𝑛  

with  𝛿𝑛 =  1
𝑛   

Now, 
𝛿𝑛

𝛿𝑛+1
≤ 2 ,  and using (5), we have, 𝑓 ∈ 𝐿𝑖𝑝2𝛼 .  

 

Some Definitions:- 
Definition 3.1. 

Fejer type kernels. 

Let 𝑞 ∈ 𝐿1 𝑅  be normalized by , 

  𝑞 𝑡 𝑑𝑡
∞

−∞
= 2𝜋        (11) 

 

Now, for (2), we will consider even 𝑞 with its fourier transform 𝑞  with compact support, 

 𝑞   𝑣 =
1

2𝜋
 𝑞 𝑡 𝑒−𝑖𝑣𝑡𝑑𝑡 = 0
∞

−∞
,   𝑣 > 𝑇,         (12)           

for some 𝑇 > 0.  
Then 𝑞∗ =  𝑞𝑛

∗  𝑛∈𝑁 with, 

 𝑞𝑛
∗ 𝑥 =

1

2
 𝑛𝑞 𝑛𝑥 + 2𝑛𝑘𝜋 ∞
𝑘=−∞            (13)                            

is called a kernel of Fejer type. 

Closed representation is given by, 

 𝑞𝑛
∗ 𝑥 =

1

2
+  𝑞 𝑘𝑛−1  𝑐𝑜𝑠𝑘𝑥

 𝑛𝑇  
𝑘=1  ,  𝑥 ∈ 𝑅,          (14)               

 

Now with the Poisson formula [6] , the singular convolution integral (1) with kernel 𝑞 may be represented as 

convolution integral on real line as, 

  𝐸(𝑛 ,𝑞∗)𝑓  𝑥 =
1

𝜋
 𝑓 𝑡 𝑞𝑛

∗  𝑥 − 𝑡 𝑑𝑡 =  𝐸(𝑛 ,𝜂)𝑓  𝑥 =
1

2𝜋
 𝑓 𝑡 𝑞𝑛  𝑥 −

𝑡

𝑛
 𝑑𝑡

∞

−∞
   

𝜋

−𝜋
   (15) 

The above condition placed on 𝑞 guarantee that  𝐸(𝑛 ,𝑞∗)𝑓  𝑥  defines an approximation process on 𝐶2𝜋  . 

 Definition 3.2. 

Jackson Kernel. The positive Jackson kernels 𝑗 𝑝 =  𝐽 𝑛 
 𝑝  

𝑛∈𝑁
 are given by, 

 𝐽 𝑛 
 𝑝 

=
1

𝜆 0,𝑛  𝑝 
 

sin  𝑛𝑥 2  

sin  𝑥 2  
 

2𝑝

, where,  𝑥 ∈ 𝑅     (16) 

 

This is the closed representation of Jackson kernels. 
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Here,  𝜆 𝑘,𝑛  𝑝 =
2

𝜋
  

sin  𝑛𝑡 2  

sin  𝑡 2  
 

2𝑝𝜋

0
cos𝑘𝑡 𝑑𝑡        , where,  0≤ 𝑘 ≤  𝑛 − 1 𝑝       (17) 

Corresponding convergence factors are given by,  

 𝜌 𝑘 ,𝑛  𝑗
 𝑝  =

𝜆 𝑘 ,𝑛  𝑝 

𝜆 0,𝑛  𝑝 
   ,            (18) 

Where [1], 

𝜌 𝑘,𝑛 =  
 1 𝜋   𝑔 𝑛  𝑡 cos 𝑘𝑡 𝑑𝑡 , 0 ≤ 𝑘 ≤ 𝑚(𝑛)

𝜋

−𝜋

0  ,                                         𝑘 > 𝑚(𝑛)
  (19)            

 

Here, kernel  𝑔 𝑛  𝑛=1

∞
= 𝜂 be a sequence of even trigonometric polynomials of degree atmost  𝑚 𝑛 = 𝑂(𝑛) , 

which are normalized by,  

 
1

𝜋
 𝑔 𝑛  𝑡 𝑑𝑡 = 1
𝜋

−𝜋
 

The Jackson kernels are not of Fejer type.  

