INTRODUCTION

There is no gainsaying that the rate of failure of roads in Nigeria is worrisome. The situation is even worse in the south-eastern zone of the country, leading to concerns to both professionals and policy makers. A look at this scenario points to the problem of quality assurance and reliability (QAR) policy in the country’s road infrastructural development.

A cursory survey reveals that the problem is a consequence of many factors which have not been properly identified and established, but hypothetically could be derived from procurement and construction practices adopted in the execution of the road projects. These factors individually and collectively contribute to the quality of the roads and their quality performance indices and reliability. Presently in construction project management, there is an abundance of tools and techniques available to measure and track project cost and schedule. But the same, however, cannot be said about project quality. Thus, while qualitative as well as quantitative measures of project cost and schedule performance are widely accepted and used, no similar measure currently exists for measuring project quality. Although quality metrics provides a quantitative measure of the degree to which the product of the project possesses and exhibits certain quality characteristics, “quality” is a relative term. The problem lies in the fact that quality changes with corresponding changes in the quality parameters. Quality parameters for roads include adherence or conformance to standards, error-free product, reliability, maintainability and correctness. However, no meticulous and integrated efforts have been made towards addressing and applying quality parameters in road construction projects through effective QAR management. These have resulted to the inability of completed road projects to perform their intended functions under stated operation conditions such as environment, geographical terrain, weather conditions and climatic seasons for a given period of time. The bane of successful road construction
projects could be attributed to low level of QAR management, culminating to several concerns to the project managers such as unsatisfactory performance, bad image, low profitability, poor business results, loss of goodwill and confidence from clients, strained business relations, litigation, etc.

Because of the nature of soil and the prevalent high annual rainfall in the South-Eastern States of Nigeria, the issue of QAR of the roads has assumed the front burner among stakeholders, policy makers, contractors and researchers, who are desirous of effecting a change in the quality and performance of our roads. The deterioration of road infrastructure is a complex process which could be attributed to the interplay of a number of factors, including the following:

- Pavement structure,
- Construction material,
- Traffic characteristics,
- Weather condition, and
- Environmental impact.

The non-existence of national standards on road construction as in other countries of the world has resulted in a general lack of uniformity among road agency acceptance plans, leading to the following situations:

- Use of acceptance plans that are totally ineffective,
- Severe difficulties in evaluating the effectiveness of some non-standard acceptance plans and,
- General dissatisfaction as evidenced by frequent haphazard revisions in agency’s acceptance plans. These have a significant toll on QAR.

The objectives of this study are:

1. To identify the overall factors and decision variables affecting QAR management in road construction projects so as to take these into consideration in the formulation of quality policy;
2. To analyze and isolate the most critical factors affecting QAR management so as to pay special attention and exercise more control on them in the course of planning and execution of road construction projects;

It would help greatly if the acceptance plan designer had clear, specific, supported, and comprehensive guideline for developing acceptance plans based on best practices and verifiable empirical data. The guideline should also, where possible, take subjectivity out of acceptance plan design and replace it with rational and defensible scientific procedures.

Literature review:

Quality is the summation of the following characteristics, right first time, value for money, customer satisfaction, consistent conformance to specification (Ameh et al. 2002). Excellence, conformance to standards or specifications, and fitness for purpose have all been criticized as definitions of quality (Dotchin and Oakland, 1993). Customers typically define quality as value or fitness for use, which involves expectations the customer has for the product (Garven 1983). Construction production quality is the degree to which the production meets the requirements and methodology stated in the design and specifications. The requirements refer to the needs or expectations of the client/promoters and the methodology implies execution of construction in conformity with the approved design, drawings and specifications. (Chitkara 2011). According to Mohammed et al. (2002), QA in the construction industry involves all activities and functions concerned with the attainment of quality and imply application of various management techniques. Quality assurance is a part of quality management focused on providing confidence that quality requirements will be fulfilled (ISO 9000, 2005). Gauri et al., (2015) and Chitkara (2011) outlined the differences between QC and QA. The content of a sound QA programme was enumerated by Olusola et al. (2002). The successful execution of a project on site is pinged on the ability of the contractor to forecast, plan and put in place the following monitoring and control documents: construction methodology/programmes, project quality management manual, project health and safety plan, early warning systems chart and information requirement schedule (Bamisile 2002). The inputs to project QA are listed by PMBOK 2013. The quality of any product (output) depends on two major factors, namely, input and the process of production (Nagarajan 2010).

