

RESEARCH ARTICLE

Homogeneous Finsler Square Metrics of Douglas Type.

Rita Hashem Abdullah Aidaros, Narasimhamurthy S.K.

Department of P.G Studies and Research in Mathematics, Kuvempu University, Shankaraghatta 577451, Shivamogga, Karnataka, India.

Manuscript Info	Abstract:
Manuscript History	In this paper, we study homogenous Finsler square metric $F = \frac{(\alpha + \beta)^2}{\alpha}$ of Douglas type, and
Received: 31 January 2017	we investigate the necessary and sufficient condi-
Final Accepted: 05 March 2017	tions for the homogenous Finsler square metric
Published: March 2017	to be Douglas metric, then if has following prop- erties:
Key Words: Homogeneous Finsler space, Square Metrics, Randers type and Douglas Metrics.	 (1) it is a Berwald metric or Randers type, and (2) it is a Biemannian metric
	Copy Right IJAR, 2017,. ALL rights reserved.

1. Introduction

A Finsler metric F on a manifold M is a homogeneous continuous function $F: TM \to [0; +\infty)$ where F is smooth on the slit tangent bundle TM_o satisfying nonnegativity (F(y) > 0 for any $y \neq 0)$ and strong convexity (the fundamental tensor $g_{ij} := [\frac{1}{2}F^2]_{y^iy^j}$ is positive definite on TM_o). Here $(x^i; y^i)$ denote the natural system of coordinates of TM.¹

The notion of (α, β) -metric in Finsler spaces was introduced by M. Matsumoto [4] as a generalization of Randers metric $L = \alpha + \beta$, where α is a regular Riemannian metric $\alpha = a_{ij}(x)y^iy^j$, i.e., $det(a^{ij}) \neq 0$ and β is a one-form $\beta = b_i(x)y^i$ and studied by many authors ([5], [6], [8], and [9]). A Finsler metric $L(\alpha, \beta)$ on a differentiable manifold M^n is called an (α, β) -metric, if L is a positively homogeneous function of degree one in α and β . There are several important (α, β) -metrics, namely Randers metric $L = \alpha + \beta$ Kropina metric $L = \frac{\alpha^2}{\beta}$, Matsumoto metric $L = \frac{\alpha^2}{(\alpha - \beta)}$, generalized Kropina metric $L = \frac{\alpha^{n+1}}{\alpha^n}$ and Z. Shen's square metric $L = \frac{(\alpha + \beta)^2}{\alpha}$.

¹Corresponding Author:- Rita Hashem Abdullah Aidaros. Address:- Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta - 577451, Shimoga, Karnataka, India.

ISSN:2320-5407

In 1929, L. Berwald constructed the following famous Finsler metric[10]

$$F = \frac{(\sqrt{(1-|x|^2)}|y|^2 + \langle x, y \rangle^2 + \langle x, y \rangle)^2}{(1-|x|^2)^2 \sqrt{(1-|x|^2)}|y|^2 + \langle x, y \rangle^2}.$$

This metric, defined on the unit ball $B^n(1)$ with all the straight line segments as its geodesics, has constant flag curvature K = 0. In a modern point of view, Berwald's metric belongs to a special kind of Finsler metrics called Berwald type or square metrics given as the form

$$F = \frac{(\alpha + \beta)^2}{\alpha}, \tag{1.1}$$

where α is a Riemannian metric and β is a 1-form[1]. It is known that above equation is a regular Finsler metric if and only if the length of β with respect to α , denoted by b, satisfies b < 1.

 (α,β) -metrics form an important class of Finsler metrics that can be expressed in the form

$$F = \alpha \phi(\frac{\beta}{\alpha}),$$

where $= \sqrt{a_{ij}(x)y^i y^j}$ is a Riemann metric and $\beta = b_i(x)y^i$ is a 1-form with $\|\beta\|_{\alpha} < b_0$ on a manifold. It is well known that $F = \alpha \phi(\frac{\beta}{\alpha})$, is a positive definite Finsler metric if and only if $\phi = \phi(s)$ is a positive C^{∞} function on $(-b_0, b_0)$ satisfying the following condition[3]

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, \quad |s| \le b < b_0.$$
(1.2)

In 1927, J. Douglas introduced the Douglas curvature for Finsler metrics[11]. Douglas curvature is an important projectively invariant in Finsler geometry. It it also a non-Riemannian quantity, since all the Riemannian metrics have vanishing Douglas curvature inherently. Finsler metrics with vanishing Douglas curvature are called Douglas metrics. Roughly speaking, a Douglas metric is a Finsler metric which is locally projectively equivalent to a Riemannian metric[12].

Douglas metrics form a rich class of Finsler metrics including locally projectively at Finsler metrics and Berwald metrics, the later are those metrics whose Berwald curvature vanishes[7].

In this present article, we study homogenous Finsler square metric $F = \frac{(\alpha + \beta)^2}{\alpha}$ of Douglas type, and we investigate the necessary and sufficient conditions for the homogenous Finsler square metric to be Douglas metric, then if has following properties:

(1) it is a Berwald metric or Randers type, and

(2) it is a Riemannian metric.

2. Preliminaries

Definition 2.1. A locally projectively flat (α, β) -metric $F = \alpha \phi(\frac{\beta}{\alpha})$ is said to be trivial, if α is locally projectively flat and β is parallel with respect to α .

A result of Z. Shen and G. Civi Yildirim [8] says that a Berwald's metric $F = \frac{(\alpha + \beta)^2}{\alpha}$ is locally projectively flat if and only if the spray coefficients of α are given in an adapted coordinate system by

$$G^i_\alpha = \xi y^i - 2\tau \alpha^2 b^i, \tag{2.1}$$

for some 1-form $\xi = \xi_i(x)y^i$ and some scalar function $\tau = \tau(x)$, and at the same time the covariant derivative of β is given by

$$b_{i|j} = 2\tau \{ (1+2b^2)a_{ij} - 3b_i b_j \}.$$
(2.2)

Later on, B. Li, Z. Shen and Y. Shen, found a sufficient and necessary condition for (α, β) -metrics to be locally projectively flat in dimension $n \ge 3$ [12]. It says that for a projectively flat (α, β) -metric $F = \alpha \phi(\frac{\beta}{\alpha})$ on an open subset $U \subseteq \mathbb{R}^n$ with $n \ge 3$, if we add **Theorem 2.1.** Let $s = \frac{\beta}{\alpha}$ and let $F = \alpha \phi(\frac{\beta}{\alpha})$ be an (α, β) -metric on an open subset $U \subseteq R^n (n \ge 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_i(x)y^i \ne 0$. Let $b := \|\beta\|_{\alpha}$. Suppose that the following conditions hold:

- F is not of Randers type, i.e., $F \neq \sqrt{c_1 \alpha^2 + c_2 \beta^2} + c_3 \beta$ for any constants c_1, c_2 and c_3 ,
- β is not parallel with respect to α ,
- $db \equiv 0$ or $db \neq 0$ everywhere or b is constant on U.

Then F is a Douglas metric if and only if $\phi(s)$ satisfies the following ODE,

$$\{1 + (k_1 + k_3)s^2 + k_2s^4\}\phi''(s) = (k_1 + k_2s^2)\{\phi(s) - s\phi'(s)\},$$
(2.3)

where k_1, k_2, k_3 are constants with $k_2 \neq k_1 k_3$ and the covariant derivative $\nabla \beta = b_{i|j} y^i dx^j$ of β with respect to α satisfies equation (2.2).

We can see that the function $\phi(s) = (1 + s)^2$ satisfies equation (2.3) with $(k_1, k_2, k_3) = (2, 0, -3)$ or $(k_1, k_2, k_3) = (-3, 0, 2)$.

We used the following results which proved by G. Yang in [18].

Theorem 2.2. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$ be a regular (α, β) -metric on an open subset $U \subset \mathbb{R}^2$, where $\phi(0) = 1$. Suppose that β is not parallel with respect to α and F is not of Randers type. Let F be a Douglas metric. Then one has one of the following two cases.

- $\phi(s)$ satisfies (2.3).
- F can be written as

$$F = \tilde{\alpha} \pm \frac{\widetilde{\beta^2}}{\widetilde{\alpha}}, \quad (\tilde{\alpha} := \sqrt{\alpha^2 - k\beta^2}, \quad \tilde{\beta} := c\beta), \tag{2.4}$$

where k, c are constants with $c \neq 0$

Corollary 2.1. Let $F = \alpha \pm \beta^2 / \alpha$ be a two-dimensional (α, β) - metric. Then F is a Douglas metric if and only if β satisfies

$$r_{ij} = 2\tau \{ (1 \pm 2b^2) a_{ij} \mp 3b_i b_j \} + \frac{3}{\pm 1 - b^2} (b_i s_j + b_j s_i),$$
(2.5)

where $\tau = \tau(x)$ is a scalar function. Note that

- F = α + β²/α is positive if and only if b² < 1,
 F = α β²/α is positive if and only if b² < 1/2.
- Every Finsler metric F on a manifold M induced a spray $G = y^i \frac{\partial}{\partial x^i} 2G^i \frac{\partial}{\partial y^i}$ which determines the geodesics. By definition, a Finsler metric F is a Berwald metric if the spray coefficients $G^i = G^i(x, y)$ are quadratic in $y \in T_x M$ at every point x, i.e., $G^i = \frac{1}{2}\Gamma^i_{jk}(x)y^jy^k$. Riemannian metrics are special Berwald metrics. In fact, Berwald metrics are almost Riemannian in the sense that every Berwald metric is affinely equivalent to a Riemannian metric, i.e., the geodesics of any Berwald metric are the geodesics of some Riemannian metric [2]. The Douglas metrics are more generalized ones than Berwald metrics. A Finsler metric is called a Douglas metric if the spray coefficients $G^i = G^i(x, y)$ are in the following form:

$$G^{i} = \frac{1}{2}\Gamma^{i}_{jk}(x)y^{j}y^{k} + P(x,y)y^{i}.$$
(2.6)

Douglas metrics form a rich class of Finsler metrics including locally projectively flat Finsler metrics. The study on Douglas metrics will enhance our understanding on the geometric meaning of non-Riemannian quantities.

Definition 2.2. Two (α, β) -metrics $F_1 = \alpha_1 \phi_1(\frac{\beta_1}{\alpha_1})$ and $4F_2 = \alpha_2 \phi_2(\frac{\beta_2}{\alpha_2})$ are said to be of same type if there is an element $\Pi \in G$ such that $\Pi(\phi_1) = \phi_2$. In this case, the functions $\phi_1(s)$ and $\phi_2(s)$ are said to be equivalent. G is called the representation group of (α, β) -metrics.

For example, all the functions equivalent to (1 + s) will provide Randers type metrics. Conversely, if $F = \alpha \phi(\frac{\beta}{\alpha})$ is of Randers type, then $\phi(s)$ must be equivalent to (1 + s). Actually, the functions for Randers type metrics, which are given by $\phi(s) = \sqrt{1 + us^2} + vs$, can be expressed as $\phi(s) = g_u \circ h_v(1 + s)$. Notice that all the functions are always asked to satisfy $\phi(0) = 1$. Suppose that a given locally projectively flat (α, β) -metric $F = \alpha \phi(\frac{\beta}{\alpha})$ is neither locally Minkowskian nor of Randers type, then $\phi(s)$ must be a solution of (2.3) according to Z. Shen's result. Due to the non-uniqueness, if we rewrite the metric as $F = \tilde{\alpha} \psi(\frac{\tilde{\beta}}{\tilde{\alpha}})$, then the new function $\psi(s)$, which is equivalent to $\phi(s)$, must be also a solution of (2.3) with some different parameters.

Theorem 2.3. A Finsler metric F on a manifold $M(\dim M \ge 3)$ is locally projectively flat if and only if F is a Douglas metric with scalar flag curvature.

In [15] shows an (α, β) -metric $F = \alpha \phi(\frac{\beta}{\alpha})$ is a Berwald metric if and only if β is parallel with respect to α , i.e., $b_{i|j} = 0$, regardless of the choice of a particular ϕ , and [12] the authors obtained a characterization of (α, β) -metrics of Douglas type.

3. Homogeneous Finsler Square Metrics Of Douglas Type

Recall that the group I(M; F) of isometries of a Finsler manifold (M; F) is a Lie transformation group of M [14]. If I(M; F) acts transitively on M, then (M; F) is called homogeneous. Thus, the homogeneous Finsler manifold M can be written as the form M = G/H, where G is a Lie group acting isometrically and transitively on M, and H is the isotropy subgroup at a point in M. Moreover, if the Lie algebra of G, g, has a decomposition

$$g = \eta + m$$
 (direct sum of subspaces),

where η is the Lie algebra of H and m is a subspace of g satisfying

$$Ad(h)(m) \subset m$$
 for all $h \in H$.

