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In this paper, in the case of complete propeller motor failures, a 

feedback-loop control for a multirotor to avoid a crash when some 

motors fail and stop, is presented, and verified by simulation results. 

First, the modeling foundation for a multirotor, and the flight states are 

summarized. Secondly, theorems of the stabilizability of the flight 

states for avoiding a crash, by nonlinear dynamic state equations with 

state variable feedbacks are provided, andalso verified by simulations. 

In conclusion, the principal results are summarized, and the future 

research is described. 
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Introduction:- 
Multirotors using fixed motors for flight, have been widely used in many applications, such as agriculture, 

surveillance and search, entertainment, photography, and rescue missions. However, there are the risks resulting in 

injury or deaths and damages if multirotors crash. Therefore, multirotor flight crash avoidances in the case of 

complete motor failures have been studied [2], [4]-[7], [11], [12], [14]-[16], [18]-[20]. However, feedback-loop 

controls to avoid a crash for both configurations, have been seldom studied. Especially the establishment of the 

hexarotor feedback-loop controls to avoid a crash, is very important under general Euler angle rotational motions.On 

the other hand, the authors obtained the maneuver and flight states for multirotors (a quadrotor, a hexarotor, or an 

octorotor) with standard symmetrical configurations, based on both of the general Euler angle rotational motion and 

the translational motion of the state equations. They provided definitions of the operating points and equilibrium 

points of multirotors, and definitions of multirotor motor speed control signal vectors. Further they provided “add-on 

to underdetermined system equations” method of directly providing motor speed control signals for hexarotor or 

octorotor flights to avoid crashes (an open-loop control) when some motors fail and stop, and illustrated typical 

examples of hexarotor or octorotor flight states to avoid crashes obtained by the method [12]. Hence in this paper, to 

solve the problem to avoid a crash for the hexarotor in the case of complete failures, we expand on “add-on to 

underdetermined system equations” method based on [11], [12], [16], [18], and build a feedback-loop control to 

avoid a crash such that the hexarotor flight states to avoid crashes are stably realized when some motors fail and 

stop. First, we summarize the modeling foundation for a hexarotor, the maneuvers, and the flight states. Secondly, 

we provide theorems of the stabilizability of the flight states for avoiding a crash and stabilizing such flight states by 

nonlinear dynamic state equations with state variable feedbacks. Thirdly, we verify the theorems by simulations of 

the hexarotor stable flights to avoid a crash in the case of complete propeller motor failures. In Conclusion, we 

summarize the principal results and describe future research. 
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Mathematical Description of a Multirotor:- 

In this section, we summarize the mathematical foundation for describing the motion of a multirotor as a rigid body, 

and multirotor body frame configurations. We also describe dynamical Euler angle state equations of rotations, 

dynamical system state equations of translations, and the maneuvers and flight states (or operating points) based on 

[12]. 

 

Rigid-body dynamics:- 

Table 1:- Describes the symbols for the motion of a multirotor as a rigid body based [1]. 

Table 1:- Mathematical description for the motion of a multirotor as a rigid body [12]. 

 

 
Fig. 1:- Radius vector of a point with respect to stationary ( ) and moving ( ) coordinate systems[12]. 

In addition, linear operator is also described by a matrix form:- 

  {

                                                  
                                                  
                          

 }.          (2.1  

 

The angles      and are Tait–Bryan angles and are examples of the Euler angles [8],[13]. 

 

Symbol Description 

   Three-dimensional real vector space 

    Time 

                   
[15]

 Basis vectors of a right-handed Cartesian stationary coordinate system 

at the origin O (Fig. 1) 

                   or (    
              ).