Also, 𝜆 𝑘 ,𝑛  𝑝  can be represented as in [7] [8], 

 𝜆 𝑘,𝑛  𝑝 =   −1 𝑗  
2𝑝
𝑗
  
𝑛 𝑝 − 𝑗 + 𝑝 − 𝑘 − 1

2𝑝 − 1
 

2𝑝
𝑗=0   ,       0≤ 𝑘 ≤  𝑛 − 1 𝑝                                             (20) 

Using property of central factorial numbers , 

(i) 𝑡𝑘
𝑛 = 𝑇𝑘

𝑛 = 0                  ,    𝑛 < 𝑘 

(ii) 𝑇𝑘
𝑛 =

1

𝑘!
 (−1)𝑗  

𝑘
𝑗
 𝑘

𝑗=0  
𝑘−2𝑗

2
 
𝑛

                        ,   0 ≤ 𝑘 ≤ 𝑛 ∈ 𝑁0           (21) 

 

Where, 𝑡𝑘
𝑛  is the central factorial numbers of first kind and is uniquely determined coefficients of the polynomials, 

 𝑥 𝑛 =  𝑡𝑘
𝑛𝑥𝑘𝑛

𝑘=0  

 

Similarly, 𝑇𝑘
𝑛  is central factorial numbers of second kind and is uniquely determined coefficients of the polynomials, 

  𝑥𝑛 =  𝑇𝑘
𝑛𝑥[𝑘]𝑛

𝑘=0  

By putting  𝑘 = 0 in (20) and using (21), 

 𝜆 0,𝑛  𝑝 =
1

 2𝑝−1 !
 𝑛2𝑖−1𝑡2𝑖

2𝑝𝑝
𝑖=1

  −1 𝑗  
2𝑝
𝑗
  𝑝 − 𝑗 2𝑖−1𝑝

𝑗=0                (22) 

 

and for 1 ≤ 𝑘 ≤ 𝑛 − 𝑝, we have, 

 𝜆 𝑘,𝑛  𝑝 =
1

 2𝑝−1 !
 𝑡2𝑖

2𝑝   
2𝑖 − 𝑚

2𝑚
 𝑖−1

𝑚=1
𝑝
𝑖=2 𝑛2𝑖−2𝑚−1𝑘2𝑚  

      ×   −1 𝑗  
2𝑝
𝑗
  𝑝 − 𝑗 2𝑖−2𝑚−1𝑝

𝑗=0  

     +
 −1 𝑝

 2𝑝−1 !
 

2𝑝
𝑝
  𝑘2𝑖−1𝑡2𝑖

2𝑝𝑝
𝑖=1 + 𝜆 0,𝑛  𝑝      (23)             

 

For some, 𝐶 𝑖,𝑗  = 𝐶 𝑖,𝑗   𝑗
 𝑝   and 𝑑 𝑘,𝑝 ≠ 0, polynomial division of (23) by (22) gives, 

  1 − 𝜌 𝑘 ,𝑛  𝑗
 𝑝  =   

1

𝑛2𝑗  𝐶 𝑖,𝑗  𝑘
2𝑖𝑗

𝑖=1 + 𝑑 𝑘 ,𝑝 
𝑝−1
𝑗=1 𝑛−2𝑝+1 + 𝑂 𝑛−2𝑝          (24)                                                     

We can see from (24), 

  𝑗 𝑝  ∈ 𝑆 2,𝑝−1  and 𝑗 𝑝 ∉ 𝑆 2,𝑝  

 

For, 𝑝 ≥ 3, we have approximation rate higher than 𝑂 𝑛−2  for the linear combination 𝜒 =  𝜒(𝑛) 𝑛∈𝑁
  of even 

trigonometric polynomials of degree  𝑛𝑎𝜈  , for Jackson kernels, 

  𝜒𝑛 𝑥 =  𝛾𝜈𝑔 𝑛𝑎𝜈   𝑥 
𝑠
𝜈=1    ,      𝑥 ∈ 𝑅 ,    (25)                                                         

 

Definition 3.3.  

Central B-splines and Jackson De La Vallee Poussin kernel. 

We can define central B-splines [9] as the Fourier transforms of the powers of the sinc function, 

 𝐵𝑚 𝑣 =
1

2𝜋
  𝑠𝑖𝑛𝑐

𝑡

2
 
𝑚

𝑐𝑜𝑠𝑣𝑡𝑑𝑡
∞

−∞
     (26)                                           
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 𝑠𝑖𝑛𝑐𝑥 =
𝑠𝑖𝑛𝑥

𝑥
 ,  𝑥 ∈ 𝑅\ 0  , 𝑠𝑖𝑛𝑐 0 = 1 

Their closed form is given by, 

   𝐵𝑚  𝑣 =  

1

 𝑚−1 !
  −1 𝑗  

𝑚
𝑗   

𝑚

2
−  𝑣 − 𝑗 

𝑚−1  𝑚 2  − 𝑣  

𝑗=0 ,  𝑣 ≤
𝑚

2

0                                                                     ,  𝑣 >
𝑚

2
  

            (27) 

