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In this paper, we study homogenous Finsler
square metric F = (α+β)2

α of Douglas type, and
we investigate the necessary and sufficient condi-
tions for the homogenous Finsler square metric
to be Douglas metric, then if has following prop-
erties:

(1) it is a Berwald metric or Randers type,
and

(2) it is a Riemannian metric.
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1. Introduction

A Finsler metric F on a manifold M is a homogeneous continuous function F : TM → [0;+∞) where F
is smooth on the slit tangent bundle TMo satisfying nonnegativity (F (y) > 0 for any y 6= 0) and strong
convexity (the fundamental tensor gij := [ 12F

2]yiyj is positive defnite on TMo). Here (xi; yi) denote the
natural system of coordinates of TM . 1

The notion of (α, β)-metric in Finsler spaces was introduced by M. Matsumoto [4] as a generalization of
Randers metric L = α+ β, where α is a regular Riemannian metric α = aij(x)yiyj , i.e., det(aij) 6= 0 and β
is a one-form β = bi(x)yi and studied by many authors ([5], [6], [8], and [9]). A Finsler metric L(α, β) on a
differentiable manifold Mn is called an (α, β)-metric, if L is a positively homogeneous function of degree one
in α and β. There are several important (α, β)-metrics, namely Randers metric L = α + β Kropina metric
L = α2

β , Matsumoto metric L = α2

(α−β) , generalized Kropina metric L = αn+1

αn and Z. Shen’s square metric

L = (α+β)2

α .

1Corresponding Author:- Rita Hashem Abdullah Aidaros. Address:- Department of P.G. Studies and Research in Mathe-

matics, Kuvempu University, Shankaraghatta - 577451, Shimoga, Karnataka, India.
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In 1929, L. Berwald constructed the following famous Finsler metric[10]

F =
(
√

(1− |x|2)|y|2+ < x, y >2+ < x, y >)2

(1− |x|2)2
√

(1− |x|2)|y|2+ < x, y >2
.

This metric, defined on the unit ball Bn(1) with all the straight line segments as its geodesics, has constant
flag curvature K = 0. In a modern point of view, Berwald’s metric belongs to a special kind of Finsler
metrics called Berwald type or square metrics given as the form

F =
(α+ β)2

α
, (1.1)

where α is a Riemannian metric and β is a 1-form[1]. It is known that above equation is a regular Finsler
metric if and only if the length of β with respect to α, denoted by b, satisfies b < 1.

(α, β)-metrics form an important class of Finsler metrics that can be expressed in the form

F = αφ(
β

α
),

where =
√
aij(x)yiyj is a Riemann metric and β = bi(x)yi is a 1-form with ‖β‖α < b0 on a manifold. It is

well known that F = αφ(β
α ), is a positive definite Finsler metric if and only if φ = φ(s) is a positive C∞

function on (−b0, b0) satisfying the following condition[3]

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0. (1.2)

In 1927, J. Douglas introduced the Douglas curvature for Finsler metrics[11]. Douglas curvature is an
important projectively invariant in Finsler geometry. It it also a non-Riemannian quantity, since all the
Riemannian metrics have vanishing Douglas curvature inherently. Finsler metrics with vanishing Douglas
curvature are called Douglas metrics. Roughly speaking, a Douglas metric is a Finsler metric which is locally
projectively equivalent to a Riemannian metric[12].

Douglas metrics form a rich class of Finsler metrics including locally projectively at Finsler metrics and
Berwald metrics, the later are those metrics whose Berwald curvature vanishes[7].

In this present article, we study homogenous Finsler square metric F = (α+β)2

α of Douglas type, and we
investigate the necessary and sufficient conditions for the homogenous Finsler square metric to be Douglas
metric, then if has following properties:

(1) it is a Berwald metric or Randers type, and
(2) it is a Riemannian metric.

2. Preliminaries

Definition 2.1. A locally projectively flat (α, β)-metric F = αφ(β
α ) is said to be trivial, if α is locally

projectively flat and β is parallel with respect to α.