According to Telsang (2010), customers always want that the products that are purchased should have a long service life and should give the intended service and utility with few failures. As the product becomes more complex, the problems of failures will increase over time. The improvement in the effectiveness of such complex systems has therefore acquired special importance in recent years. The effectiveness of a system is its suitability for the
fulfillment of the intended function and the efficiency of utilizing the means put into it. The suitability for performing a definite task is primarily determined by the reliability of the system. An evaluation of the system’s reliability becomes essential to decide whether a system will accomplish its mission successfully. When viewed from the economics and technical perspectives, the road infrastructure could be seen as both a product and a complex system.

In addition to impacting on the quality of work, QAR also has a significant impact on the project cost. This, on its part, depends on the quality of procurement method adopted for a given project. Traditional contracting specifications prescribe the materials, construction methods and the final deliverables for highway construction projects (Hancher, 1999).

Quality assurance and reliability (QAR) management in road construction projects have been studied and examined in isolation without taking into consideration, their interactive dependencies and interfaces. A quality assured constructed road project may not be reliable and vice versa. This study attempted to analyze and synthesize the factors of QAR management to achieve completed road construction projects that will ensure and satisfy both quality assurance and reliability requirements.

Research methodology:
The following methodology was adopted in this research:

Table 1: stages of the research.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Research procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Literature research to determine research focus</td>
</tr>
<tr>
<td>2</td>
<td>Establish data sources of road construction projects</td>
</tr>
<tr>
<td>3</td>
<td>a) Determine: i) local QAR factors ii) QAR factors from literature b) Prioritize principal QAR factors and sub-factors. c) Use the weighted average sum method on the sub-factors to identify the main factors.</td>
</tr>
<tr>
<td>4</td>
<td>Use factor analysis (principal component analysis) and factor rotation on QAR factors to consolidate and isolate the most important factors that affect QAR management.</td>
</tr>
</tbody>
</table>

The sources of data were the questionnaire, which sought to elicit information on QARM factors and construction practices adopted in road construction projects in a bid to properly examine QAR management. The data used for the study was obtained from the selected road construction firms executing various road construction projects in the south east geopolitical zone of Nigeria (SEGZGN). The instruments of data collection and measurement were the questionnaire modeled in Likert five point scales and a three point scoring model. The questionnaire solicited the opinion of respondents on practices adopted in road construction projects as well as QAR management. The target respondents were stakeholders such as engineers, surveyors, consultants and project managers in the contracting companies and the clients’ organizations such as the states’/federal ministries, agencies and departments and their staff involved in the execution of public works (state and local governments) in the SEGZGN. The opinion expressed by each of the respondents is expected to be an expression of their experiences on previous as well as the specific projects they were presently executing. The process of the administration of the questionnaire was personal interview contact, which allowed for one-on-one approach in the asking and answering of the questions. Visits were made to 11 road construction project-based organizations and sites in the SEGZGN.

Questionnaire Design and Administration:
The questionnaire design was modeled in Likert five point scale.
The questionnaire consisted of three sections as follows:
Section 1: respondent’s information
Section 2: ranking of the main factors of QAR by respondent
Section 3: ranking of the sub-factors of QAR by respondent.

The respondents were required to rank the main and sub-factors of QAR in road construction projects on a five point scale as follows:
1 represents very low important = 1 point
Represents low important = 2 points
Represents medium important = 3 points
Represents important, and = 4 points
Represents very important = 5 points

The questionnaire, which was the instrument of data collection, was administered to the technical experts who were involved in the execution of the selected road construction projects in the study area.

Validation of the Instrument:
The questionnaire was reviewed by a group of experts in the field of study. They were requested to identify the internal validity and to what extent it was suitable for use as an instrument to realize the objectives of this research.