[15]
 

Basis vectors of a right-handed moving (or local) coordinate system 

connected to the body at the center of mass    

  Linear operator,        

    Radius vector of a point moving relative to the stationary system 

 (   Radius vector of the point relative to the moving system such that  
     

 ̇ Absolute velocity such that  ̇   ̇   ̇    ̇ where an 

overdotrepresents time differentiation 

  Radius vector of the moving coordinate system relative to the 

stationary coordinate system 

 ̇ Velocity of motion of the moving coordinate system 

    Vector of angular velocity in multirotors such that      

    Instantaneous angular velocity 

 ̂ (                          

         

Moment of inertia for multirotors 
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Description of multirotor body frame configuration:- 

We assume that all rotors are the same, distributed evenly, and coplanar, and the distance from each rotor to the 

geometric center of the multirotor  is equal [6]. Eachmultirotor has a standard symmetrical configuration with a 

clockwise-rotating rotor adjacent to a counterclockwise-rotating rotor as shown in Figs. 2–4. 

 

 
Fig. 2:- Quadrotor with standard configuration. 

 

  
Fig. 3:- Hexarotor with standard configuration 

 

 
Fig. 4:- Octorotor with standard configuration. 

 

  (                   and   (                   in Figs.2–4represent vertical forces and moments, 

respectively.Each motor of a multirotor has an angular speed     and produces a vertical force   satisfying 

            
                                     (2.2)  

 

Each motor also produces the moment 

         
                                     (2.3)  

 

In practice, simple lumped parameter models are applied such that      and      are constants that can be 

easily determined from static thrust tests. For quadrotors (   ), hexarotors (   ), and octorotors (   ) that 

have standard symmetrical configurations, we define the moments of           and the translational forces of  

         ,          as follows. 
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For quadrotors(   ), 

 

(2.4) 

 

 

(2.5) 

 

For hexarotors(   ), 

 

 

(2.6) 

 

 

 

(2.7) 

 

For octorotors (   ), 

 

 

(2.8) 

 

 

 

(2.9) 

 

For multirotors (       ), 

 

(2.10) 

 

 

 

    ∑    
    

  
   (2.11) 

 

where                     arethe basis vectors of a right-handed  -dimensional real vector space   . 

 

State equations, maneuver, and flight states (or flight operating points) of multirotors:- 

In this subsection, based on the preceding mathematical foundation and [12], dynamical system state equations for a 

hexarotor are described for clarifying relationships between state variables. Here we show Theorem 1in an explicit 

form with the Euler angle state variables of dynamical system equations for multirotor rotations. 

 

Theorem 1 [12]: 

 

(2.12) 

 

the dynamical system state equations for multirotor rotations are written in an explicit form in terms of Euler angle 

state variables (   ̇   ∑      , and the input vector function of time        controls the outer 

generalized forces acting on the multirotor, then 

 

(2.13) 

 

(2.14) 

 

(2.15) 
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where     refers to time,   (        (        (       ̇  ( ̇  ̇   ̇   ( ̇  ̇)
 
  ̇  ( ̇   ̇     

  ̇ ̇, and    . 

 

On the basis of the above equations, we also describe Theorem 2 as an explicit form of dynamical system equations of 

translation for the multirotor as follows. 

 

Theorem 2 [12]: Let ( (    ̇(  )
 
 be the solution for Eq. (2.13) in Theorem 1. Then the dynamical system state 

equation of translation for the multirotor is obtained in the following explicit form: 

 

(2.16) 

 

 

where ( (    ̇(  )
 

 (  (  (    ̇  
       (  (    ̇  

        (  (    ̇  
     ∑      with initial 

points(   (    ̇  
     ∑          and    . 

 

We now summarize the dynamical system state equations of the multirotorthe symmetrical standard configurations 

(       ), as follows: 

 

(2.17) 

 

 

(2.18) 

 

 

Here, by using the state variables of rotational motion   (         ̇  ( ̇  ̇  ̇)
 

 and translational motion  

  (         
   ̇  ( ̇   ̇   ̇  

  (Fig. 5), we represent the multirotor maneuver and flight states in many applications 

as shown in Table 2. The multirotor uses    fixed motors for flight. The angular velocities of the motors   are 

directly used to achieve the flight states in Table 2. In the case that the motion of yaw  , pitch  , and roll  is fixed, 

from Eq. (2.17),    (   ̇   (      
  and    (       hold. Then, as shown in Eq. (2.18), since  ̈ depends on 

 (     (  (    ̇  
     the motion of   is given by     ̇  〈        (           〉      . The motion of    

such that multirotors always maintain or control their altitudes is given 

by     ̇  〈             (           〉. 