A result of Z. Shen and G. Civi Yildirim [8] says that a Berwald’s metric F = (α+β)2

α is locally projectively
flat if and only if the spray coefficients of α are given in an adapted coordinate system by

Gi
α = ξyi − 2τα2bi, (2.1)

for some 1-form ξ = ξi(x)yi and some scalar function τ = τ(x), and at the same time the covariant derivative
of β is given by

bi|j = 2τ{(1 + 2b2)aij − 3bibj}. (2.2)

Later on, B. Li, Z. Shen and Y. Shen, found a sufficient and necessary condition for (α, β)-metrics to be
locally projectively flat in dimension n ≥ 3 [12]. It says that for a projectively flat (α, β)-metric F = αφ(β

α )
on an open subset U ⊆ Rn with n ≥ 3, if we add
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Theorem 2.1. Let s = β
α and let F = αφ(β

α ) be an (α, β)-metric on an open subset U ⊆ Rn(n ≥ 3), where

α =
√
aijyiyj and β = bi(x)yi 6= 0. Let b := ‖β‖α. Suppose that the following conditions hold:

• F is not of Randers type, i.e.,F 6=
√
c1α2 + c2β2 + c3β for any constants c1, c2 and c3,

• β is not parallel with respect to α,

• db ≡ 0 or db 6= 0 everywhere or b is constant on U .

Then F is a Douglas metric if and only if φ(s) satisfies the following ODE,

{1 + (k1 + k3)s2 + k2s
4}φ′′(s) = (k1 + k2s

2){φ(s)− sφ′(s)}, (2.3)

where k1, k2, k3 are constants with k2 6= k1k3 and the covariant derivative ∇β = bi|jy
idxj of β with respect

to α satisfies equation (2.2).

We can see that the function φ(s) = (1 + s)2 satisfies equation (2.3) with (k1, k2, k3) = (2, 0,−3) or
(k1, k2, k3) = (−3, 0, 2).

We used the following results which proved by G. Yang in [18].

Theorem 2.2. Let F = αφ(s), s = β/α be a regular (α, β)-metric on an open subset U ⊂ R2, where

φ(0) = 1. Suppose that β is not parallel with respect to α and F is not of Randers type. Let F be a Douglas

metric. Then one has one of the following two cases.

• φ(s) satisfies (2.3).

• F can be written as

F = α̃± β̃2

α̃
, (α̃ :=

√
α2 − kβ2, β̃ := cβ), (2.4)

where k, c are constants with c 6= 0

Corollary 2.1. Let F = α± β2/α be a two-dimensional (α, β)- metric. Then F is a Douglas metric if and

only if β satisfies

rij = 2τ{(1± 2b2)aij ∓ 3bibj}+
3

±1− b2
(bisj + bjsi), (2.5)

where τ = τ(x) is a scalar function. Note that

• F = α+ β2

α is positive if and only if b2 < 1,

• F = α− β2

α is positive if and only if b2 < 1
2 .

Every Finsler metric F on a manifold M induced a spray G = yi ∂
∂xi − 2Gi ∂

∂yi which determines the
geodesics. By definition, a Finsler metric F is a Berwald metric if the spray coefficients Gi = Gi(x, y) are
quadratic in y ∈ TxM at every point x, i.e., Gi = 1

2Γi
jk(x)yjyk. Riemannian metrics are special Berwald

metrics. In fact, Berwald metrics are almost Riemannian in the sense that every Berwald metric is affinely
equivalent to a Riemannian metric, i.e., the geodesics of any Berwald metric are the geodesics of some
Riemannian metric [2]. The Douglas metrics are more generalized ones than Berwald metrics. A Finsler
metric is called a Douglas metric if the spray coefficients Gi = Gi(x, y) are in the following form:

Gi =
1
2
Γi

jk(x)yjyk + P (x, y)yi. (2.6)
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Douglas metrics form a rich class of Finsler metrics including locally projectively flat Finsler metrics. The
study on Douglas metrics will enhance our understanding on the geometric meaning of non-Riemannian
quantities.