The main properties of B-Splines are, 

 𝐵𝑚 𝑣 ≥ 0 ,                  𝑣 ∈ 𝑅, 

 𝐵𝑚 𝑣 ∈ 𝐶
𝑚−2 𝑅  , 𝑚 ≥ 2,                

 𝐵𝑚 𝑣 ∈ 𝐶
𝑚−1  −

𝑚

2
+ 𝑖,−

𝑚

2
+ 𝑖 + 1    ,      0 ≤ 𝑖 ≤  𝑚 − 1  , 𝑖 ∈ 𝑁     (28) 

 

The function , 𝑞 is given by,  

 𝑞 𝑥 ≡ 𝑞(𝑛) 𝑥 = 1

 𝐵2𝑝 0  𝑠𝑖𝑛𝑐
𝑥

2
 

2𝑝

 
    (29)                                              

satisfies (11) and (12). 

 

For 𝑝 ∈ 𝑁, the corresponding Fejer type kernel (13), namely, the kernel of Jackson and de la vallee Poussin ƥ
(𝑝) =

 𝑃 𝑛 
 𝑝  , 𝑛 ∈ 𝑁,  is given by, according to (2), 

 𝑃 𝑛 
 𝑝  𝑥 =

1

2
+  

𝐵2𝑝 𝑘 𝑛  

𝐵2𝑝 0 
𝑐𝑜𝑠𝑘𝑥

𝑛𝑝−1
𝑘=1 ,  𝑥 ∈ 𝑅,  (30)                           

 

For 𝑝 = 1, we have well known Fejer kernel 𝑓 =  𝐹𝑛   ,   𝑛 ∈ 𝑁 with, 

 𝐹𝑛 𝑥 =
1

2𝜋
 

sin  𝑛𝑥 2  

sin  𝑥 2  
 

2

 ,     𝑥 ∈ 𝑅 ,  (31)                                                             

and convergence factors, 

 𝜌 𝑘 ,𝑛  𝑓 =
𝑛−𝑘

𝑛
 ,   0 ≤ 𝑘 ≤  𝑛 − 1 ,  (32)                                                          

For 𝑝 = 2, we have classical kernel of Jackson de La Vallee Poussin , 

 𝑃 𝑛 
 2  𝑥 =  

1

2𝑛3 +
𝑐𝑜𝑠𝑥

4𝑛3   
sin  𝑛𝑥 2  

sin  𝑥 2  
 

4

 ,   𝑥 ∈ 𝑅, (33)                                

Convergence factors for above kernel is, 

 𝜌 𝑘 ,𝑛  ƥ
2 =  

 4𝑛3 − 6𝑛𝑘2 + 3𝑘3 4𝑛3 , 0 ≤ 𝑘 ≤  𝑛 − 1      

 2𝑛 − 𝑘 3 4𝑛3  ,              0 ≤ 𝑘 ≤  2𝑛 − 1 
 (34) 

 

Saturation Results:- 
Here, we will study saturation theorems that are not saturated.  

Consider the best trigonometric approximation for 𝑓 ∈ 𝐶2𝜋 ,  

 𝐼 𝑛 𝑓  𝑥 = 𝐼 𝑛 𝑓 =
𝑖𝑛𝑓

𝑡𝑛 ∈ 𝜋𝑛
 𝑓 − 𝑡𝑛 =  𝑓 − 𝑡𝑛

∗                  (35) 

For convergence factors of a kernel η , there holds, 

 𝜌 𝑘 ,𝑛  𝜂 = 1 ,   1 ≤ 𝑘 ≤ 𝑛 ,                                                      (36) 

We have, 𝐸 𝑛 ,𝜂  𝑡𝑛 ,𝑥 = 𝑡𝑛 𝑥   ,   𝑡𝑛 ∈ 𝜋𝑛  ,                               (37)                                                

   𝐸 𝑛 ,𝜂  𝑓,∙ − 𝑓 ∙  ≤  𝐸 𝑛 ,𝜂  𝑓 − 𝑡𝑛
∗  ,∙  +  𝑓 − 𝑡𝑛

∗  

   𝐸 𝑛 ,𝜂  𝑓,∙ − 𝑓 ∙  ≤ 𝐼 𝑛 ,𝜂  𝑓 − 𝑡𝑛
∗ +  𝑓 − 𝑡𝑛

∗                     (38) 

 

 For example, the well-known linear combination,  𝜏𝑛   , 𝑛 ∈ 𝑁 , of the Fejer kernel 𝑓 , 
 𝜏𝑛 𝑥 = 2𝐹2𝑛−1 𝑥 − 𝐹𝑛−1 𝑥             (39) 
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satisfies (36), so that, we have, 

   𝐸 𝑛 ,𝜏  𝑓,∙ − 𝑓 ∙  = 𝑂(1)  𝐼 𝑛 𝑓 , for,   𝑓 ∈ 𝐶2𝜋  

 

We can generalize above method in the following way. 