Reliability of the Instrument:
Reliability of internal consistency was used to test the reliability of the questionnaire. The reliability coefficient of scale was established by Cronbach’s Alfa using SPSS package.

Methods of Data Analysis:
The parameters of QARM management in road construction projects as obtained from literature review are as shown in table 2 were subjected to data collection and analyzed with the following methods.

Table 2: QARM factors in road construction projects.

<table>
<thead>
<tr>
<th>S/no.</th>
<th>Factor code</th>
<th>QARM main factors</th>
<th>QARM subfactors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>X_1</td>
<td>Impact on road use</td>
<td>Right use of completed road infrastructure Traffic volume Speed control bumps Pavement unevenness Potholes</td>
</tr>
<tr>
<td>2.</td>
<td>X_2</td>
<td>Climatic condition</td>
<td>Heavy annual rainfall Climate change High temperature Low temperature Level of humidity</td>
</tr>
<tr>
<td>3.</td>
<td>X_3</td>
<td>Nature of contract agreement</td>
<td>Cooperation between parties in the contract Previous successful relations between parties Clarity of conditions in a written contract Use of standard contract Method of award</td>
</tr>
<tr>
<td>4.</td>
<td>X_4</td>
<td>Management information system</td>
<td>Use of computer softwares and applications Implementation of qa/qc system Use of cost control system Use of time schedule Existence and implementation of policies</td>
</tr>
<tr>
<td>5.</td>
<td>X_5</td>
<td>Construction process</td>
<td>Use of contractor’s preferred method Use of client’s preferred method Availability of construction process information Adoption of contractually agreed method Supervision staff understanding of construction process</td>
</tr>
<tr>
<td>6.</td>
<td>X_6</td>
<td>Nature of project</td>
<td>Scope of project Type of project Location of project Site access Duration of project</td>
</tr>
<tr>
<td>7.</td>
<td>X_7</td>
<td>Reliability of pilot test of subgrade</td>
<td>Type of material Nature of material Bearing capacity of material Moisture content Confirmatory tests using independent laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 8. | X₈ | Project monitoring and control | Effective incoming inspection
Effective in-process supervision
Final inspection
Clear acceptance procedure
Clear procedure for rework |
| 9. | X₉ | Environment impact | Socio-economic environment
Stability of political environment
Youth restiveness/compensation issues
Land use/culture
Relation between construction and other industries |
| 10. | X₁₀ | Client’s change request | Presence of variation clause
Frequency of change request
Ease of obtaining approval
Client’s emphasis on quality |
| 11. | X₁₁ | Efficiency of drainage system | Adequate size
Drain type
Correct slope
Turf cover or dikes over embankment slope
Presence of runoff receptacle |
| 12. | X₁₂ | Quality of base course | Type and nature of material
Nature of material
Moisture content
Bearing capacity
Confirmatory tests using independent laboratory |
| 13. | X₁₃ | Availability of skilled/unskilled labour | Labour management system
Use of labour with high experience
Use of incentive schemes
Training programmes for labour
Remuneration for labour |
| 14. | X₁₄ | Project execution and implementation plan | Use of integrated project execution system
Testing for final products only
Clear procedure for acceptance of work
Degree of importance attached to schedule
Preparing and using shop drawings |
| 15. | X₁₅ | Site staff/project team competence level | Cooperation between client’s and contractor’s staff
Supervision staff’s understanding of contract/project management process
Skill and experience of supervision staff
Skill and experience of contractor’s staff contractor staff understanding of project management process |
| 16. | X₁₆ | Project funding plan | Appropriate pricing of BEME
Amount of contractor’s cash flow
Mobilization payment
Payment for interim certificate
Accuracy of BEME/realistic milestone breakdown |
| 17. | X₁₇ | Level of compaction of subbase | Type and nature of material
Nature of material
Moisture content
Bearing capacity
Confirmatory tests using independent laboratory |
| 18. | X₁₈ | Subcontractors | Procedure for selection of subcontractors
Strong cooperation between subcontractors and main contractor
Use of a system for evaluation of subcontractor performance |
<table>
<thead>
<tr>
<th>X<sub>i</sub></th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>X<sub>19</sub></td>
<td>Communication plan</td>
</tr>
<tr>
<td>20</td>
<td>X<sub>20</sub></td>
<td>Equipment capacity</td>
</tr>
<tr>
<td>21</td>
<td>X<sub>21</sub></td>
<td>Asphalt/product mix</td>
</tr>
<tr>
<td>22</td>
<td>X<sub>22</sub></td>
<td>Site layout</td>
</tr>
<tr>
<td>23</td>
<td>X<sub>23</sub></td>
<td>Materials management</td>
</tr>
<tr>
<td>24</td>
<td>X<sub>24</sub></td>
<td>Quality of construction design</td>
</tr>
<tr>
<td>25</td>
<td>X<sub>25</sub></td>
<td>Government and professional bodies regulation</td>
</tr>
</tbody>
</table>

Return of Questionnaires:
One hundred and ninety six (196) sets of questionnaires were distributed to the respondents while one hundred and eighty (180) were returned, representing 92% of the sample size. Therefore one hundred and eighty (180) of the respondents formed the basis of our presentation and analysis.

Results:
The results of the factor analysis are presented below.

Component Grouping of the Twenty Five Identified Factors for Quality Assurance and Reliability in Road Construction Projects:
The factor analysis result in table 3 (rotated component matrix a) revealed that ten component factors loaded maximally which is agreed to be necessary for quality assurance and reliability in road construction projects.
The principal factors include:

Component one:
In the first principal component, the factor that loaded maximally is quality of construction design (x_{24}).

Component two:
The variable that loaded maximally in component two is project monitoring and control (x_8).

Component three:
Materials management (x_{23}) loaded maximally as the most significant factor.

Component four:
Subcontractors' activities (x_{16}) loaded maximally at this stage as the most significant factor.
Component five: -
Government and professional bodies regulations (x_{25}) is the most critical factor that loaded maximally in the fifth stage.

Component six: -
The variable that loaded maximally in component six is **equipment capacity** (x_{20}).

Component seven: -
The variable that loaded maximally in component seven is **efficiency of drainage system** (x_{11}).

Component eight: -
The variable that loaded maximally in component eight is **site layout** (x_{22}).

Component nine: -
The variable that loaded maximally in component nine is **level of compaction of sub base** (x_{17}).

Component ten: -
The variable that loaded maximally in component ten is **construction process** (x_{3}).

These maximally loaded factors in each stage will be analyzed in subsequent study to determine their level of effects on the quality assurance and reliability of road construction projects in realizing time, cost and quality considerations of road project implementation.

Analysis of the identified factors based on the ten (10) components.