Maneuver Related state variables Flight state 

(i-1) Altitude up control   direction,      ̇    Lifting the multirotor under gravity and 

moving it up. 

(i-2) Altitude down 

control 

  direction,      ̇    Lifting the multirotor under gravity and 

moving it down. 

(ii) Hover control   direction,  ̇   ̇   ̇         ̇  

     ̇        ̇     ̇   ̇   ̇    

Being in equilibrium by lifting it under 

gravity, no rotational motion, and 

remaining in one place in the air. 

(iii-1) Yaw-changing 

forward control 
          ̇    Yaw changingby counterclockwise 

turning. 

(iii-2) Yaw-changing  

backward control 
          ̇    Yaw changingby clockwise turning. 

(iv-1) Pitch-changing 

forward control            ̇    

  direction,      ̇     Pitch turning counterclockwise, nose 

dropping down, tail lifting up, and 

beginning to accelerate forward. 

(iv-2) Pitch-changing 

backward control             ̇    

  direction,      ̇     Pitch turning clockwise, nose lifting up, 

tail dropping down, and beginning to 

accelerate backward. 

(v-1) Roll-changing   direction,      ̇     Roll turning clockwise, right side lifting 
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Table 2:- Multirotor maneuver and flight states of Fig. 5 [12]. 

 

 
Fig. 5:- Rotational motion and translational motion of the quadrotor (one of the multirotors) [12]. 

 

Operating points and equilibrium points of multirotors can be related to the flight states in Table 2. In the following, 

we describe Definition 1 for the operating points and equilibrium points of multirotors. 

 

Definition 1 [12]:Operating points (hereinafter, referred to “flight operating points”) of multirotors(     ̇   
  

          (        
      (        

   and(     ̇   
        are determined as 

 

(2.19) 

 

 

(2.20) 

 

 

(2.21) 

 

(2.22) 

 

(2.23) 

(2.24) 

 

where    is a constant and    (         If    , the flight operating points (     ̇   
  and (     ̇   

 have a 

constant altitude. Further, if  ̇   ̇   ̈   ̈    and     (i.e.,  ̈   ), the flight operating points are also 

identified as equilibrium points (    ̇  
  and(    ̇  

  and occur in hovering flight. 

 

Problem of multirotor stable flights to avoid a crash:- 

In this section, in the case of complete propeller motor failures, we describe a method of providing motor speed 

control signals to achieve flight states to avoid a crash [12]. We assume that the motors in the                  rotors 

(                                    ) have completely failed. Then the motor speed 

control signal vector of the remaining motors is determined by 

 

 

 

(3.1) 

forward control             ̇    up, left side dropping down, and 

beginning to accelerate sideways to the 

left. 

(v-2) Roll-changing 

backward control            ̇    

  direction,      ̇     Roll turning counterclockwise, right side 

dropping down, left side lifting up, and 

beginning to accelerate sideways to the 

right. 
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The remaining moments of            
           and the remaining translational forces of           

          ,        , are 

respectively given as 

 

(3.2) 

 

(3.3) 

 

where       
           is the matrix    with the                  rows deleted (         ). 

 

Here,we summarize the state equations of the multirotors with the symmetrical standard configurations (       )in 

the case of complete propeller motor failures using the Euler angle rotational equation [Eq. (2.17)]and the 

translational equation [Eq. (2.18)] as follows: 

 

 

(3.4) 

 

 

(3.5) 

 

 

In [12] in the case of complete propeller motor failures, theflight operating points and equilibrium points of 

multirotorsare related to the two types of multirotor flight states in Table 3 to avoid a crash when some motors fail 

and stop.  for the flight operating points and equilibrium points of multirotors to achieve the flight states in Table 3 to 

avoid a crashwhen some motors fail and stop, Definition 2 is given. Based on Definition 2, a methodto provide motor 

speed control signals to achieve the flight states in Table 3to avoid a crash is proposed and verified by several 

simulations. However, in this paper, we only consider the case of Type (I) in Table 3. We provide theorems of the 

stabilizability of the flight states for avoiding a crash and stabilizing such flight states by nonlinear dynamic state 

equations with state variable feedbacks. We alsoverify the therems by simulations. 

 

Table 3:- Two types of multirotor flight states to avoid a crash [12]. 

 

Type (I): Among the remaining motors, some must be stopped to achieve all states in Table 2 when certain motors fail 

and stop. 

Type (II): Among the remaining motors, some must be stopped to achieve all states (except for yaw control) in Table 

2 when certain motors fail and stop. 

Type (I) and type (II) represent the severity levels of complete propeller motor failure. Type (I) and type (II) are 

determined by the equation forms of Eq. (41) in Method 1. Type (II) is more severe than type (I) because yaw angles 

cannot be controlled. 

 

 
Fig. 6:- Example of type (I)no problemwhere one of the remaining motors must be stopped to achieve all the states 

of the hexarotor in Table 2 when one motor fails and stops [12]. 

Type Achieved flight states in Table 2 

(I) No Problem All (e.g., in Fig. 6). 

(II) Admissible Problem Yaw angles cannot be controlled. Yaw angles are freely changing 

(e.g., in Fig. 7). 
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Fig. 7:- Example of type (II) admissible problem where one of the remaining motors must be stopped to achieve all 

states(except for yaw control)of the quadrotor in Table 2 when one motor fails and stops [12]. 

 

Definition 2 [12]: When some motors fail and stop, the flight operating points of multirotors to achieve the flight 

states in the case of Type (I) in Table 3 (     ̇   
            (        

      (        
   

and(     ̇   
       to avoid a crash are determined as 

 

 

(3.6) 

 

 

(3.7) 

 

 

(3.8) 

 

(3.9) 

 

(3.10) 

 

(3.11)   

 

where    is a constant and    (         If    , the flight operating points (     ̇   
  and (     ̇   

 have a 

constant altitude. Further, if  ̇   ̇   ̈   ̈    and     (i.e.,  ̈   ), the flight operating points are called 

equilibrium points (    ̇  
  and(    ̇  

  and occur in hovering flights. 

 

Further, we provide Theorem 3 based on Definition 2 to provide motor speed control signals to achieve the flight 

states in the case of Type (I) in Table 3. 

 

Theorem 3: For the hexarotorcase of complete propeller motor failures,let  (      
       ) be the following    function 

taking values in      with a neighborhood of Euler angle state variables  ̃ in    and the motor speed control signal 

vector of the remaining motors ̃   
            , with  ( ̃  ̃   

       ) =      (       ,including both lower sections 

of  ( o       
           (   

        in Eq. (3.6) and    ,      
 

 
 ( o       

           (   
       〉  in Eq. (3.7): 

 

 (      
       )      

       (      
                  (3.12) 

 

 

            (3.13) 

 

 

(3.14) 
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     (3.15) 

 
where     is a constant and    (        (    is a constant matrix.           and       is a constant 

vector.If for arbitrary  ̃    , (  det(    
       ( ̃     , and (    there exists ̃   

            such that 

 ( ̃  ̃   
       ) =     ,then ̃   

       =     
       ( ̃        is uniquely obtained. 

Then  ̈,  ̈, and  ̈ are also determined as 

 

 

(3.16) 

 

 

Thus, ̃   
            are obtained as the motor speed control signals to achieve the flight states in the case of Type 

(I) in Table 3 to avoid a crash. As the number of failed motors  increases, the rank of       
           (     or 

       
           (     and the dimensionality of    

            decrease.Therefore, since     
         (     (     is not 

a square matrix, it is necessary to remove arbitrary rows to obtain square matrices.  

The proof of Theorem 3 is provided in a similar way to that in the proof of either Theorem3 or Theorem4 in [12]. 

 

Linearized or nonlinear dynamic state equations to stabilize the flights for avoiding a crash 

This subsection describes linearized or nonlinear dynamic state equations to stabilize thehexarotor flights for 

avoiding a crash the case of type (I)in Table 3.  

 

In the case of type (I) in Table 3 (           ,       ,    ), we obtain the following variational 

differential equations with constant matrices at the operating points ( o  ̇ )
T
which can be used to stabilize the 

hexarotor flights in the case of type (I) in Table 3. 

(3.17) 

 (3.18) 

 (3.19) 

 (3.20) 

 (3.21) 

 (3.22) 

 (3.23) 

 

where   =    , or     ,   ̇= ̇    , or  ̇    ,    (     is the    (      zero matrix. 

   and   ̇ denotes the partial derivative of   with respect to   and   with respect to  ̇, respectively. 

     ,      ̇, and  
       

        denotes the partial derivative of     with respect to  ,      with respect to  ̇, and      

with respect to    

       respectively.  

Theorem 4:In thehexarotor case of type (I) in Table 3 (           ,       , and    ), let 

       (       (  (    ) be a   (  (    ), controllability matrix defined as Eq. (3.24). 
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 (3.24) 

 

If         (    has full rank  , namely  the constant matrix pair (       (   ,       (   ) is completely 

controllable, there exists a (       constant matrix     (    such that every solution of Eq. (3.25) approaches 

the origin vector of Eq. (3.25)   =(           (i.e., the origin is asymptotically stable), and that the variational 

acceleration   ̈ approaches the origin vector    (          , by Eq. (3.26). 

 

     (3.25) 

(3.26) 

 

where     =(  ,   ̇)
T
and   ̇ =  ̇  ̇  . 

Proof: In the hexarotorcase of type (I) in Table 3 (           ,       ,    ), for arbitrary 

constant matrix     (     (      , substituting      

        =     (         into Eq. (3.17), the closed-loop 

system equations of Eq. (3.25) is obtained. Since         (    has full rank  , namely  the matrix pair 

(       (   ,        (   )is completely controllable, it is proved that there exists a constant matrix     (    

such that all eigenvalues of        (    -        (       (    have negative real parts from [21]. In the case 

that all eigenvalues of        (    -        (       (    have negative real parts, every solution of Eq. (3.25) 

approaches the origin vector   , and by Eq. (3.26)        , (then      ) implies   ̈    . 

 

Theorem 5:In the hexarotorcase of type (I) in Table 3 (           ,       , and     ), (   if  

        (    of Eq. (3.24) has full rank  , then substituting       

        =       

        =     (    (   (   , 

 ̇  -  ̇(   )
T
, into the dynamical system state equations of Eq. (3.4) and Eq. (3.5), the following closed-loop 

equations of Eq. (3.27) and Eq. (3.30) are obtained.Further (    if  all eigenvalues of Jacobian matrix 

(       (    -        (       (   )  have negative real parts, then the solutions of Eq. (3.27): ( (t, (  , ̇ )
T
), 

 ̇(t, (  , ̇ )
T
)) with initial points (  , (  , ̇ )

T
) near (   , ̇  )

T
, approach to (   , ̇  )

T
, and by Eq. (3.30), 

the  acceleration  ̈(   approaches the operating point vector ̈(   . 

(3.27) 

 (3.28) 

 (3.29) 

(3.30) 

 (3.31) 

 

where     (   : a constant matrix defined in Theorem 4, (  ,   ̇)
T
 = (  -  (   ,  ̇ - ̇(   )

T
, ( (  ,  ̇(  )T

 = 

( (t, (  ,  ̇ )
T
),  ̇ (t, (  , ̇ )

T
))

T
 = ( (t, (  ,  ̇ )

T
,    (   

        +      

       ),   ̇ (t, (  ,  ̇ )
T
,     (   

        + 

     

       ))
T        with initial points (  , (  , ̇ )

T
)      and     (   

        +     

         , and  : a 

neighborhood of (   , ̇  )
T 

in         such that  (   -   ,  ̇ - ̇  )
T    . 

 

Proof: In the hexarotorcase of type (I) in Table 3 (           ,       ,    ), we utilize 

Hartman-Grobman theorem in [9], and for arbitrary constant matrix     (     (      , substituting 

     

       (   ̇) =      (   (   (   ,  ̇  ̇(   )
T
, into the dynamical system state equations of Eq. (3.4) and 
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Eq. (3.5), the following closed-loop equations of Eq. (3.27) and Eq. (3.30) are obtained. Since        (    of Eq.  

(3.24) has full rank  ,  there exists a constant matrix     (    such that all eigenvalues of       (    -

       (       (   of Eq. (3.27) have negative real parts from Theorem 4. Further since all eigenvalues of 

Jacobian matrix (       (   -        (       (   )  have negative real parts, it is proved that the solutions of 

Eq. (3.27): ( (t, (  ,  ̇ )
T
),  ̇(t, (  , ̇ )

T
)) with initial points (  , (  , ̇ )

T
)     near (   , ̇  )

T
 and the 

linearized flow map (  (t, (   , ̇  )
T
),   ̇ (t, (   , ̇  )

T
)) (   - (   ,  ̇ - ̇(   )

T
 are topologically 

equivalent from the Hartman-Grobman theorem. Namely, since the linearized flow map is asymptotically stable, 

( (t, (  ,  ̇ )
T
),  ̇(t, (  , ̇ )

T
)) with initial points (  , (  , ̇ )

T
)     near (   , ̇  )

T
 is also asymptotically 

stable. Thus by Eq. (3.30), theacceleration ̈(   approaches the operating point vector ̈(   . 

 

Simulations of the hexarotor stable flights to avoid a crash:- 

In this section, we present typical examples of Type (I) of the hexarotor stable flight states in Table 3 to avoid a 

crash in the case of complete propeller motor failures. We verify Theorem 3–5 of realizing the hexarotor stable 

flights to achieve the flight states in the case of Type (I) in Table 3 to avoid a crash. The following results are 

obtained by using Theorem 3–5 with Maple symbolic computations, MATLAB matrix calculations, and MATLAB 

numerical simulations with the ode45 solver [10].Notice that regarding the translational state equation of the 

hexarotor [Eq. (3.5)] the numerical computations in the following figures are carried out using the computation 

results obtained from the Euler angles state equation of the hexarotor [Eq. (3.4)] together with piecewise linear 

interpolations [17] of  (  ,  (  , and  (  . 
 

The numerical parameters of a hexarotor, are given in Table 4. 

Table 4:- Numerical parameters of a hexarotor (   ) [12]. 

 

In addition, we define the constant matrix of  (          (              as follows: 

the hexarotor (      
 

(4.1) 

 

 

where  (        in Eq. (3.13) in Theorem 3. 

In the following, we assume that under complete propeller motor failures, the hexarotor is in a hover control: 

maneuver (ii) in Table 2, as well as possible.As an example of type(I) in Table 3, we also assume  the motor failure 

case such that the motor in the first rotor has completely failed (in Fig. 8), as follows. 

Flight state:  (     (     (     [rad] ,  ̇(     ̇(     ̇(      [rad s ] ,   (      (      [m], 

  (      [m],  ̇ (     ̇ (     ̇ (      [m/s],  c (or ̈ )  = 0   [m s ], Motor control signal vector (Motor 

rotating speed):    (       (       (       (              [rpm],   (      [rpm]. 

 

 

Symbol Description Value and unit 

  Total mass of the hexarotor 2 (kg) 

    Moment of inertia of the hexarotor 0.02973 (kg  m2
) 

    Moment of inertia of the hexarotor 0.02931 (kg  m2
) 

    Moment of inertia of the hexarotor 0.048315 (kg  m2
) 

  Gravitational acceleration 9.80665 (    ) 

   Motor force coefficients of the hexarotor 1.79       (      ) 

   Motor moment coefficients of the 

hexarotor 

4.38     (       ) 

  Distance from each rotor to geometric 

center of the hexarotor 

0.365 (m) 
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Fig. 8:-  An example of type(I) in Table 3: the motor in the first rotor has completely failed 

 

Theorem 3 is applied to the example  of (a):- 

(a) Under the condition (t [s]  [   ]) in the case of Fig. 8, we ascertained the following flight simulation result of the 

flight state to avoid a crash (type (I) in Table 3, maneuver (ii) in Table 2) as shown in Fig. 9 and Fig. 10.  (  ,  (  , 
and  (   in Fig. 9 completely overlap.   (   and   (   in Fig. 10 also completely overlap. 

 

In this case, the function  (      

       ) in Theorem 3 is as follows: 

 

                                                                                                           (4.2) 

                                                                                                    (4.3) 

                                                                                       (4.4) 

                                                                                                     (4.5) 

 

where     , k = 1,     

       , and    .              are the basis vectors of a right-handed two-

dimensional real vector space   .    

   is the matrix      with the  th (or 1th) row deleted.    

   is the matrix     

with the   th (or 1th) row deleted (  = rot, tra). 

 

 
Fig. 9:- Simulation results of Tait-Bryan angles when the motor of the first rotor has completely failed (example (a)). 
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Fig. 10:- Simulation results for position of motion when the motor of the first rotors has completely failed (     

[m]: initial condition) (example (a)). 

 

The example of (a) verifies that Theorem 3 achieves the hexarotor flight states to avoid a crashe (type (I) in Table 3) 

using the remaining motors of the hexarotor in the case of complete propeller motor failure, even without any 

feedbacks. 

 

Theorem 4 is applied to the examples of (b). 

 

(b) Under the following conditions in the case of Fig. 8: as an application of Theorem 4, as follows.  

For the hexarotor when the motor of the first rotor has completely failed, we choose the constant matrix  

  (         as follws: 

 

.   (4.6) 

 

Then the eigenvalues of     (    -      (     (    of Eq. (3.25) are -300, -300, -300, -150, -150, and -150, 

respectively. Thus, the closed-loop system of Eq. (3.25) is asymptotically stable.   

 

The simulation initial values are set as follows (t [ s]  [     ]): 
1.   (   = 0.00174533 [rad],   (     [rad],   (     [rad],   ̇(     [rad/s],   ̇(     [rad/s], and 

  ̇(    [rad/s]. 

2.       [rad],       [rad],  ̇     [rad/s],  ̇      [rad/s],  ̇op    [rad/s],    (       (    

   (       (             [rpm], and   (     [rpm]. 

 

Typical behavior of the closed-loop system of Eq. (3.25) is illustrated in Fig.11 and Fig.12, typical behavior of the 

variational acceleration   ̈ of Eq. (3.26) is illustrated in Fig.13 and Fig.14, and the remaining motor speed control 

signals of state variable feedback controls are illustrated in Fig.15.  

  (   and  (  in Fig. 11 completely overlap and  

      (  and       (   in Fig. 12 also completely overlap. 

   (   and   (   in Fig.13 completely overlap and  

        (   and         (   in Fig.14 also completely overlap. 

   (   and   (  ,   (   and   (   in Fig.15 completely overlap. 
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Fig. 11:- Simulation results of Tait-Bryan angles for stabilizing a flight for avoiding a crash with state variable 

feedbacks by linearized state equations,  when the motor of the first rotor has completely failed (example (b)). 

 

 
Fig. 12:- Simulation results of angular velocities of Tait-Bryan angles for stabilizing a flight for avoiding a crash with 

state variable feedbacks by linearized state equations, when the motor of the first rotor has completely failed (example 

(b)). 

 

 
Fig. 13:- Simulation results for position of motion for stabilizing a flight for avoiding a crash with state variable 

feedbacks by linearized state equations,  when the motor of the first rotors has completely failed (example (b)). 
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Fig. 14:- Simulation results for velocities of motion for stabilizing a flight for avoiding a crash with state variable 

feedbacks by linearized state equations,  when the motor of the first rotors has completely failed (example (b)). 