Suppose the convergence factor of η admits an expansion for 𝜏 = 1 or  2 , 𝜇 ∈ 𝑁, 

  1− 𝜌 𝑘 ,𝑛  𝜂 =   −1 𝑗+1𝛹𝑗  𝑘  
1

𝑛𝜏𝑗
 

𝜇
𝑗=1 +  𝑘 ,𝜇  

1

𝑛𝜏𝜇 + 𝜏 2     ,      (40) 

For  𝑘,𝜇 ∈ 𝑅 , 1 ≤ 𝑘 ≤ 𝑛, thus in particular, η∈ 𝑆 𝜏,𝜇 .  

 

We can now built a linear combination similar to (25) such that all terms on right hand side of (40) are cancelled.For 

example, kernels of Jackson and De La Vallee Poussin ƥ
(𝑝)

 with its convergence factors . 

For 𝑝 = 2 , we have, 

 𝜒𝑛 𝑥 = 𝛾1𝑃𝑎1𝑛
2  𝑥 + 𝛾2𝑃𝑎2𝑛

2  𝑥 + 𝛾3𝑃𝑎3𝑛
3  𝑥    ,   𝑥 ∈ 𝑅            (41) 

Where,  𝑎𝑖 = 𝑖, 1 ≤ 𝑖 ≤ 3, coefficients 𝛾𝑖  can be uniquely determined. 

Here, for the linear combination, 

 𝜒𝑛 𝑥 =  𝛾𝜈𝑔 𝑛𝑎𝜈   𝑥 
𝑠
𝜈=1    holds (36). 

 

From this, we have the Following:- 

Corollary 4.1. The unique linear combination 𝜒of Jackson De La vallee Poussin kernels (41) satisfying (36) is given 

by, 

 𝜒𝑛 𝑥 =
9

4
𝑃𝑎1𝑛

2  𝑥 −
4

3
𝑃𝑎2𝑛

2  𝑥 +
1

12
𝑃𝑎3𝑛

3  𝑥  ,  for,  𝑥 ∈ 𝑅  (42) 

Corresponding singular integral for 𝑓 ∈ 𝐶2𝜋  is given by, 

  𝐸 𝑛 ,𝜒  𝑓,∙ − 𝑓 ∙  = 𝑂 1 𝐸(𝑛) 𝑓                

 

The kernels of Jackson 𝑗 𝑝  of  (16), p≥ 2, admits no expansion of the form (40). Also, here linear combination are 

not saturated. This will be briefly outlined for 𝑝 = 2. The convergence factors are then given by, 

𝜌 𝑘,𝑛  𝑗
2 =

1

4𝑛3+2𝑛
 

3𝑘2 − 6𝑛𝑘2 − 3𝑘 + 4𝑛3 + 2𝑛 ,             0 ≤ 𝑘 ≤ 𝑛

−𝑘3 + 6𝑛𝑘2 − 12𝑛2𝑘 + 𝑘 + 8𝑛3 − 2𝑛 , 𝑛 ≤ 𝑘 ≤ 2𝑛 
          (43)    

                                                                           

Now for 𝑗2  and 𝑎𝑖 = 𝑖, 1 ≤ 𝑖 ≤ 3, leads to another corollary. 

Corollary 4.2. [10] The unique linear combination 𝜒  of Jackson De la Vallee poussin kernels (42) satisfying (36), is 

given by, 

  𝜒  𝑛 (𝑥) = −
1

18
 1 +

1

𝑛2 𝐽𝑛
2 𝑥 +

1

3
 4 +

1

2𝑛2 𝐽2𝑛
2 −

1

2
 1 +

1

2𝑛2 𝐽3𝑛
2  𝑥 +

1

9
 32 +

1

𝑛2 𝐽4𝑛
2  𝑥    (44) 

Corresponding singular integral for 𝑓 ∈ 𝐶2𝜋  is given by, 

  𝐸 𝑛 ,𝜒   𝑓,∙ − 𝑓 ∙  = 𝑂 1 𝐸(𝑛) 𝑓               

 

Here, the coefficients depend on 𝑛, and are bounded by linear combination 𝜒 =  𝜒  𝑛 (𝑥)  , 𝑛 ∈ 𝑁, which defines an 

approximation process and is not saturated by construction. 

Conclusion. Jackson de La Vallee Poussin kernels seems more suitable for these linear combinations since the 

calculation of coefficients is less elaborate. 
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