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigen values(a)</th>
<th>Extraction sums of squared loadings</th>
<th>Rotation sums of squared loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>Total 40.416</td>
<td>% of variance 9.590</td>
<td>Cumulative % 9.590</td>
</tr>
<tr>
<td>1</td>
<td>36.762 8.723</td>
<td>18.313</td>
<td>Total 36.762</td>
</tr>
<tr>
<td>2</td>
<td>31.314 7.430</td>
<td>25.744</td>
<td>Total 31.314</td>
</tr>
<tr>
<td>4</td>
<td>27.019 6.411</td>
<td>38.888</td>
<td>Total 27.019</td>
</tr>
<tr>
<td>5</td>
<td>24.555 5.827</td>
<td>44.715</td>
<td>Total 24.555</td>
</tr>
<tr>
<td>6</td>
<td>21.651 5.138</td>
<td>49.852</td>
<td>Total 21.651</td>
</tr>
<tr>
<td>7</td>
<td>20.596 4.887</td>
<td>54.740</td>
<td>Total 20.596</td>
</tr>
<tr>
<td>8</td>
<td>18.258 4.332</td>
<td>59.072</td>
<td>Total 18.258</td>
</tr>
<tr>
<td>9</td>
<td>17.156 4.071</td>
<td>63.143</td>
<td>Total 17.156</td>
</tr>
<tr>
<td>10</td>
<td>16.592 3.937</td>
<td>67.080</td>
<td>Total 16.592</td>
</tr>
<tr>
<td>11</td>
<td>15.802 3.750</td>
<td>70.829</td>
<td>Total 15.802</td>
</tr>
<tr>
<td>12</td>
<td>13.854 3.287</td>
<td>74.117</td>
<td>Total 13.854</td>
</tr>
<tr>
<td>13</td>
<td>12.716 2.917</td>
<td>77.134</td>
<td>Total 12.716</td>
</tr>
<tr>
<td>14</td>
<td>11.766 2.792</td>
<td>79.926</td>
<td>Total 11.766</td>
</tr>
<tr>
<td>15</td>
<td>11.643 2.763</td>
<td>82.688</td>
<td>Total 11.643</td>
</tr>
<tr>
<td>16</td>
<td>10.325 2.450</td>
<td>85.138</td>
<td>Total 10.325</td>
</tr>
<tr>
<td>17</td>
<td>9.575 2.272</td>
<td>87.410</td>
<td>Total 9.575</td>
</tr>
<tr>
<td>18</td>
<td>9.459 2.244</td>
<td>89.655</td>
<td>Total 9.459</td>
</tr>
<tr>
<td>19</td>
<td>9.083 2.155</td>
<td>91.810</td>
<td>Total 9.083</td>
</tr>
<tr>
<td>20</td>
<td>8.299 1.969</td>
<td>93.779</td>
<td>Total 8.299</td>
</tr>
<tr>
<td>21</td>
<td>7.422 1.761</td>
<td>95.540</td>
<td>Total 7.422</td>
</tr>
<tr>
<td>22</td>
<td>6.854 1.626</td>
<td>97.167</td>
<td>Total 6.854</td>
</tr>
<tr>
<td>23</td>
<td>6.177 1.466</td>
<td>98.632</td>
<td>Total 6.177</td>
</tr>
<tr>
<td>24</td>
<td>5.764 1.368</td>
<td>100.000</td>
<td>Total 5.764</td>
</tr>
</tbody>
</table>
Extraction method: principal component analysis.
a. when analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.

The ten-component model generated normalized cumulative variance explanation of 73.143% as seen in the rotated sum of squares loadings above. The implication is that construction firms can achieve high quality assurance and reliability if these factors are analyzed and understood stage-by-stage as illustrated in table 4 above.

Discussion of the findings:
The factor analysis loaded ten component factors maximally. Component 1 loaded quality of construction project design (x23); component 2 loaded project monitoring and control (x4); component 3 loaded materials management (x23); component 4 loaded subcontractors’ activities (x14); component 5 loaded government and professional bodies’ regulations (x25); component 6 loaded equipment capacity (x20); component 7 loaded efficiency of drainage system (x11); component 8 loaded site layout (x22); component 9 loaded level of compaction of sub base (x17) while component 10 loaded construction process (x5) maximally. We can therefore infer that the findings made in this study have to a large extent empirically justified the call for accurate and clear road project design, proper materials management, good equipment capacity, proper construction process, etc to eliminate incompetency, inexperience, corruption and other forms of indiscipline in the planning and implementation of road construction projects to ensure successfully accomplish the objective of meeting time, cost and quality considerations which are the main criteria of project success. These will also improve the provision of basic infrastructure needed for rural and national development.

However, in all the structure and machinery for road construction projects and other related projects, efforts at monitoring the above factors must not compromise the time and cost objectives, if actual success must be achieved that will trigger national development and actually complement the government efforts towards the achievement of millennium development goals (MDGs). It is our belief that national development for Nigeria will be realized if these findings are carefully considered and applied in designing and implementing road construction projects in Nigeria.

Conclusion:
Based on the findings from the analyzed data, we concluded that ten most important factors determine the success rate of road construction projects and other construction projects in the South East Geopolitical Zone of Nigeria. The factors are quality of construction project design, project monitoring and control, materials management, subcontractors’ activities, government and professional bodies’ regulations, equipment capacity, efficiency of drainage system, site layout, level of compaction of sub base and construction process. This implies that these factors have greater impacts on QAR.

References: