RESEARCH ARTICLE

ONE CASE OF MANIFESTATION TROMBOTIC MICROANGIOPATHY.

Guliko Kiliptari1 and Merab Sutidze2.

1. Head of Department of critical care. The First University Clinic, MD, PhD. Prof.of TSMU (Tbilisi, Georgia).
2. Head of Department Nefrology. Prof.

\textbf{Manuscript Info}

\textbf{Manuscript History}
Received: 11 August 2017
Final Accepted: 13 September 2017
Published: October 2017

\textbf{Key words:-}
HUS,renal replacement therapy,coma,vena cava thrombosis.

\textbf{Abstract}

\textbf{Purpose:} Presentation of one case of HUS. Shiga-like toxin producing \textit{E. coli} hemolytic-uremic syndrome (STEC-HUS) is a disorder that most often occurs when an infection in the digestive system produces toxic substances. These substances destroy red blood cells and cause kidney injury. Hemolytic-uremic syndrome (HUS) often occurs after a gastrointestinal infection with \textit{E. coli} bacteria (\textit{Escherichia coli} O157:H7). However, the condition has also been linked to other gastrointestinal infections and nongastrointestinal infections. atypical HUS (aHUS) is not infection-related. It is similar to another disease called thrombotic thrombocytopenic purpura TTP/TMA (trombotic microangiopathy) and is related to other diseases, like lupus erythematosus, antiphospholipids syndrome. Haemolytic-uraemic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) are two clinically similar disorders characterized by severe microangiopathic haemolytic anaemia and thrombocytopenia. Thus, the two disorders are often difficult to distinguish.

We presented case discussion of 32 old women with bloody diarrhea, oligoanuria and changes of awareness.

\textbf{Results:} Increased level of LDH, creatinine, urea. Decreased level of ADAMTS 13. Anisocytosis, shisocytosis and poikilocytosis. Renal biopsy revield global sclerotic changes, In CSF was found HSV1 virus, After treatment patient state was improved and sensoric activation was increased. Spontan breathing parameters improved. Later Patient state was worsened despite of suitable treatment developed pulmonary embolism and inferior vena cava embolism.

\textbf{Conclusion:} In patients with HUS, the frequency of mortality is high, clinical manifestation also is nontypical. Adequate estimations of clinical signs in premorbid period and examination of organ function after hospitalization, prevention and management of complications gives a real chance of convalescence.

Copy Right, IJAR, 2017,. All rights reserved.
Introduction:
HUS /TTP(thrombotic microangiopathy) is syndroms ,charactarized with microangiopathic hemolityc anemia , trombocytopenia , acute renal failure ,severe neurological violations .Bloody diarrhea is caused with E.Coli(0157:H7).In georgia revealed other strain –E.coli(0104:H4). changing(coma , seizures.).Atypical HUS(aHUS) is not infection-related. It is similar to another disease called thrombotic thrombocytopenic purpura(TTP).haemolytic-uraemic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) are two clinically similar disorders characterized by severe microangiopathic haemolytic anaemia and thrombocytopenia. Thus, the two disorders are often difficult to distinguish.

ADAMTS13 levels < 10% with the presence of antibody against ADAMTS13 is characteristic of most adults with TTP and these patients respond to plasma exchange. Testing for ADAMTS13 activity ,deficit or decreasoin of activity of H Factor is appropriate in patients with suspected TTP-HUS. The combination of clinical and laboratory data, activity of ADAMTS13, and response to plasma exchange allows for better differentiation between these thrombotic microangiopathies, which itself is very important considering that both have different treatment options. Thrombotic microangiopathies are diseases characterized by thrombocytopenia , erythrocyte fragmentation, and elevated levels of LDH. Thickening of the arterioles and capillary walls with prominent endothelial swelling and detachment and subendothelial accumulation of proteins and cell debris characterize and define the pathologic lesion seen in all thrombotic microangiopathies .. Patient admitted in hospital after one week from onset of clinical symptoms. Regardless of bacteriological investigations of feces , the microb does not revealed.Progress of disease was severe,with many complication:renal failure with severest neurological violations. We presented case when illness started with bloody diarrhea, oliguria and neurological changing(coma , seizures). Illness progress was severe with many complication.

Discussing:-
32 yarsold wumen was admitted in ICU with oligoanuria,chills. Diseases started with diarrhea,vomiting, abdominal pain,oliguria ,fever .Changes of awareness revealed after generelaized seizures. Patient was intubated and started artificial ventilation. Brain CT scan revealed ventriculs dilatation,Without dislocation of midline structures. After episodes of focal seizures treatment was started with carbamazepin(400mg per day).OnEEG revealed generelaized,spike slow wave activity (pict.1)

Pict.1:- EEG

MRI detected (Flair mode)—cortex damage of left temporal –occipital area(pict2), Lumbar aspirate—protein—0.48g/l,leicocytes—7/mm³,limph—68%,neutrophils—32%.In lumbarasprate was detected HSV 1 vires. After treatment with aciclovir and repeated investigation of lumbar aspirate , HSV 1 vires was not found .Antibacterial treatment was based on bacteriological investigations and suitable antibacterial therapy.
At first creatinine, LDH and urea levels were high (6.72 mg/dl, 198 mg/dl, 3916 u/l). After renal biopsy was found 20 glomeruli, in 9 glomeruli was discovered necrotic changing (focal cortical necrosis), in 5 glomeruli -- complex replication of basement membrane and enlargement of mesangial matrix. (pict 3, 4)
In preglomerular arterioles revealed fibrosis of intima, thrombus into lumen and arterial-arterioles sclerosis. 35% of tubules was necrozed (focal cortical necrosis), remaining part was atrophic with thickening of basement membrane. (pict 5)

