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A comparative study of Delay Differential Equations (DDEs) and 

Ordinary Differential Equations (ODEs) have been reflected in our 

present paper. In this paper we explain : 

(i) How Delay Differential Equation (DDE) differ from Ordinary 

Differential Equation (ODE) on the basis of time. 

(ii) The solution of DDEs using method of steps (MOS) and how the 

DDEs are solved by converting it to ODEs. 

(iii) The equivalency of some DDEs to ODEs and how to find 

characteristics equation of Delay Differential Equations (DDEs) 

(iv) The order failure of DDEs using Gaussian collocation method for v 

= 1 and complicacy arises when  v > 1. 
 

                  Copy Right, IJAR, 2017,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
All processes take time to complete, while physical process i.e, acceleration and deceleration take little time 

compared to the times needed to travel most distances, the times involved in biological process such as gestation and 

maturation can be considerable when compared to the data collection times in most population studies . So, it is 

essential to includes these process of times into mathematical models in population dynamics. The process of times 

are called delay times and the model that include such delay times is Delay Differential Equation (DDE) models.  

 

Delay Differential Equations (DDEs) are a type of D.E. in which the derivative of the unknown function at a certain 

time is given in terms of the values of the function at previous times, but in Ordinary Differential Equations (ODEs), 

the derivative of the unknown function depends upon a particular time. 

 

DDEs are also called time-delay systems, systems with aftereffect or dead time, hereditary  systems, equations with 

deviating argument, or differential-difference equations. 

A general form of the time-delay differential equation for the unknown function 
nRtx )(  is 

)),(,()( txtxtftx
dt

d
  

Where }t:)(x{x t  represents the trajectory of the solution in the past. 

In this equation, f  is a functional operator from RXR
n
X  C

1
(R,R

n
)  to R

n
. 
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Examples of Delay Differential Equations:- 

1. Continuous DDE is of the form 














 



0

)(d)t(x),t(x,tf)t(x
dt

d
 

2. Discrete DDE is of the form  

 ,)t(x),....,t(x),t(x,tf)t(x
dt

d
m1   where 0... m21   

3. Linear with discrete delays is of form 

),t(xa....)t(xa)t(xa)t(x
dt

d
mm110  where 

nn

m10 Ra,...,a,a   

4. DDE of the form  

)t(bx)t(ax)t(x
dt

d
  where a, b and   are constants and 10  is called pantograph equation. 

 

Solution of Delay Differential Equations (DDEs):- 

From an ODEs, a unique solution is determined by an initial point at an initial time t0, but for a DDE, one requires 

information on the entire interval  000 t],t,t[  is the previous time i.e., to know rate of change at t0, one 

needs )t(x 0  and  )t(x 0  .  

DDEs are mostly solved stepwise fashion with a principle called the Method Of Steps (MOS). 

 

For example:- 

Consider the DDE with  a single delay 

  ],0[t,)t(x),t(xf)t(x
dt

d
 , with  given initial condition 

nR]0,[:   

Then the solution on the interval ],0[   is given by 

)t(  which is the solution to the non-homogeneous initial value problem 

 )t(),t(f)t(
dt

d
  with 

initial condition 

)0()0(   

This can be continued for the successive intervals by using the solution to the previous interval as non-homogeneous 

term. In general, the initial value problem is often solved numerically. 

 

Examples:- 

1. Let 

  ]0,[t,1)t(),t(ax)t(x),t(xf   

i.e, ]0,[t),t()t(x],,0[t),t(ax)t(x
dt

d
  

Solution in the interval ],0[   i.e, for ],0[t  is given by 






t

0s

ds)s(x
dt

d
)0(x)t(x  

 




t

0s

ds)s(ax1  
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 




t

0s

ds)s(a1  

 




t

0s

ds1a1  

   at1sa1
t

0    

i.e, at1)t(x  , with the initial  condition 

1)0()0(x   

Again, for interval ]2,[t  , we integrate and fit  the initial condition, 






t

s

ds)s(x
dt

d
)(x)t(x  






t

s

ds)s(ax)a1(  






t

s

ds)s(xa)a1(  






t

s

,ds)}s(a1{a)a1(  Put ;dzds,zs   when  tz,ts;0z,s  

 




t

0

dzaz1a)a1(  













t

0

2

2

z
aza)a1(  








 


2

)t(
a)t(a)a1(

2

 

i.e., 







 1)t(

2

a
)t(a)a1()t(x  

with the initial condition  a1)()(x , 

and this  can be continued for the successive intervals by using the solution to the previous interval. 

 

Reduction of DDE to ODE:- 

In some cases, delay differential equations are  equivalent to a system of ODEs. 

2. The DDE 














 





0

de)t(x),t(x,tf)t(x
dt

d
,  can be converted  to ODE by choosing, 




 

0

de)t(x)t(y  




 

0

de)t(x
dt

dy
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






 

0

0 d)t(xe)]t(xe  

  


 

0

d)t(xe)0)t(x  

y)t(x   

yx
dt

dy
  

So we get a system of ODEs 

  yx)t(y
dt

d
,y,x,tf)t(x

dt

d
  

     3. The DDE 














 



0

d)cos()t(x),t(x,tf)t(x
dt

d
 

is converted to ODE by, 

Letting 




0

d)cos()t(x)t(y  






0

d)cos()t(x
dt

dy
 

       

0

)t(x)cos(
dt

dy






  





0

d)t(x)sin(  

 




0

d)t(x)sin(cos)t(x  

      zcos)t(x)t(y
dt

d
  

Where 




0

,d)t(x)sin(z  i.e, 




0

d)sin()t(xz  

Also 




0

d)sin()t(xz  






0

dt)sin()t(x
dt

dz
 










00

d)t(x)cos()t(x)sin(
dt

dz
 






0

d)t(x)cos(sin)t(x  

ysin)t(x   

So the given DDE is equivalent to  

  ,zx)cos()t(y
dt

d
,y,x,tf)t(x

dt

d
  
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yx)sin()t(z
dt

d
  

Where 






00

d)sin()t(xz,d)cos()t(xy  

The Characteristic Equation:- 

As in case of ODEs, many properties of linear DDEs can be characterized and analyzed using the characteristic 

equation. 

 

To find the characteristic equation associated with the linear DDE with discrete delays  

)t(xa....)t(xa)t(xa)t(x
dt

d
mm110   

Let  
te)t(x   

mietx it

i ...,,2,1,)(
)(


  

then the above DDE reduces to  

)()(

10 ...1 mt

m

ttt eaeaeae
dt

d  
  

)ea....eaa(ee m1

m10

tt    

0e),ea....eaa( t

m10
m1  

 

)ea....eaa(I m1

m10


  

0]ea....eaaI[ m1

m10 


 

0)ea....eaaIdet( m1

m10 


, 

Which is the characteristic equation associated with the above linear DDE with discrete delays. 

 

The roots   of the characteristic equation are called characteristic roots or eigen values and the solution set is 

referred  to as the spectrum. This characteristic equation is a non-linear eigen problem and there are many methods 

to compute numerically. 

4. Finding the characteristic equation for DDE 

)1t(x)t(x
dt

d
  

The characteristic equation for the DDE : 

let, 
te)t(x   

so 
)1t(t ee

dt

d    

  eee tt
 

 e  

0e  
, which is the characteristics equation of the given DDE and there are infinite number of 

solutions to this equation for complex  . 

Also, 0e  
 

 e  
 e)1(  

)1(Wk  , where Wk is the kth Branch of the Lambert – W Function. 
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Is ODE theory enough, for numerical solution of DDEs ? 

Consider the general constant delay differential equation 

 









0t),t()t(y

0t,)1t(y),t(y,tf)t(y
  ... (1) 

The most natural, but not unique approach solving (1) numerically is to assign integration steps less than or equal to 

delay 1  and to integrate step by step the ODEs obtained from (1) by substituting  the delayed term y(t-1) by a 

function )1t(  , given according to the value of t, either by the initial function )1t(  or by continuous 

extension of the approximate solution previously computed by the method itself. 

 Continuing this process, at the 
st)1n(   step, the equation to be solved is 

 













nn1n

1nn1n

'

1n

y)t(W

ttt,)1t(x),t(w,tf)t(W
  … (2) 

Where  










nts0for)s(

0sfor)s(
)s(x  

The integration formula provides the value of 1ny   and the approximate solution of (1) is then continued in 

 1nn t,t   in such a way that  

   1n1n yt    

The numerical ODE method gives approximate values of the solution of nodal points only, where as the DDE 

methods will be based on continuous extensions of numerical ODE schemes. The presence of a delayed term can be 

drastically modify some boundedness or stability properties and in general, the dynamics of the simpler ODE 

models. 

 

Order Failure:- 

In order to illustrate the possible loss of accuracy, consider the class of constant coefficient linear equations.  

















 







0t,t
2

sine)t()t(y

0t),1t(ye
2

)t(ay)t(y

at

a

   … (3) 

whose solutions, 






 
 t

2
sine)t(y at

, are class of 
c  in   ,1   

To check, 






 
 t

2
sine)t(y at

 is the solution, 








 
 t

2
sine)t(y at

 


















  )1(

2
sin

22
sin)( )1( teetaety taaat 

 

 






 











 


2
t

2
sine

2
t

2
sinae atat

 

 






 










 
 t

22
sine

2
t

2
sinae atat

 








 








 
 t

2
cose

2
t

2
sinae atat
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






 








 
 t

2
cose

2
t

2
sinae

dt

dy atat

 

dtt
2

cose
2

t
2

sineay atat







 








 
 

 


























 



































 







 t
2

sin
2

t
2

cosa

4
a

e

2
t

2
cos

2
t

2
sina

4
a

e
ay

2
2

at

4
2

at

 

Using  )bxsinbbxcosa(
ba

e
dxbxcose

22

ax
ax 


  

)bxcosbbxsina(
ba

e
dxbxsine

22

ax
ax 


  
















 























 





 t

2
sin

2
t

2
cosa

a4

e4

2
t

2
cos

2
t

2
sina

a4

e4
a

22

at

22

at

 








 







 



 t

2
sin

4
a

a4

e4 2
2

22

at

 








 







 


 t

2
sin

4

a4

a4

e4 22

22

at

 

t
2

sineat 
 , which satisfies 

So, t
2

sine)t(y at 
 is the solution. 

According to (2), for n=0,1, … we shall solve the ODE, 



















n1n

1nn

a

1n1n

y)t(w

ttt),1t(xe
2

)t(aw)t(w
… (4) 

Where, 

















 




n

as

ts0for)s(

0sfors
2

sine)s(
)s(x  

We know for ordinary differential equation, 

  )t(y,tf)t(y   

 00 y)t(y   

The implicit mid point method is given by  
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Which computes an approximation to a  definite integral. 

We can integrate DDE in eq.(3), using Gaussian collocation method and the method is known as midpoint rule.  

For Gaussian point v = 1, the general eq.(2) takes the form, 
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Summing up the midpoint rule for equation (3), we get 
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for v > 1 the method  becomes  more complicated whose solutions involve in linear system in R. More generally we 

shall see that for arbitrary step sizes in DDE method based  on v-stage Gaussian collocation exhibit  nodal  and 

uniform accuracy orders equals to uniform order v+1of the continuous ODE method. 

 

The nodal accuracy of order p the resulting DDE Method considered  above for its solution in the interval and this 

solution is of class 
C  . 
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Hence no discontinuities are present which can spoiled accuracy order of the method. 

 

Conclusion:- 
In most applications of delay differential equation in the sciences, the need of including time delays is often due to 

the presence of process of times  or the existence of stage structure. 

1. In engineering applications, such  time delays are often modeled via high dimensional compartment models. 

2. In life-science applications, compartmental models can present the additional challenges of estimating  some of 

the involved parameter values. In such cases, low-dimensional delay differential models with fewer parameters 

can be sensible alternatives. 

 

Numerically solving most Delay Differential Equations (DDEs) or systems is almost as simple as solving Ordinary 

Differential Equations (ODEs). 

 

In this paper we have given comparative study of DDEs and ODEs. In some cases, DDEs are equivalent to a  system 

of ODEs, discussed in some examples. Further the characteristic equation associated with linear DDEs with discrete 

delays have been discussed . Lastly we have discussed the order failure in the comparison  of DDEs versus ODEs. 
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