Definition 2.2. Two (α, β)-metrics F1 = α1φ1( β1
α1

) and 4F2 = α2φ2( β2
α2

) are said to be of same type if

there is an element Π ∈ G such that Π(φ1) = φ2. In this case, the functions φ1(s) and φ2(s) are said to be

equivalent. G is called the representation group of (α, β)-metrics.

For example, all the functions equivalent to (1 + s) will provide Randers type metrics. Conversely, if
F = αφ(β

α ) is of Randers type, then φ(s) must be equivalent to (1 + s). Actually, the functions for Randers
type metrics, which are given by φ(s) =

√
1 + us2 + vs, can be expressed as φ(s) = gu ◦ hv(1 + s) . Notice

that all the functions are always asked to satisfy φ(0) = 1. Suppose that a given locally projectively flat
(α, β)-metric F = αφ(β

α ) is neither locally Minkowskian nor of Randers type, then φ(s) must be a solution

of (2.3) according to Z. Shen’s result. Due to the non-uniqueness, if we rewrite the metric as F = α̃ψ( β̃
α̃ ),

then the new function ψ(s), which is equivalent to φ(s), must be also a solution of (2.3) with some different
parameters.

Theorem 2.3. A Finsler metric F on a manifold M(dimM ≥ 3) is locally projectively flat if and only if F

is a Douglas metric with scalar flag curvature.

In [15] shows an (α, β)-metric F = αφ(β
α ) is a Berwald metric if and only if β is parallel with respect to

α, i.e., bi|j = 0, regardless of the choice of a particular φ, and [12] the authors obtained a characterization
of (α, β)-metrics of Douglas type.

3. Homogeneous Finsler Square Metrics Of Douglas Type

Recall that the group I(M ;F ) of isometries of a Finsler manifold (M ;F )is a Lie transformation group
of M [14]. If I(M ;F ) acts transitively on M , then (M ;F ) is called homogeneous. Thus, the homogeneous
Finsler manifold M can be written as the form M = G/H, where G is a Lie group acting isometrically and
transitively on M , and H is the isotropy subgroup at a point in M . Moreover, if the Lie algebra of G, g, has
a decomposition

g = η +m (direct sum of subspaces),

where η is the Lie algebra of H and m is a subspace of g satisfying

Ad(h)(m) ⊂ m for all h ∈ H.
Then the homogeneous Finsler manifold (G/H;F ) is called reductive. In this case, the tangent space
To(G/H), where o = eH is the origin, can be canonically identified with m. Note that the isotropy subgroup
Ix(M,F ) of I(M ;F ) at a point x ∈M is compact [14], and M can be written as

M = I(M ;F )/Ix(M,F ).

Then M = I(M ;F )/Ix(M,F ) is a reductive homogeneous manifold.

Let (G/H;F ) be a reductive homogeneous (α, β)-space of the form F = αφ(s) where s = β
α with a

Riemannian metric α and a 1-from β on G/H . In this section, we assume that α and β are both G-
invariant. Consider the underlying homogeneous Riemannian manifold (G/H;α). Let < ., . > denote the
corresponding inner product on m. According to [16], the form β corresponds to a vector u in the subspace

V = {u ∈M |Ad(h)u = u for all h ∈ H}.
We also assume that β 6= 0, or equivalently, u 6= 0.

We use the local coordinate system developed in [17], which is given as follow.
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Let u1, u2, ..., un be an orthonormal basis of m with respect to the inner product < ., . > and un = u
|u| .

Then there exists a neighborhood U of o = H in G/H such that the map

(exp(x1u1)exp(x2u2)...exp(xnun)) 7−→ (x1, x2, ..., xn),

defines a local coordinate system on U .

Since α and β are both G-invariant, b := ‖β‖α = |u| is a constant. By [17], at the origin o = H, we have

aij = δij , bi = bδni,

bi|j =
b

2
(〈[ui, uj ], un〉 − 〈[un, ui], uj〉 − 〈[un, uj ], ui〉), (3.1)

sij =
b

2
〈[ui, uj ], un〉, rij = − b

2
(〈[un, ui], uj〉+ 〈[un, uj ], ui〉).

Note that sn = bisin = bsnn = 0.

Theorem 3.4. Let F = (α+β)2

α be a homogeneous Finsler square metric on G/H. Then F is a Douglas

metric if and only if F is a Berwald metric or F is a Douglas metric of Randers type.

Proof. Suppose that F = αφ(β
α ) is a homogeneous (α, β)-metric F = (α+β)2

α on G/H, where the
Riemannian metric α and the 1-from β are both G-invariant. We only need to compute at the origin o = H.
By (3.1), it is obvious that bn|n = 0 at the origin. We now prove the theorem in the following two cases.

Case 1: dim(G/H) ≥ 3. Suppose that F is a Douglas metric, and F is neither a Berwald metric nor of
Randers type. Since b is a constant, it follows from Theorem 2.3 and (2.2) that

bn|n = 2τ{1− b2} = 0. (3.2)

Since α and β are both G-invariant, the scalar function τ = τ(0) is a constant.

By the assumption that F is not a Berwald metric, it follows that τ 6= 0. So we have

(1− b2) = 0. (3.3)

By (2.3), we have

φ′′(s) = {φ(s)− sφ′(s)} k1 + k2s
2

1 + (k1 + k2s2)s2 + k3s2
. (3.4)

Plugging (3.4) into (1.2), we get

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) = {φ(s)− sφ′(s)}{1 +
b2 − s2) + (k1 + k2s

2)
1 + (k1 + k3)s2 + k2s4

}

= {φ(s)− sφ′(s)}{1 +
1 + k1b

2 + (k2b
2 + k3)s2

1 + (k1 + k3)s2 + k2s4
}. (3.5)

By taking b = s in (1.2) we can see that φ(s)− bφ′(s) > 0, is always positive as long as F is a Finsler metric.
So the (1.2) implies the following

1 + k1b
2 + s2(k3 + k2b

2)
1 + (k1 + k3)s2 + k2s4

> 0,∀|s| ≤ b < b0. (3.6)

Taking s = 0 we have 1 + k1b
2 > 0 than 1 + k1s

2 ≥ min{1, 1 + k1b
2}.

On other hand, we have (k1, k2, k3) = (2, 0,−3) and by taking s = b in (2.3), then

φ′′(s) = {φ(s)− sφ′(s)} 2 + 0s2

1 + (2 + 0s2)s2 − 3s2
,

= {φ(s)− sφ′(s)} 2
1− s2

. (3.7)
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And when (k1, k2, k3) = (−3, 0, 2) we have

φ′′(s) = {φ(s)− sφ′(s)} −3 + 0s2

1 + (−3 + 0s2)s2 + s2
,

= {φ(s)− sφ′(s)} −3
1 + s2

. (3.8)

It is clear that the solution of (3.7) and (3.8) is given by

φ(s) =
c

1∓ s2
, (3.9)

for some constant c. This implies that is of Randers type, which is a contradiction. This completes our proof
in this case.

Case 2: dim(G/H) = 2. By Theorems 2.1 and 2.2, we only need to prove the theorem under the
assumption that F is given by F = α ± β2

α , where the Riemannian metric α and the 1-from β are both
G-invariant. We will also use the above local coordinate system and setting n = 2. Note that b2 = b and
s2 = 0. By Theorem 2.2,

• if F = α+ β2

α is a Douglas metric, then at the origin o = H, we have

r22 = b22 = 2τ(o)(1− b2).

Since b2 < 1 when F = α+ β2

α is positive definite, we conclude that τ(o) = 0.
• If F = α− β2

α is a Douglas metric, then at the origin o = H, we have

r22 = b2|2 = 2τ(o)(1 + b2) = 0.

Thus we also have τ(o) = 0. Since α and β are both G-invariant, the scalar function τ(x) is a
constant. Therefore τ = τ(o) = 0, which implies that F is a Berwald metric.

This completes the proof of Theorem under the assumption that both α, β are G-invariant.

Let u be a vector corresponding to β in the subspace V given in the above. Then the condition for F to
be a Berwald metric is equivalent to the following:

〈[v, w]m, u〉 = 0 for all v, w ∈ m, (3.10)
〈[u, v1]m, v2〉+ 〈[u, v2]m, v1〉 = 0 for all v1, v2 ∈ m. (3.11)

By Theorem 3.4 and a direct observation, we have

Theorem 3.5. Let F = (α+β)2

α be a homogeneous Finsler square metric on G/H, where the Riemannian

metric α and the 1-from β are both G-invariant. Suppose the Lie algebra g of G is perfect, i.e., g = [g, g],

then F is a Douglas metric if and only if F is a Riemannian metric.

Proof. By Theorem 3.4, if F = αφ(β
α ) is a Douglas metric, then it is a Berwald metric or a Douglas

metric of Randers type. Let g = η +m denote a reductive decomposition of g. If F is a Douglas metric of
Randers type, then F can be expressed in the form F = α̃+ β̃, where α and β are both G-invariant, and β
is a closed 1-form. In this case, there exists a vector u ∈ m satisfying (3.10), where the inner product 〈., .〉
is corresponding to α̃, and the vector u is corresponding to α̃ with respect to the inner product. Now the
condition that Ad(h)(u) = u for all h ∈ H is equivalent to

[v, u] = 0 for all v ∈ η. (3.12)

Since the inner product 〈., .〉 is G-invariant, we have

〈[v, w1]m, w2〉+ 〈[v, w2]m, w1〉 = = 0 for all v ∈ η, w1, w2 ∈ m. (3.13)

Combining (3.12) and (3.13), we obtain

〈[v, w]m, u〉 = 0 for all v ∈ η, w ∈ m. (3.14)
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Now the assumption g = [g, g] implies that there exists two vectors w, v ∈ g such that [w, v] = u. Let
w = w1 + w2 and v = v1 + v2, where w1, v1 ∈ m and w2, v2 ∈ η. Then we have

[w, v] = [w1, v1] + [w1, v2] + [w2, v1] + [w2, v2]. (3.15)

Therefore by (3.10) and (3.14), we have

〈u, u〉 = 〈u, [w, v]m〉
= 〈u, [w1, v1]m〉+ 〈u, [w1, v2]m〉+ 〈u, [w2, v1]m〉
= 0.

Thus u = 0, which implies that F is a Riemannian metric. If F = αφ(β
α ) is a Berwald metric with α and β

both G-invariant, then there exists a vector u ∈ m satisfying (3.10). Then a similar argument shows that F
is also a Riemannian metric.

4. Conclusion

The important example of Finsler space are different type of (α, β)-metric are Randers metric, Kropina
metric and other special (α, β)-metric. In [13] Ramesha M and S. K. Narasimhamurthy are devoted the
necessary and sufficient conditions for a Finsler space with a special (α, β)-Metric F = C1α + C2β + β2

α :
C2 6= 0, to be a Douglas space and also to be Berwald space. H. Liu and S. Deng in [19] have shown the
necessary and sufficient conditions for Randers homogeneous of Douglas type to be Berwaled and Riemannian
metric.

In this present article we consider homogenous Finsler square metric F = (α+β)2

α of Douglas type, and we
investigate the necessary and sufficient conditions for the homogenous Finsler square metric to be Douglas
metric, then if has following properties:

(1) it is a Berwald metric or Randers type, and
(2) it is a Riemannian metric.
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