 

This example of (b) verifies that Theorem 4 stabilizes the hexarotor flight states to avoid a crash (type (I) in Table 3) 

using the remaining motors of the hexarotor in the case of complete propeller motor failure. 

 

Theorem 5 is applied to the example of (c) with    (   in Eq. (4.6). 

 

(c) Under the following conditions in the case of Fig. 8 as an application of Theorem 5, as follows. 

The simulation initial values are set as follows (t[s] [     ]): 
1.   (   = 0.00174533 [rad],   (     [rad],   (     [rad],   ̇(     [rad/s],   ̇(     [rad/s], and 

  ̇(    [rad/s]. 

2.       [rad],       [rad],  ̇     [rad/s],  ̇      [rad/s],  ̇op    [rad/s],    (       (    

   (       (             [rpm], and   (     [rpm]. 

 

Typical behavior of the Euler angles state equation with state variable feedbacks of Eq. (3.27) is illustrated in Fig.15 

and Fig.16, typical behavior of the  translational state equation with state variable feedbacks of Eq. (3.30) is illustrated 

in Fig.17 and Fig.18, and the remaining motor speed control signals for realizing a stable flight for avoiding a crash 

with state variable feedbacks by  nonlinear state equations, are illustrated in Fig.19.  

 

  (   and  (  in Fig.15 completely overlap and  

      (  and       (   in Fig.16 also completely overlap. 

   (   and   (   in Fig.17 completely overlap and  

        (   and         (   in Fig.18 also completely overlap. 

   (   and    (  ,   (   and    (   in Fig.19 completely overlap. 

 

 
Fig. 15:- Simulation results of Tait-Bryan angles for realizing a stable flight for avoiding a crash with state variable 

feedbacks by  nonlinear state equations, when the motor of the first rotor has completely failed (example (c)). 
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Fig. 16:- Simulation results of angular velocities of Tait-Bryan angles for realizing a stable flight for avoiding a crash 

with state variable feedbacks by  nonlinear state equations, when the motor of the first rotor has completely failed 

(example (c)). 

 

 
Fig. 17:- Simulation results for position of motion for realizing a stable flight for avoiding a crash with state variable 

feedbacks by  nonlinear state equations, when the motor of the first rotors has completely failed (example (c)). 

 

 
Fig. 18:- Simulation results for velocities of motion for realizing a stable flight for avoiding a crash with state variable 

feedbacks by  nonlinear state equations, when the motor of the first rotors has completely failed (example (c)). 
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Fig. 19:- Simulation results for the remaining motor control signals for realizing a stable flight for avoiding a crash 

with state variable feedbacks by  nonlinear state equations, when the motor of the first rotors has completely failed 

(example (c)). 

 

This example of (c) verifies that Theorem 5  achieves the hexarotor stable flight states to avoid a crash (type (I) in 

Table 3) using the remaining motors of the hexarotor in the case of complete propeller motor failure. 

 

Conclusion:- 
The following results were obtained: 

1. We have provided Theorem 3 based on Definition 2 to provide motor speed control signals to achieve the flight 

states in the case of Type (I) in Table 3. 

2. We have provided Theorem 4 of stabilizability of the operating points for the hexarotor flights to avoid a crash in 

the case of Type (I) in Table 3, and Theorem 5 of nonlinear hexarotor dynamic state equations with state variable 

feedbacks to stabilize flight states to avoid a crash in the case of Type (I) in Table 3.  

3. We have presented typical example of Type(I) of hexarotor stable flight states in Table 3 to avoid a crash, and 

verified Theorem 3–5.  

4. we will build a state variable feedback control for stabilizing themultirotor flight statesin the case of Type (II) in 

Table 3 under the influence of disturbances such as wind. 

5. We will verify theorems experimentally through several tests of actual multirotor flights to avoid a crash in the 

case of complete propeller failures using a commercial multirotor model with modifications based ontheorems. 
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