In arterial walls and focal glomerulus was found fibrin/fibrinogen deposits (pict 3,4,5), ADAMTS-13 activity was normal –64.9% (N40-130), ADAMTS-13 antigen was 0.46 u/ml, slightly decreased, and antibody was not found. ADAMTS inhibitor –3.5 u/ml (N<12 u/l)

At first platelets count was decreased—80000/mm³, then platelets count returned to normal value. Immunity parameters was normal (schedule 1)

CD3 lymphocytes—65%	IgG 14.3 g/l (N8-18)
CD4 lymphocytes —45% (N29-57)	IgA 3.4 g/l (N 0.9-2.5)
CD4—abs. number—1431 (N404—1612)	IgM—0.2 g/l (N0.6—2.8)
CD8 lymphocytes—20% (N11-38)	IgE—9.19 g/l (N<200)

Sched.1 Immunological tests

Antinuclear antibody was not found. In peripheral blood revealed leucocytosis: white blood cell count—41000/mm³, anisocytosis, hypochromatosis, poikilocytosis, Neutrophils count 31.4 mg/d l

Secondary coagulation hemostasis was changed: decreased antithrombin III, increased soluble fibrin-monomer complex (sched. 2)

| FDP --21 mg% | AT-III----70% |
| D-dimer 9000 ng/ml (<500 ng/ml) | |

Shed.2 Tests of coagulation hemostasis

Chest Ct scan---detected pneumonia, abdominal CT scan---fluid accumulation. Brain MRI—detected (T2, Flair) ischemic damage in left subcortical nodes (pict 6).
EEG—detected low amplitude waves, without specific pathological activity (pict7)

After 35 days from hospitalization, neurological state improved, awareness was adequate, without cognitive violations. Lasted renal replacement therapy. Chest CT scan (pict8) detected improvement of lung radiological findings.

Patient was extubated, parameters of spontaneous breathing were normal. After one week, revealed abdominal distension, vomiting. Abdomen CT scan and angiography found bowel distension, dynamic obstruction and excluded mesenteric thrombosis. (pict 9)
Later patient state was aggravated, developed acute respiratory failure. Chest CT scan detected bilateral pneumonia. (pict 10)

Low extremity vessels ultrasonography revealed thrombus in common femoral, deep femoral vein. Despite suitable treatment, ventilation parameters worsened. Echocardiography revealed dilation of right chambers, increased PASP (65 mm Hg). Low extremity vessels ultrasonography revealed thrombus in left external iliac and great saphenous vein. After cavagraphy in vena cava bifurcation area detected filling defects - thrombus -- 8.2 X 16.8 and 6.7 X 20.8 (pict 11). In infrarenal part of inferior vena cava was performed placement of vena cava filter (Vena Tech LP, B. Braun Medical).

Regardless of suitable treatment developed severe obstructive shock.

Discussing:

disease started with bloody diarrhea, vomiting, after 7 days from onset patient was admitted in hospital. Identification of microbe was not possible with feces bacteriological analysis. Diagnosis was based on results of renal biopsy and morphological researches, laboratory and clinical parameters. Unconsciousness and right side hemiparesis revealed after seizures. MRI detected left side subcortical nodes ischemic damage. In lumbar aspirate by PCR method detected viruses (HSV1). Patient was treated with antiviral drugs (ZOVIRAX). For treatment of sepsis was identified source of infection (pneumonia, VAP), antibacterial treatment started empirically and considering bacteriological analysis. LDH level was high, Haptoglobin level was decreased, what referred to microangiopathic hemolysis. In peripheral blood smear revealed red blood cells fragmentation, reduction of platelet count. D dimer and FDP level was increased. After renal biopsy, in arterial
wall and in glomerulus was found fibrin/fibrinogen deposits. Reason of renal failure was thrombomicroangiopathy, activation of platelets after endothelium damage and activation of coagulation hemostasis. In several glomerulus detected 35% necrosed tubules and remaining part of tufts was atrophic. Patient was treated with renal replacement therapy, plasma exchange therapy. Causes of coma was thrombic microangiopathy, with accompanying reasons. Regardless of suitable treatment developed DVT, pulmonary embolism, low vena cava thrombosis.

Establishing the diagnosis of TTP or HUS was a 2-step process: verifying the presence of triad of microangiopathic hemolytic anemia and thrombocytopenia, excluding systemic/secondary conditions that would cause this change. Among other causes, disseminated intravascular coagulation could also cause microangiopathic hemolytic anemia and thrombocytopenia, but it was distinguished by laboratory results.

Conclusion:-
We have discussed the case, when the disease started with bloody diarrhea, vomiting. By fecal bacteriological analysis microbes have not been identified. Unconsciousness manifested after hospitalization with generalized seizures. MRI revealed temporal and parietal cortex damage, later left ischemic damage of left subcortical nodes, what probably was the reason of seizures. LDH level was high in early stage, haptoglobin level was low what referred microangiopathic haemolysis. In the smears of peripheral blood was observed erythrocyte fragmentation. Platelets count was mildly decreased. Reduction in activity or absence of ADAMTS13 was not observed. In lumbar aspirate revealed virus (HSV1), but MRI scan can not fixed the changes, specific for encephalitis. FDP increased (D dimer also increased). Therefore genesis of renal failure and coma was thrombomicroangiopathy and other accompanying causes. The manifestation of this syndrome sometimes is atypical. The frequency of mortality is high, clinical manifestation also is nontypical. Adequate estimations of clinical signs in premorbid period and examination of organ function after hospitalization, prevention and management of complications gives a real chance of convalescence.

References: