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The objective of the present work was to study transformation of 

Georgian natural zeolites, analcime and phillipsite, during their 

recrystallization in the aim to obtain zeolites A and X, widely used for 

adsorption, separation, ion exchange and catalysis. It is found that 

phase-pure zeolite NaA (Na11.25(25) (K,½Ca,½Mg)0.7(1) 

(Al11.95(25)Si12.3(3)O48)
.18H2O) can be prepared in the form of 

cubic/rhombus crystallites with uniform micrometric (3-5 μm) 

dimensions by hydrothermal crystallization (95oC) of aged (72 hr) at 

room temperature gel (4.5Na2O: 0.45Al2O3: 1SiO2: 178H2O) obtained 

from natural analcime, treated with hydrochloric acid before 
suspending in water and mixing with sodium hydroxide. Phase-pure 

zeolite NaX (|Na66(3) [K,½Ca,½Mg,½Cu,½Zn]12(1) (H2O)248(10)| 

(Al78(3)Si114(4)O384)) with specific surface area of 589 m2/g and total 

pore volume of 0.578 cm3/g can be prepared in the form of octahedral 

crystallites with uniform micrometric (2-7 μm) dimensions by 

hydrothermal crystallization (95oC) of aged (96 hr) at room temperature 

gel (2.9Na2O: 0.26Al2O3: 1SiO2: 150H2O) obtained from water 

suspension of natural phillipsite, treated with hydrochloric acid and 

mixed with sodium hydroxide. The resulting zeolites in their 

characteristics are competitive with commercially available materials.  
 

                 Copy Right, IJAR, 2019,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Zeolites are porous crystalline aluminosilicates built from alternating SiO4 and AlO4

– tetrahedrons. Zeolites have 

been the focus of intensive activity and growth in applications over the past 30 years in adsorption, ion exchange 

and catalytic technologies due to their excellent properties of uniform and precise nano-scale porosity, molecular 

shape selectivity, ion-exchange capacity, strong Brønsted acidity and high thermal and hydrothermal stability. Of the 

46 natural zeolites, clinoptilolite is the most studied and widely used, and of more than two hundred synthetic 

zeolites, the A, X and Y zeolites find the greatest practical application, and this is described in detail in modern 

review articles (Mintova et al., 2015; Ennaert et al., 2016; Li et al., 2017; Bacakova et al., 2018). 

 

Zeolite A (the crystal chemical formula |Na12 (H2O)27|8 [Al12Si12O48]8-LTA) has a 3-dimensional pore structure (Fig 
1) with channels running perpendicular to each other in the x, y, and z planes. Crystal structure is constructed of  4-, 
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6-, and 8-member ring secondary building units (SBUs), composite building units (CBUs) are d4r (cube or double 

4-membered ring containing 8 T atoms (T = Si or Al) ), sod (truncated octahedron or sodalite cage containing 24 T 

atoms), and lta containing 48 T atoms (Baerlocher et al., 2007).  

 

Zeolite X (Si/Al<3) and zeolite Y (Si/Al>3) are analogues of the rare natural zeolite faujasite (the crystal chemical 

formula |(Ca,Mg,Na2)29 (H2O)240| [Al58Si134O384]-FAU) having the largest unit cell (cubic, a=24.74Å) containing 192 
T-atoms. Channels in the FAU crystal structure are running perpendicular to each other in the x, y, and z planes 

similar to LTA (Fig 1), and are made of 4- and 6-member ring SBUs, CBUs are d6r (double 6-membered ring 

containing 12 T atoms) and sod (Baerlocher et al., 2007). The channel diameter is large at 7.4Å since the aperture is 

defined by a 12-member ring, and leads into a larger cavity of diameter 12Å. The cavity is surrounded by ten 

sodalite cages connected on their hexagonal faces. 

 

 
Fig 1:- Composite building units, LTA framework viewed along [001], and FAU framework viewed along [111] 

(Baerlocher et al., 2007). 

