

RESEARCH ARTICLE

$\psi^* \alpha$ -continuous maps.

N. Balamani¹ and A. Parvathi².

- 1. Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore-641043 Tamil Nadu, India.
- 2. Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore-641043 Tamil Nadu, India.

Manuscript Info Abstract

In this paper we introduce a new class of maps called $\psi^* \alpha$ continuous maps by using $\psi^* \alpha$ -closed sets. We investigate its

implications and independent relationship with other types of

continuous maps. Also we analyze the association of $\psi^* \alpha$ -continuous

maps with various kinds of continuous maps via separation axioms.

Manuscript History

Received: 27 September 2016 Final Accepted: 30 October 2016 Published: November 2016

Key words:- $\psi^*\alpha$ -closed set, ${}_{\psi^*\alpha}T_c$ -space, ${}_{\psi^*\alpha}T_a$ -space, ${}_{g\alpha}T_{\psi^*\alpha}$ -space, ${}_{\alpha_g}T_{\psi^*\alpha}$ -space, ${}_{\psi_g}T_{\psi^*\alpha}$ -space and $\psi^*\alpha$ -continuous

......

Copy Right, IJAR, 2016,. All rights reserved.

Introduction:-

Levine [9] introduced the idea of continuous functions in 1970.Mashhour [11] introduced and studied α - continuous functions in topological spaces. The generalized continuous (briefly g-continuous) functions was introduced and studied by Balachandran et.al [1].Veerakumar [18] introduced and studied ψ -continuous functions in topological spaces. Ramya and Parvathi [15] introduced ψ g-continuous functions. The notion of $\psi^* \alpha$ -closed sets was defined and investigated by Balamani and Parvathi [2]. The purpose of this paper is to introduce and study the concept of a new class of maps called $\psi^* \alpha$ -continuous maps in topological spaces.

Preliminaries:-

Throughout this paper (X, τ) , (Y, σ) and (Z,η) represent non-empty topological space on which no separation axioms are assumed, unless otherwise mentioned. The interior and closure of a subset A of a space (X, τ) are denoted by int(A) and cl(A) respectively.

Definition 2.1 A subset A of a topological space (X, τ) is called

- 1) generalized closed set (briefly g-closed) [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) semi-generalized closed set (briefly sg-closed)[4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi- open in (X, τ) .
- 3) ψ -closed set [18] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).
- 4) ψ g-closed set [14] if ψ cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 5) $\psi^* \alpha$ -closed set [2] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ψg -open in (X, τ) .
- 6) The closure operator of $\psi^* \alpha$ -closed set is defined as $\psi^* \alpha cl(A) = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \psi^* \alpha \text{ -closed in } (X, \tau) \} [2]$

Corresponding Author:- N. Balamani.

Address:- Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore-641043 Tamil Nadu, India.

(i) $_{\psi^*\alpha}T_c$ -space if every $\psi^*\alpha$ closed subset of (X, τ) is closed in (X, τ) .[3] (ii) $_{\psi^*\alpha}T_\alpha$ -space if every $\psi^*\alpha$ closed subset of (X, τ) is α -closed in (X, τ) .[3] (iii) $_{g\alpha}T_{\psi^*\alpha}$ -space if every $g\alpha$ - closed subset of (X, τ) is $\psi^*\alpha$ -closed in (X, τ) .[3] (iv) $_{\alpha g}T_{\psi^*\alpha}$ -space if every αg - closed subset of (X, τ) is $\psi^*\alpha$ -closed in (X, τ) .[3] (v) $_{\psi g}T_{\psi^*\alpha}$ -space if every ψg - closed subset of (X, τ) is $\psi^*\alpha$ -closed in (X, τ) .[3]

Definition 2.3 A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

(i) Continuous [9] if $f^{1}(V)$ is closed in (X, τ) for each closed set V of (Y, σ) . (ii) Semi continuous [8] if $f^{1}(V)$ is semi closed in (X, τ) for each closed set V of (Y, σ) . (iii) α -continuous [11] if f⁻¹(V) is α -closed in (X, τ) for every closed set V of (Y, σ). (iv) g-continuous [1] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) . (v) g α -continuous [5] if f⁻¹(V) is g α -closed in (X, τ) for every closed set V of (Y, σ). (vi) α g-continuous [5] if f⁻¹(V) is α g-closed in (X, τ) for every closed set V of (Y, σ). (vii) g^{*}-continuous [19] if f⁻¹(V) is g^{*}-closed in (X, τ) for every closed set V of (Y, σ). (viii) \hat{g} - continuous [20] if $f^{1}(V)$ is \hat{g} - closed in (X, τ) for each closed set V of (Y, σ) . (ix) $g^{\#}$ -continuous [21] if $f^{-1}(V)$ is $g^{\#}$ -closed in (X, τ) for every closed set V of (Y, σ) . (x)^{*}g-continuous [22] if f⁻¹(V) is ^{*}g-closed in (X, τ) for every closed set V of (Y, σ). (xi) \tilde{g} - continuous[13] if f⁻¹(V) is a \tilde{g} -closed in (X, τ) for every closed set V of (Y, σ). (xii) $\alpha \hat{g}$ -continuous[16] if $f^{-1}(V)$ is $\alpha \hat{g}$ -closed in (X, τ) for every closed set V of (Y, σ) . (xiii) \tilde{g}_{a}^{-} continuous[17] if f⁻¹(V) is \tilde{g}_{a}^{-} closed in (X, τ) for every closed set V of(Y, σ). (xiv) $g^{\#}p^{\#}$ -continuous [12] if $f^{-1}(V)$ is $g^{\#}p^{\#}$ -closed in (X, τ) for every closed set V of (Y, σ). (xv) ψ - continuous[18] if f⁻¹(V) is ψ -closed in (X, τ) for every closed set V of (Y, σ). (xvi) ψ g- continuous [15] if f⁻¹(V) is ψ g-closed in (X, τ) for every closed set V of (Y, σ). (xvii) $\psi \hat{g}$ - continuous [15] if $f^{-1}(V)$ is $\psi \hat{g}$ - closed in (X, τ) for every closed set V of (Y, σ) .

Definition 2.4 A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

(i)strongly continuous [7] if $f^{1}(V)$ is both open and closed in (X, τ) for every subset V of (Y, σ) . (ii)totally continuous [6] if $f^{1}(V)$ is a clopen subset of (X, τ) for every open set V of (Y, σ) . (iii) α - irresolute [10] if $f^{-1}(V)$ is α -closed in (X, τ) for every α -closed set V of (Y, σ) .

$\psi^* \alpha$ - continuous maps

Definition 3.1 A map $f: (X, \tau) \to (Y, \sigma)$ is called ψ *star alpha continuous* (briefly, $\psi^* \alpha$ - continuous) if $f^1(V)$ is $\psi^* \alpha$ - closed in (X, τ) for each closed set V in (Y, σ) .

Example 3.2 Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = b, f(b) = a, f(c) = c. Then f is $\psi^* \alpha$ -continuous.

Proposition 3.3 Every continuous (resp. α -continuous) map is $\psi^* \alpha$ -continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since $f: (X, \tau) \to (Y, \sigma)$ is continuous (resp. α -continuous) map, $f^{1}(V)$ is closed (resp. α -closed) in (X, τ) . Since every closed (resp. α -closed) set is $\psi^{*}\alpha$ - closed, $f^{1}(V)$ is $\psi^{*}\alpha$ - closed in (X, τ) . Hence f is $\psi^{*}\alpha$ -continuous.

Example 3.4 Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = b, f(b) = a, f(c) = c. Then f is $\psi^* \alpha$ - continuous but not continuous and not α -

continuous, since {b, c} is closed in (Y, σ) but $f^{1}(\{b, c\}) = \{a, c\}$ is not closed and not α -closed in (X, τ)

Proposition 3.5 Every $\psi^* \alpha$ -continuous map is $g\alpha$ - continuous, αg -continuous, $\alpha \hat{g}$ -continuous, \tilde{g}_{α} -continuous, ψ -continuous and $\psi \hat{g}$ -continuous but not conversely.

Proof: As every $\psi^* \alpha$ -closed set is $g\alpha$ - closed, αg -closed, $\alpha \hat{g}$ - closed, \tilde{g}_{α} -closed, ψ - closed, ψg - closed and $\psi \hat{g}$ - closed [2], the result follows.

Example 3.6 Let $X = Y = \{a, b, c, d\}$ with the topologies $\tau = \{\phi, \{d\}, \{a, b\}, \{a, b, d\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = b, f(b) = a, f(c) = c, f(d)=d. Then f is $g\alpha$ -continuous, αg -continuous, αg -continuous, φg -continuous and ψg - continuous but not $\psi^* \alpha$ -continuous, since for the closed set $\{b, c, d\}$ in (Y, σ) , $f^1(\{b, c, d\}) = \{a, c, d\}$ is $g\alpha$ - closed, αg -closed, αg - closed, φg - closed and ψg -closed but not $\psi^* \alpha$ - closed in (X, τ) .

Example 3.7 Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = c, f(b) = b, f(c) = a. Then f is ψ - continuous but not $\psi^* \alpha$ -continuous, since for the closed set $\{c\}$ in (Y, σ) , $f^1(\{c\}) = \{a\}$ is ψ - closed but not $\psi^* \alpha$ - closed in (X, τ) .

Theorem 3.8 Every strongly continuous (resp. totally continuous) map $f: (X, \tau) \to (Y, \sigma)$ is $\psi^* \alpha$ -continuous but not conversely.

Proof: Let V be a closed set in (Y, σ) . Since $f: (X, \tau) \to (Y, \sigma)$ is strongly continuous (resp. totally continuous), $f^{1}(V)$ is clopen in (X, τ) . Since every closed set is $\psi^{*} \alpha$ - closed, $f^{1}(V)$ is $\psi^{*} \alpha$ - closed in (X, τ) .

Example 3.9 Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = a, f(b) = c, f(c) = b. Then f is $\psi^* \alpha$ - continuous but not strongly continuous and not totally continuous, since $\{b\}$ is closed in (Y, σ) but $f^1(\{b\}) = \{c\}$ is not open in (X, τ) .

Remark 3.10 The following examples show that semi-continuous maps and $\psi^* \alpha$ -continuous maps are independent. **Example 3.11** Let X = Y = {a, b, c} with the topologies $\tau = \{\phi, \{a, b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let

Example 3.11 Let $X = Y = \{a, b, c\}$ with the topologies $t = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $b = \{\phi, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a map defined by f(a) = c, f(b) = a, f(c) = b. Then f is semi-continuous but not $\psi^* \alpha$ - continuous, since for the closed set $\{c\}$ in (Y, σ) , $f^1(\{c\}) = \{a\}$ is semi-closed but not $\psi^* \alpha$ - closed in (X, τ) .

Example 3.12 Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is $\psi^* \alpha$ - continuous but not semi-continuous, since for the closed set $\{b, c\}$ in (Y, σ) $f^{-1}(\{b, c\}) = \{b, c\}$ is $\psi^* \alpha$ -closed but not semi-closed in (X, τ) .

Remark 3.13 The following examples show that the notion of g-(resp. g^* , \hat{g} , $g^{\#}$, *g , \tilde{g} , $g^{\#}p^{\#}$)continuity and $\psi^*\alpha$ -continuity are independent.

Example 3.15 Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = b, f(b) = c, f(c) = a. Then f is $\psi^* \alpha$ - continuous but not g-(resp. not g^{*}, not g

Theorem 3.16 A map $f: (X, \tau) \to (Y, \sigma)$ is $\psi^* \alpha$ -continuous if and only if the inverse image of every open set in (Y, σ) is $\psi^* \alpha$ -open in (X, τ)

Proof: (Necessity) Let U be an open set in (Y, σ) . Then Y-U is closed in (Y, σ) . Since f is $\psi^* \alpha$ -continuous, $f^1(Y-U) = X - f^1(U)$ is $\psi^* \alpha$ -closed in (X, τ) . Hence $f^1(U)$ is $\psi^* \alpha$ -open in (X, τ) .

(Sufficiency) Assume that $f^{1}(V)$ is $\psi^{*} \alpha$ -open in (X, τ) for each open set V in (Y, σ) . Let V be any closed set in (Y, σ) . Then Y-V is open in (Y, σ) . By assumption, $f^{1}(Y-V) = X - f^{1}(V)$ is $\psi^{*} \alpha$ -open in (X, τ) which implies that $f^{1}(V)$ is $\psi^{*} \alpha$ -closed in (X, τ) . Hence f is $\psi^{*} \alpha$ -continuous.

Theorem 3.17 If $f: (X, \tau) \to (Y, \sigma)$ is $\psi^* \alpha$ - continuous then $f(\psi^* \alpha cl(V)) \subseteq cl(f(V))$ for every subset V of (X, τ) .

Proof: Let V be any subset of (X, τ) . Then cl(f(V)) is closed in (Y, σ) . Since f is $\psi^* \alpha$ - continuous, $f^1(cl(f(V)))$ is $\psi^* \alpha$ closed in (X, τ) . Since $f(V) \subseteq cl(f(V))$, $V \subseteq f^1(f(V)) \subseteq f^1(cl(f(V)))$ and hence $f^1(cl(f(V)))$ is a $\psi^* \alpha$ - closed set containing V. By definition of $\psi^* \alpha$ -closure, we have $\psi^* \alpha cl(V) \subseteq f^1(cl(f(V)))$ which implies that $f(\psi^* \alpha cl(V)) \subseteq cl(f(V))$.

Remark 3.18 Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous map. Then for every subset V of (X, τ) , $f(\psi^* \alpha cl(V)) \subseteq cl(f(V))$. **Proof:** Since every continuous map is $\psi^* \alpha$ -continuous and by Theorem 3.17, the result follows.

Theorem 3.19 Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map from a topological space (X, τ) into a topological space (Y, σ) . Then the following statements are equivalent:

- (a) For each point x in (X, τ) and each open set V in (Y, σ) containing f(x), there exists a $\psi^* \alpha$ open set U in (X, τ) containing x such that $f(U) \subseteq V$.
- (b) For every subset A of (X, τ) , $f(\psi^* \alpha cl(A)) \subseteq cl(f(A))$.
- (c) For every subset B of (Y, σ) , $\psi^* \alpha cl(f^1(B)) \subseteq f^1(cl(B))$.

Proof: (a) \Leftrightarrow (b) Let $y \in f(\psi^* \alpha cl(A))$. Then y = f(x) for some $x \in \psi^* \alpha cl(A) \subseteq X$. Let V be any open set in (Y, σ) containing f(x). Then by hypothesis, there exists a $\psi^* \alpha$ - open set U in (X, τ) containing x such that $f(U) \subseteq V$. By Theorem 5.4 [2] we get $U \cap A \neq \phi$. Then $f(U \cap A) \neq \phi$. which implies that $V \cap f(A) \neq \phi$. Hence $y = f(x) \in cl(f(A))$. Therefore $f(\psi^* \alpha cl(A)) \subseteq cl(f(A))$.

Conversely, let $x \in X$ and let V be any open set in (Y, σ) containing f(x). Let $A = f^{-1}(V^c)$ then $x \notin A$. By (b), $f(\psi^* \alpha cl(A)) \subseteq cl(f(A)) \subseteq cl(f(f^{-1}(V^c))) \subseteq cl(V^c) = V^c$. Therefore $f^{-1}(f(\psi^* \alpha cl(A))) \subseteq f^{-1}(V^c)$ which implies

 $\psi^* \alpha cl(A) \subseteq f^1(V^c) = A$. Hence $A = \psi^* \alpha cl(A)$. Since $x \notin A$, $x \notin \psi^* \alpha cl(A)$. Then there exists a $\psi^* \alpha$ - open set U containing x such that $U \cap A = \phi$ and hence $f(U) \subseteq f(A^c) \subseteq V$.

(b) \Leftrightarrow (c) Suppose that (b) holds and let B be any subset of Y. Replacing A by $f^{1}(B)$ from (b), $f(\psi^{*}\alpha cl (f^{1}(B))) \subseteq cl(f(f^{1}(B))) \subseteq cl(B)$. Hence $\psi^{*}\alpha cl (f^{1}(B)) \subseteq f^{1}(cl(B))$.

Conversely, suppose that (c) holds and let B = f(A) where A is a subset of X. Then $\psi^* \alpha cl(A) \subseteq \psi^* \alpha cl(f^1(B))$ $\subseteq f^1(cl(B))$. Therefore $f(\psi^* \alpha cl(A)) \subseteq cl(B) = cl(f(A))$.

Theorem 3.20 If $f : (X, \tau) \to (Y, \sigma)$ is $\psi^* \alpha$ - continuous and $g : (Y, \sigma) \to (Z, \eta)$ is continuous (resp. strongly continuous) then $g \circ f : (X, \tau) \to (Z, \eta)$ is $\psi^* \alpha$ - continuous.

Proof: Let V be any closed set in (Z,η) . Since g is continuous (resp. strongly continuous), $g^{-1}(V)$ is closed (resp. clopen) in (Y, σ) . Since f is $\psi^* \alpha$ - continuous, $(g^{\circ}f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\psi^* \alpha$ - closed in (X, τ) . Therefore $g^{\circ}f$ is $\psi^* \alpha$ - continuous.

Theorem 3.21 If $f: (X, \tau) \to (Y, \sigma)$ is continuous (resp. α -continuous) and $g: (Y, \sigma) \to (Z, \eta)$ is continuous then $g \circ f: (X, \tau) \to (Z, \eta)$ is $\psi^* \alpha$ - continuous.

Proof: Let V be any closed set in (Z,η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y,σ) . Since f is continuous (resp. α -continuous), $(g^{\circ}f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is closed (resp. α -closed) in (X, τ) . Since every closed (resp. α -closed) set is $\psi^* \alpha$ - closed, $(g^{\circ}f)^{-1}(V)$ is $\psi^* \alpha$ - closed. Therefore $g^{\circ}f$ is $\psi^* \alpha$ - continuous.

Theorem 3.22 If $f: (X, \tau) \to (Y, \sigma)$ is α -irresolute and $g: (Y, \sigma) \to (Z, \eta)$ is continuous then $g \circ f: (X, \tau) \to (Z, \eta)$ is $\psi^* \alpha$ - continuous.

Proof: Let V be any closed set in (Z,η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y,σ) . Since every closed set is α - closed, $g^{-1}(V)$ is α -closed. Since f is α - irresolute, $(g^{\circ}f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is α - closed in (X, τ) . Since every α - closed set is $\psi^* \alpha$ - closed, $(g^{\circ}f)^{-1}(V)$ is $\psi^* \alpha$ -closed. Hence $g^{\circ}f$ is $\psi^* \alpha$ - continuous.

Theorem 3.23 Let $f: (X, \tau) \to (Y, \sigma)$ be α - irresolute and $g: (Y, \sigma) \to (Z, \eta)$ be $\psi^* \alpha$ - continuous. If (Y, σ) is a $\psi^* \alpha T_{\alpha}$ -space then $g \circ f: (X, \tau) \to (Z, \eta)$ is α - continuous.

Proof: Let U be any closed set in (Z,η) . Since g is $\psi^* \alpha$ - continuous, $g^{-1}(U)$ is $\psi^* \alpha$ - closed in (Y, σ) . Since (Y, σ) is a $_{\psi^* \alpha} T_{\alpha}$ - space, $g^{-1}(U)$ is α - closed in (Y, σ) . Since f is α - irresolute, $(g^{\circ}f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is α - closed in (X, τ) . Hence $g^{\circ}f$ is α - continuous.

Remark 3.24 The composition of two $\psi^* \alpha$ - continuous maps need not be a $\psi^* \alpha$ - continuous map as seen from the following example:

Example 3.25 Let $X = Y = Z = \{a, b, c\}$. Consider $\tau = \{\phi, \{a\}, \{a, b\}, X\}, \sigma = \{\phi, \{a, b\}, Y\}$ and $\eta = \{\phi, \{a\}, Z\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be a map defined by f(a) = a, f(b) = b, f(c) = c and $g: (Y, \sigma) \to (Z, \eta)$ be a map defined by g(a) = b, g(b) = a, g(c) = c. Then the maps f and g are $\psi^* \alpha$ - continuous but their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is not a $\psi^* \alpha$ - continuous map, since $\{b, c\}$ is closed in (Z, η) but $(g \circ f)^{-1}(\{b, c\}) = \{a, c\}$ is not $\psi^* \alpha$ - closed in (X, τ) . **Theorem 3.26** Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be $\psi^* \alpha$ - continuous maps. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is also a $\psi^* \alpha$ - continuous map, if (Y, σ) is a $_{\psi^* \alpha} T_c$ -space.

Proof: Let V be any closed set in (Z,η) . Since g is $\psi^* \alpha$ - continuous, $g^{-1}(V)$ is $\psi^* \alpha$ - closed in (Y, σ) . Since (Y, σ) is a $_{\psi^* \alpha} T_c$ -space, $g^{-1}(V)$ is closed in (Y, σ) . Since f is $\psi^* \alpha$ - continuous, $(g^{\circ}f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\psi^* \alpha$ - closed in (X, τ) . Hence $g^{\circ}f$ is a $\psi^* \alpha$ - continuous map.

Theorem 3.27 Let $f: (X, \tau) \to (Y, \sigma)$ be $g\alpha$ - continuous and $g: (Y, \sigma) \to (Z,\eta)$ be continuous. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is a $\psi^* \alpha$ - continuous map, if (X, τ) is a $_{g\alpha} T_{\psi^* \alpha}$ - space.

Proof: Let V be a closed set in (Z,η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y, σ) . Since f is $g\alpha$ -continuous, $(g^{\circ}f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $g\alpha$ - closed in (X, τ) . Since (X, τ) is a ${}_{g\alpha}T_{\psi^*\alpha}$ -space, $(g^{\circ}f)^{-1}(V)$ is $\psi^*\alpha$ - closed in (X, τ) . Hence $g^{\circ}f$ is a $\psi^*\alpha$ - continuous map.

Theorem 3.28 Let $f: (X, \tau) \to (Y, \sigma)$ be αg - continuous and $g: (Y, \sigma) \to (Z, \eta)$ be continuous. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is a $\psi^* \alpha$ - continuous map, if (X, τ) is a ${}_{\alpha g} T_{\psi^* \alpha}$ -space.

Proof: Let V be a closed set in (Z,η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y, σ) . Since f is αg -continuous, $(g^{\circ}f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is αg - closed in (X, τ) . Since (X, τ) is a $_{\alpha g}T_{\psi^*\alpha}$ -space, $(g^{\circ}f)^{-1}(V)$ is $\psi^*\alpha$ - closed in (X, τ) . Hence $g^{\circ}f$ is a $\psi^*\alpha$ - continuous map.

Theorem 3.29 Let $f: (X, \tau) \to (Y, \sigma)$ be ψg - continuous and $g: (Y, \sigma) \to (Z, \eta)$ be continuous. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is a $\psi^* \alpha$ - continuous map, if (X, τ) is a $_{\psi g} T_{\psi^* \alpha}$ -space

Proof: Let V be a closed set in (Z,η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y, σ) . Since f is ψg -continuous, $(g^{\circ}f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is ψg - closed in (X, τ) . Since (X, τ) is a ${}_{\psi g}T_{\psi^*\alpha}$ -space, $(g^{\circ}f)^{-1}(V)$ is $\psi^*\alpha$ - closed in (X, τ) . Hence $g^{\circ}f$ is a $\psi^*\alpha$ - continuous map.

References:-

- 1. Balachandran, K., Sundaram, P. and Maki, H. (1991): On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math., 12: 5 - 13.
- 2. Balamani, N.and Parvathi, A. (2016): Between α -closed sets and \tilde{g}_{α} -closed sets, International Journal of Mathematical Archive, 7(6): 1-10.
- 3. Balamani,N.and Parvathi,A.(2016): Separation axioms by $\psi^* \alpha$ -closed sets, International Journal of Engineering Sciences and Research Technology, 5(10): 183-186.
- 4. Bhattacharyya, P. and Lahiri, B.K.(1987): Semi-generalized closed sets in topology, Indian J. Math., 29: 376-382.
- 5. Devi, R. Balachandran, K. and Maki, H. (1997): On generalized α continuous maps and α generalized continuous maps, Far East J. Math. Sci., Special Volume (I): 1-15.
- 6. Jain, R.C. (1980): Role of regular open sets in general topology, Ph.D., thesis, Meerut University, Meerut, India.
- 7. Levine, N. (1960): Strong continuity in topological spaces, Amer. Math. Monthly, 67: 269 275
- 8. Levine, N. (1963): Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70: 36 41.
- 9. Levine, N. (1970): Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19: 89 96.
- 10. Maheswari, S.N. and Prasad, R. (1980): On α irresolute maps, Tamkang J. Math., 11: 209 214.
- 11. Mashhour, A.S., Hasanein, I.A. and EI-Deeb, S.N. (1983): α continuous and α open mappings, Acta. Math. Hungar, 41: 213 218.
- 12. Pious Missier.S., Subramanian. and Alli.K(2013): On g[#]p[#] continuous maps in topological spaces Journal of Global Research in Mathematical Archives 1(5): 26-30.
- 13. Rajesh. N.and Ekici., E, (2008): On g-continuous functions, God .Zb. Inst.Mat., 75-86
- 14. Ramya,N.,and Parvathi,A.(2011): ψĝ-closed sets in topological spaces, International Journal of Mathematical Archive- 2(10):1992 1996.
- 15. Ramya,N.,and Parvathi,A.(2012):Strong forms ψĝ-continuous function in topological spaces, Journal of Mathematical and Computational Science- 2(1): 101-109.
- 16. Rose Mary and Lellis Thivagar, M. (2010): Stronger form of $\alpha \hat{g}$ -continuous functions ,Inter.J.of Eng. Comp.Sci.and Math, 1(1):71-79
- 17. Thivagar M.L and Nirmala Rebacca, P.(2011): A New type of topological mapping International J. of Math.Sci and Engg. Appls, IV:43-61
- 18. Veera kumar, M.K.R.S.(2000): Between semi-closed sets and semi-pre closed sets, Rend. Istit.Mat. Univ. Trieste, (ITALY) XXXXII :25-41.
- 19. Veerakumar, M.K.R.S. (2000): Between closed sets and g closed sets, Mem. Fac. Sci. Koch. Univ. Ser. A, Math., 21: 1 19.
- 20. Veerakumar, M.K.R.S. (2003): On ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc, 18: 99-112
- 21. Veerakumar, M.K.R.S. (2003): g[#]-closed sets in topological spaces, Mem. Fac. Sci. Koch. Univ. Ser. A, Math., 24: 1 13.
- 22. Veera kumar, M.K.R.S.(2006): Between g^{*}-closed sets and g- closed sets ,Antarctica. J.Math.,3(1): 43-65.