 

As a commercial material, zeolite A is used in spacio-specific catalysis, especially in paraffin cracking, in ion 

exchange separation (Izidoro et al., 2013), and in detergents as a water-softening builder (Hul and Chao, 2006). 
Recently, it was found (Milenkovic et al., 2017; Dolaberidze et al., 2018) that the bactericidal activity of copper-

containing zeolite A toward Escherichia coli  is determined not only by the released Cu2+ ions, but also by the 

influence of the metal-containing zeolite itself.  

 

Zeolites X and Y are used in many applications such as removal of heavy metals from aqueous waste (Izidoro et al., 

2013; Ltaief et al., 2015), separation of gases in permanent gas-flow (Bastani et al., 2013), aerobic digestion process 

(Montalvo et al., 2012), oxidation of olefins (Bagherzadeh and Zare, 2012), mild hydrocracking of naphthenic 

compounds (Park et al., 2013), hydrocracking of vacuum gas oil (Cui et al., 2013) and other catalytic applications: 

zeolite Y is widely used in acidic form in petroleum refinery catalytic cracking units to increase the yield of gasoline 

and diesel fuel from crude oil feedstock by cracking heavy paraffins into gasoline grade napthas. Zeolite Y has 

superseded zeolite X in this use because it is both more active and more stable at high temperatures due to the higher 
Si/Al ratio.  

 

Zeolites A, X and Y are conventionally synthesized with sodium silicate and aluminate through hydrothermal 

crystallization (Balkus and Ly, 1991) at 70-300ºC; modern practice of zeolite synthesis includes microwave 

(Sapawe et al, 2013) and ultrasound assisted methods (Bukhari et al., 2015), accelerated crystallization of via 

hydroxyl free radicals (Feng et al., 2016) and other tools (Abdullahi et al., 2017). The hydrothermal zeolite synthesis 

through transformation of natural silicates and industrial wastes has been used due to the search for cheap alumina 

and silica sources.  

 

There have been many studies on synthesizing zeolites from natural minerals, such as smectite (Abdmeziem and 

Siffert, 1994), perlite (Christidis et al., 1999; Dolaberidze et al., 2018a), diatomite (Sanhueza et al., 2004; Yao et al., 

2018), kaolinite (Farzaneh et al., 1989; Lin et al., 2004; San Cristóbal et al., 2010; Belviso et al., 2013; Gougazeh 
and Buhl, 2014; Abdullahi et al., 2017; Alaba et al., 2017; Garshasbi et al., 2017), bentonite (Garshasbi et al., 2017), 

feldspar (Su et al., 2016; Garshasbi et al., 2017), natural zeolites (Tsitsishvili et al., 2016a, b; Dolaberidze et al., 
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2017) and other precursors (Chen et al., 2012; Purnomo et al., 2012; Wang et al., 2013; Ma et al., 2014; Li et al., 

2015). 

 

Zeolites have been also synthesized from the solid wastes, such as coal fly ash (Shigemoto et al., 1990; Morayama et 

al., 2002; Querol et al., 2002; Tanaka et al., 2003; Inada et al., 2005; Terzano et al., 2005; Hui and Chao, 2006; Juan 

et al., 2009; Babajide et al., 2012; Musyoka et al., 2015; Volli and Purkait, 2015; Yao et al., 2015; Hu et al, 2017), 
cupola slag (Anuwattana et al., 2008; Anuwattana and Khummongkol, 2009), oil shale ash (Shawabkeh et al., 2004; 

Machado and Miotto, 2005), rice husk ash (Shoumkova and Stoyanova, 2013; Manadee et al., 2017) and coal 

gangue (Qian and Li, 2015), but the uncertainty in their supplies and the impurity in their components may limit 

their practical application (Yao et al., 2018). 

 

Natural zeolites have a fairly constant composition and controlled impurities, so that they can be used to produce 

synthetic zeolites. Recently it was shown (Tsitsishvili et al., 2016a), that zeolites with high silicon content and low 

ion exchange capacity, such as mordenite (|Na8(H2O)24| [Al8Si40O96]-MOR) type materials can be obtained by 

hydrothermal recrystallization of the Georgian natural clinoptilolite (empirical formula of used samples – 

(Na3.3K1.15Ca0.75Mg0.25[Me]0.55)(Al7.0Si29.3O72)
.22.5H2O, crystal chemical formula |Ca4(H2O)24| [Al8Si28O72]-HEU) in 

the absence of seeds and organic templates, but materials with high aluminium content and ion exchange capacity, 

like the LTA and FAU type zeolites can be obtained only by two-stage recrystallization of raw: natural zeolite firstly 
was transformed in the sodalite (|Na8Cl2| [Al6Si6O24]-SOD) structure, and then in the target product (Tsitsishvili et 

al., 2016b;  Dolaberidze et al., 2017). The reason for such behavior may be a comparatively high Si/Al ratio (>4.0) 

in raw material, so to produce the A and X zeolites, it is better to use common zeolites with a comparatively low 

Si/Al ratio, such as chabazite (Si/Al=3.0), analcime and laumontite (Si/Al=2.0), or phillipsite (Si/Al=5/3). Another 

reason for the impossibility of recrystallization of clinoptilolite in zeolite A may be the fact that the HEU structure 

has only 4-member ring SBU of 4– 4=1 type containing 9 T-atoms, and CBU of bre type containing 10 T-atoms.   

 

The aim of our work was to study the recrystallization of the Georgian natural zeolites analcime and phillipsite to 

obtain the A and X zeolite structures in one step without application of crystallization seeds and organic templates. 

Analcime structure contains 4- and 6-member ring SBUs, has no CBUs and may be suitable for the preparation of 

zeolite A. Phillipsite has 4- and 8-member ring SBUs, double crankshaft chain as CBU and may be applied to obtain 
zeolite X. Both zeolites are widespread in Georgia, but have no practical application. 

 

Materials and Methods:- 

Materials:- 
Preparation of synthetic zeolite materials was carried out using following Georgian natural zeolites described and 

characterized (Tsitsishvili et al., 1998) previously: 

1. analcime from Chachubeti, Eastern Georgia, with chemical composition characterized by empirical formula 

(Na10.8K1.52Ca0.64Mg0.40[Me]0.9)(Al15.3Si33.0O96)
.16H2O (Me = Fe, Cu, etc.) and zeolite phase content of approx. 

70%, major impurities – chlorite and montmorrilonite; 

2. phillipsite from the Akhaltsikhe field, Southern Georgia, with chemical composition expressed by formula 

(Na1.36(3)K0.70(2)Ca0.70(3)Mg0.32(1)[Me]0.10(1))(Al4.2Si11.5O32)
 .12H2O (Me = Fe, Cu, Zn, etc.), zeolite phase content 

up to 70%, major impurities – quartz and clay minerals.  

 
Sodium hydroxide and the other chemicals used in the experiments were purchased from Merck KGaA (Darmstadt, 

Germany). All chemicals were of analytical reagent grade and used without any further purification. Deionized 

water was used throughout this study. 

 

Preparation of zeolites:- 

Processing of raw in target material included following steps: preparation of material, preparation of suspension, gel 

formation and aging, hydrothermal crystallization, and separation of product. 

 

In the experiments were used zeolite-containing rocks, crushed in the planetary micro mill Pulverisette 7 premium 

line (Fritsch Laboratory Instruments, Idar-Oberstein, Germany) to a size less than 0.063 mm (250 BSS mesh).  

 

Analcime powder was treated at room temperature by HCl water solution (12%) under stirring, washed by water 
before the complete disappearance of Cl– ions, and dried in thermostat oven at 100-105oC; water suspension (the 
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solid to liquid ratio of 1 : 3) of homogeneous amorphous (XRD tested) material was prepared in Teflon flack; 

suspension was treated at room temperature by NaOH water solution (20%) under stirring, homogenization and gel 

formation takes approx. 30 minutes.  

 

Phillipsite powder was suspended in Teflon flack placed in shaking water bath OLS 26 Aqua Pro (Grant 

Instruments, Cambridge, UK) controlling temperature at 90-95oC; suspension was processed with a 12% 
hydrochloric acid solution at the rate of 5 mL per gram of the solid raw material; activated suspension was diluted 

with water and treated by adding of a 25% sodium hydroxide solution, followed by the formation of a homogeneous 

gel for about one hour.  

 

General characteristics of the target zeolite products are in strong dependence on the chemical composition of gel 

(aNa2O
.bAl2O3

.SiO2
.cH2O) prepared for aging and crystallization: the Si/Al ratio determines the type of porous 

structure to be produced; application of sodium hydroxide provides an alkaline environment for breaking T–O bonds 

and gives possibility to prepare nearly pure sodium forms; high water content ensures suitable viscosity and other 

physical properties for crystallization process. The molar ratios SiO2/Al2O3, Na2O/Al2O3, and H2O/ Na2O, optimal 

for obtaining zeolite A from analcime and zeolite X from phillipsite, are given in the Table 1.  

 

The aging of the gel in all cases was carried out at room temperature for several days; crystallization was carried out 
in temperature-controlled water bath; the temperature (up to 95oC) and duration have been adjusted to prepare 

micrometric single crystals with diameter of 2-8 μm. The crystallization was followed by X-ray diffraction (XRD) 

patterns, the strongest peaks (2Θ~30° for zeolite A, according to recent results (Dolaberidze et al., 2017), and 2Θ = 

6.1° for zeolite X) were observed to detect the start of zeolitization and determine the time of formation of a stable 

structure, shown in the Table 1.  

 

Separation of produced crystalline material was carried out by filtration of mother solution, solid material was 

cleaned by distilled water until pH 8.0-8.5, and dried at 90-100oC. 

 

Table 1:- Optimal chemical composition of the gel, duration of its aging and crystallization 

Raw material Chachubeti analcime Akhaltsikhe phillipsite 

Target product structure LTA FAU 

Molar ratio SiO2/Al2O3  2.2 3.8 

Molar ratio Na2O/Al2O3 9.8 12  

Molar ratio H2O/Na2O 40 55 

Gel aging duration, hr 72 96 

Beginning of zeolitization, hr after start 30 16 

Total crystallization time, hr up to 120  up to 55 

 

Characterization:- 
Chemical composition of raw material and prepared samples was determined by elemental analyses carried out 

using a 381L plasma spectrometer (Spectromom, Hungary) and atomic absorption spectrometer (model 300, Perkin-

Elmer, UK), as well as by energy dispersive X-ray (EDS) analysis. The crystalline phase was identified by powder 

X-ray diffraction (XRD) patterns obtained from a modernized Dron-4 X-ray diffractometer (Russia) employing the 

Cu-Kα line (λ = 0.154056 nm). The samples were scanned in the 2Θ range of 5o to 50o with a 0.02o  step at a 

scanning speed of 1o/min. Fourier transform infrared (FT-IR) spectra were collected by a Perkin-Elmer 10.4.2 FTIR 

spectrometer (UK) over the range of 400–4000 cm−1 with a resolution of 2 cm−1 using the KBr pellet technique for 

sample preparation. The surface morphology of the samples was observed by scanning electron microscope 

JSM6510LV (Jeol, Japan) equipped with X-Max 20 analyzer (Oxford Instruments, UK) for EDS. Nitrogen 

adsorption-desorption isotherms were measured at 77 K using an ASAP 2020 Plus physisorption analyzer 

(Micromeritics, Norcross, GA, USA), after evacuation of the samples at 350oC.  

 

Results and Discussion:- 
XRD characterization and chemical composition:- 

Numerous studies listed in the reviews (Bukhari et al., 2015; Abdullahi et al., 2017) have found that, regardless of 

the raw materials and crystallization technique, the reactant ratios of SiO2/Al2O3 and Na2O/SiO2 in the reaction 

mixture (gel) are crucial parameters to determine the crystallinity and properties of the zeolite products from 
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hydrothermal synthesis. Using analcime pre-activated with hydrochloric acid and forming a gel in accordance with 

the amounts of sodium and water given in Table 1, zeolite A can be obtained with a high degree of phase purity. 

This is confirmed by the powder XRD pattern (Fig 2), which corresponds to the XRD pattern of zeolite A, obtained 

from the rice husk ash and aluminium scrap (Shoumkova and Stoyanova, 2013), and characterized by high intensity 

peaks at 2Θ = 7, 10, 12, 16, 21, 24, 27, 30, and 34
o
. No additional diffraction peaks have been observed at 2Θ = 14.5 

and 25o indicating the possible formation of a thermodynamically more stable structure of sodalite, as in the case of 
high-temperature synthesis of zeolite A from coal fly ash (Hu et al., 2017). Experimental XRD pattern of target 

product has been compared with calculated one taken from the “Database of Zeolite Structures” of the International 

Zeolite Association Structure Commission (http://www.iza-structure.org/). Calculated XRD pattern include a large 

number of low-intensity peaks that are not observed experimentally, so for comparison with recorded pattern only 

peaks of comparatively high intensity (over 0.09Imax) have been taken into consideration. As a result, the following 

assignment of diffraction peaks at corresponding 2Θo (relative intensity I/Imax in %; hkl; d spacing in Å) was made: 

2Θ = 7.2o (51%;200;12.3Å), 10.1o (38%;220;8.7Å), 12.4o (24%;222;7.1Å), 16.2o(22%;420;5.5Å), 

21.1o(8%;600;4.2Å), 21.8o(46%;442;4.1Å), 24.0o(80%;622;3.7Å), 26.0o(20%;620;3.4Å), 26.9o(82%;642;3.3Å), 

29.9o(100%;820+644;2.98Å), 32.9o(42%;840;2.75Å), and 34.2o(74%;664;2.62Å). It is impossible to unambiguously 

assign a peak at 2Θ = 30.08o, as well as peaks for which the 2Θ angle exceeds 35 degrees. With the exception of 

peak intensities, these data are in full agreement with previously published results for zeolite A, obtained by two-

step recrystallization of clinoptilolite (Dolaberidze et al., 2017).  
 

 
Fig 2:- Experimental XRD pattern of the material obtained from the recrystallization of analcime. 

 

The chemical composition of zeolite A, obtained from natural analcime, is described by the empirical formula 

Na11.25(25)(K,½Ca,½Mg)0.7(1)(Al11.95(25)Si12.3(3)O48)
.18H2O, and is in a good accordance with corresponding crystal 

chemical formula |Na12(H2O)27|8[Al12Si12O48]8 with the exception of small “lack” of the Al atoms 

(Si/Al=1.03±0.025) in the frame as in a case of two-stage crystallization (Tsitsishvili et al., 2016b). Samples of 

zeolite A obtained from kaolin usually have Si/Al values from 1.15 (Alkan et al., 2005; Ríos Reyes et al., 2010) to 

1.3 (Ugal et al., 2010), although it was reported about application (Georgiev et al., 2014) and preparation 

(Kazemimoghadam and Mohammadi, 2006; Melo et al., 2012) of zeolite 4A with Si/Al ~1.   
 

The XRD pattern of phillipsite recrystallization product (Fig 3) shows not only the strongest peak at 2Θ = 6.1° 

(100%;111;14.28Å), but also all low intensity peaks given in the “Database of Zeolite Structures” for hydrated NaX 

zeolite: 2Θ = 10o (9%;220;8.75Å), 11.8o (7.5%;311;7.46Å), 15.4o (11%;331;5.7Å), 18.5o (4%;551;4.8Å), 20o 

(4%;440;4.38Å), 22.4o (1%;620;4.5Å), 23.3o (6.5%;533;3.8Å), 26.6o (7%;642;3.3Å), 29.2o (2.5%;733;3.05Å), 30.3o 

(3%;822;2.95Å), 31o (6%;555;2.85Å), 32o (3%;840;2.75Å), 33.6o (3%;664;2.65Å), 37.4o (2%;666;2.35Å), 40.8o 

(1.5%;880;2.17Å), and 41.3o (1.5%;955;2.15Å). Peaks at larger 2Θ angles cannot be attributed unambiguously, but 

their positions and intensities coincide with those published for a commercial zeolite and a sample synthesized from 

pure chemicals (Masoudian et al, 2013).  
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Fig 3:- Experimental XRD pattern of the material obtained from the recrystallization of phillipsite. 

 

It can be seen that the main crystalline phase is zeolite X, no peaks of zeolite A have been observed. 

According to the data of the elemental and EDS analysis, counted on 384 oxygen atoms and 192 T-atoms in the unit 

cell, the empirical formula of the obtained compound can be represented as |Na66(3) [Me]12(1) (H2O)248(10)| 

(Al78(3)Si114(4)O384) (Me = K, ½Ca, ½Mg, ½Cu and ½Zn, the latter is unevenly distributed). Compared to the crystal 

chemical formula of FAU with (Al58Si134O384) and (H2O)240, the resulting compound has elevated aluminum content 
and reduced silicon content with about the same number of crystallization water molecules. Module Si/Al = 

1.46±0.07, and the resulting material can be attributed to zeolite NaX.   

 

Optimal conditions and parameters of transformation:- 

Obtaining of zeolite NaX from a gel with molar ratio SiO2/Al2O3 = 3.8 corresponds to the results of a previous study 

(Zhang et al., 2013), according to which a single phase NaX zeolite was obtained from sodium silicate and sodium 

aluminate only with the SiO2/Al2O3 molar ratio of 1.5–4.0. When using pure chemicals, the NaA zeolite was 

developed at SiO2/Al2O3 = 1.0 in addition to the NaX zeolite, but at SiO2/Al2O3 = 0.5 a single phase NaA zeolite 

was generated. However, the use of natural precursors leads to other results, the synthesis of zeolite X from coal fly 

ash was carried out at SiO2/Al2O3 = 5, and zeolite A at SiO2/Al2O3 = 1.67 (Hu et al., 2017), so that the preparation of 

zeolite NaA by recrystallization of analcime at SiO2/Al2O3 = 2.2 and large molar ratio Na2O/Al2O3 is 

understandable.  
 

Generally, high alkaline concentration of the crystallization system accelerates the dissolution of silicon and 

aluminum components in the precursor materials (Cundy et al., 2005). The optimal conditions for the 

recrystallization of the analcime in zeolite A were the ratios 4.5Na2O/SiO2 and ~40H2O/Na2O, while the synthesis of 

the same zeolite from the coal fly ash was successfully carried out at significantly lower sodium content 

(1.3Na2O/SiO2) partially compensated by comparatively low dilution factor, 1.3Na2O/SiO2 (Hu et al., 2017). In all 

likelihood, such a high alkaline concentration is needed to transform the structure of analcime, which has the highest 

framework density (18.5T/1000Å3) among zeolites (Baerlocher et al., 2007).  

 

The optimal conditions for the recrystallization of the phillipsite in zeolite X are 2.9Na2O/SiO2 and ~50H2O/Na2O. 

The same zeolite was synthesized from the coal fly ash at lower sodium content 2.2Na2O/SiO2 compensated by 
comparatively low dilution, ~40H2O/Na2O (Hu et al., 2017), synthesis of zeolite X from diatomite was carried out in 

conditions of slightly higher sodium content (3.0Na2O/SiO2) and lower dilution factor, 40H2O/Na2O (Yao et al., 

2018). Structure PHI has a rather low framework density (15.8T/1000Å3), and high alkalinity is not needed for its 

transformation.  

 

Aging also plays an important role in the nucleation of amorphous gel. During this stage, the aluminosilicate species 

included in the gel phase are transformed along with the aging conditions (Ogura et al., 2003). In the study, out of 

considerations of energy saving, the room temperature was chosen for aging the gel. Of course, this led to a 

significant increase in the duration of aging, from about six to ten hours to several days, but this saves more than 100 

Joules per gram of the reaction mixture. The same energy saving considerations were taken into account when 

selecting the optimum crystallization temperature. In addition, it was decided to carry out recrystallization at a 

temperature below the boiling point of water, in this case there is no need to use an autoclave.  
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Fig 4:- FT-IR spectra of obtained zeolites NaA (A) and NaX (X). 

 

FT-IR characterization:- 

The mid infra red peak patterns in FTIR spectra (Fig 4) testify formation of zeolite structure in both cases. The band 

of the internal deformation vibration modes of T-O-T bridges and the band of the internal vibration of T-O 

symmetric stretching have little influence from the Si/Al ratio: transmittance peaks were recorded at 465 and 663 

cm−1 for zeolite NaA, and at 461 and 668 cm−1 for zeolite NaX, respectively. The band associated with the 

asymmetric external vibration of double four-rings of zeolite framework is more sensitive to the Si/Al ratio: 

552 cm−1 for zeolite NaA, and 562 cm−1 for zeolite NaX. The band of valence T–O–T vibrations gives peak at 752 

cm–1 only for zeolite NaX. The internal vibration of T-O asymmetric stretching gives peak at 1008 cm−1 for the NaA 

sample, for zeolite NaX it is shifted to the lower wave numbers (976 cm–1) due to increased silicon content 

(Mozgawa et al., 1999).  

 
In both spectra, bands are observed at ~1650 and ~3470 cm−1 corresponding to the presence of H2O and hydroxyls, 

respectively. The observed FT-IR bands are in good agreement with those reported previously for zeolite A (Sapawe 

et al, 2013; Jiang et al., 2016), zeolite X (Flanigen et al, 1971; Wang et al., 2013) and both (Hu et al., 2017), which 

further proves the successful synthesis of zeolites NaA from analcime and NaX from phillipsite. 

 

Sorption properties:- 

Developed zeolite crystal microporous structure in synthesized samples has been confirmed also by their sorption 

properties. The N2  adsorption-desorption plot at 77 K for the prepared zeolite NaX is presented in Fig 5 and 

corresponds to typical Langmuir isotherm with the presence of steep nitrogen uptake at very low relative pressures 

(p/po~0.05), which is attributed to the filling of micropores.  

 

The calculated specific surface area, 589 m2/g, is comparable to 573 m2/g for zeolite X, obtained from coal fly ash 
(Hu et al., 2017), and is greater than the specific surface area of 453 m2/g reported for NaX obtained from diatomite 

(Yao et al., 2018). 

 

The total pore volume of prepared NaX is 0.578 cm3/g, the volume of micropores with a diameter of less than 8 Å is 

0.301 cm3/g, which is slightly higher than the volume of micropores in zeolites X obtained from coal fly ash (0.281 

cm3/g) and from diatomite (0.284 cm3/g). It is noted (Chen et al., 2016) that such a volume of micropores is much 

higher than that of NaX zeolites synthesized with structure-directing reagents which block some of the channels.  

 

Type H1 (Sing et al., 1985) narrow hysteresis loop, corresponding to the filling of well defined cylindrical pore 

channels, is observed at high relative pressures (from 0.9 to 0.99); average channel diameter calculated by the 

Brunauer-Emmett-Teller (BET) method is 67 nm, by the Barrett-Joyner-Halenda (BJH) method – 58 (adsorption) 
and 53 (desorption) nm.   
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Fig 5:- N2 adsorption-desorption isotherms of NaX. 

 

The loop observed in the synthesized zeolite NaX is different from the wide hysteresis loops described for some 

synthetic zeolites (Ltaief et al., 2015; Yao et al., 2018) and corresponding to the filling of disordered pores (type H2) 

or uniform slit-shaped (type H3) intercrystal mesopores of non-rigid aggregates of plate-like particles, ascribed to the 

packing of zeolite crystals.   

 

The maximum adsorption capacity of synthesized NaX measured for water vapor is up to 0.394 cm3/g, which is 
more than indicated for a commercial sample (0.3303 cm3/g), but water adsorption capacity of micropores 

(measured under static conditions at the “plateau” pressure p/p0=0.40) is only 0.2052 cm3/g, up to 48% of water 

molecules are adsorbed in mesopores.  

 

In structure LTA, the pore size (0.41 nm) is much smaller than that of the FAU structure and is similar to the kinetic 

diameter of N2 (0.364 nm), so the BET surface area of the synthesized NaA sample was not measured; water 

adsorption capacity of micropores (p/p0=0.40) is up to 0.24 cm3/g and is consistent with most of the reports on 

phase-pure zeolite NaA. 

 

 
Fig 6:- SEM images (x2,700) of zeolite NaA (left) and zeolite NaX (right). 

 

SEM images:- 

The SEM images of NaA and NaX are shown in Fig 6. In general, more than 92% of NaA crystallites have uniform 

size of 3 – 5 μm and cubic or rhombus morphology, as well as more than 95% of NaX crystallites have octahedral 

habit and uniform size of 2 – 7 μm.  

 

In the process of synthesizing zeolite NaA, a small amount (<3wt.%) of spherical or ellipsoidal nanoscale (average 

diameter 0.25 μm) crystallites is also formed, while long crystallization of NaX results in micrometric crystals 

combined into honeycomb-like structure through nanocrystal bridges. However, obtaining of “hierarchical” zeolites 

is the task of our subsequent research.  
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Conclusion:- 
It is of great significance to develop cheap, energy-saving and eco-friendly routines that can synthesize zeolites A 

and X from low-cost raw materials.  

 

In this study, zeolite NaA with chemical composition Na11.25(25)(K,½Ca,½Mg)0.7(1)(Al11.95(25)Si12.3(3)O48)
.
18H2O and 

high phase purity was synthesized from pre-treated with hydrochloric acid natural analcime by suspending it in 

water and forming a gel with sodium hydroxide; the gel had 4.5Na2O: 0.45Al2O3: 1SiO2: 178H2O composition, its 

aging at room temperature lasted 72 hours, product formation begins after 40 hours, complete hydrothermal 

crystallization at 95oC lasts up to 120 hours.  

 

Zeolite NaX with chemical composition |Na66(3) [K,½Ca,½Mg,½Cu,½Zn]12(1) (H2O)248(10)| (Al78(3)Si114(4)O384) was 

obtained from natural phillipsite suspended in water and treated with hydrochloric acid; the gel (2.9Na2O: 

0.26Al2O3: 1SiO2: 150H2O) was aged at room temperature for 96 hours, the formation of the product began after 16 
hours, complete hydrothermal crystallization at 95oC lasted up to 55 hours.  

 

The structure, as well as high phase purity and crystallinity of both samples is confirmed by their X-ray diffraction 

patterns and FT-IR spectra. Zeolite NaX is characterized by high specific surface area (589 m2/g) and pore volume 

(0.578 cm3/g) including micropores of LTA structure (52%) and cylindrical channels with diameter up to 67 nm 

(48%). SEM observation revealed that most of the NaA and NaX crystallites have uniform micrometric size.  
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