Then the homogeneous Finsler manifold (G/H; F) is called reductive. In this case, the tangent space $T_o(G/H)$, where o = eH is the origin, can be canonically identified with m. Note that the isotropy subgroup $I_x(M, F)$ of I(M; F) at a point $x \in M$ is compact [14], and M can be written as

$$M = I(M;F)/I_x(M,F)$$

Then $M = I(M; F)/I_x(M, F)$ is a reductive homogeneous manifold.

Let (G/H; F) be a reductive homogeneous (α, β) -space of the form $F = \alpha \phi(s)$ where $s = \frac{\beta}{\alpha}$ with a Riemannian metric α and a 1-from β on G/H. In this section, we assume that α and β are both G-invariant. Consider the underlying homogeneous Riemannian manifold $(G/H; \alpha)$. Let $\langle ., . \rangle$ denote the corresponding inner product on m. According to [16], the form β corresponds to a vector u in the subspace

$$V = \{ u \in M | Ad(h)u = u \text{ for all } h \in H \}.$$

We also assume that $\beta \neq 0$, or equivalently, $u \neq 0$.

We use the local coordinate system developed in [17], which is given as follow.

546SN:2320-5407

Let $u_1, u_2, ..., u_n$ be an orthonormal basis of m with respect to the inner product $\langle ..., \rangle$ and $u_n = \frac{u}{|u|}$. Then there exists a neighborhood U of o = H in G/H such that the map

$$(exp(x^1u_1)exp(x^2u_2)...exp(x^nu_n))\longmapsto (x^1,x^2,...,x^n),$$

defines a local coordinate system on U.

Since α and β are both G-invariant, $b := \|\beta\|_{\alpha} = |u|$ is a constant. By [17], at the origin o = H, we have

$$a_{ij} = \delta_{ij}, \quad b_i = b\delta_{ni},$$

$$b_{i|j} = \frac{b}{2}(\langle [u_i, u_j], u_n \rangle - \langle [u_n, u_i], u_j \rangle - \langle [u_n, u_j], u_i \rangle),$$

$$s_{ij} = \frac{b}{2}\langle [u_i, u_j], u_n \rangle, \quad r_{ij} = -\frac{b}{2}(\langle [u_n, u_i], u_j \rangle + \langle [u_n, u_j], u_i \rangle).$$
(3.1)

Note that $s_n = b^i s_{in} = b s_{nn} = 0$.

Theorem 3.4. Let $F = \frac{(\alpha+\beta)^2}{\alpha}$ be a homogeneous Finsler square metric on G/H. Then F is a Douglas metric if and only if F is a Berwald metric or F is a Douglas metric of Randers type.

Proof. Suppose that $F = \alpha \phi(\frac{\beta}{\alpha})$ is a homogeneous (α, β) -metric $F = \frac{(\alpha+\beta)^2}{\alpha}$ on G/H, where the Riemannian metric α and the 1-from β are both G-invariant. We only need to compute at the origin o = H. By (3.1), it is obvious that $b_{n|n} = 0$ at the origin. We now prove the theorem in the following two cases.

Case 1: $dim(G/H) \ge 3$. Suppose that F is a Douglas metric, and F is neither a Berwald metric nor of Randers type. Since b is a constant, it follows from Theorem 2.3 and (2.2) that

$$b_{n|n} = 2\tau \{1 - b^2\} = 0. \tag{3.2}$$

Since α and β are both *G*-invariant, the scalar function $\tau = \tau(0)$ is a constant.

By the assumption that F is not a Berwald metric, it follows that $\tau \neq 0$. So we have

$$(1-b^2) = 0. (3.3)$$

By (2.3), we have

$$\phi''(s) = \{\phi(s) - s\phi'(s)\} \frac{k_1 + k_2 s^2}{1 + (k_1 + k_2 s^2) s^2 + k_3 s^2}.$$
(3.4)

Plugging (3.4) into (1.2), we get

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) = \{\phi(s) - s\phi'(s)\}\{1 + \frac{b^2 - s^2) + (k_1 + k_2s^2)}{1 + (k_1 + k_3)s^2 + k_2s^4}\} \\
= \{\phi(s) - s\phi'(s)\}\{1 + \frac{1 + k_1b^2 + (k_2b^2 + k_3)s^2}{1 + (k_1 + k_3)s^2 + k_2s^4}\}.$$
(3.5)

By taking b = s in (1.2) we can see that $\phi(s) - b\phi'(s) > 0$, is always positive as long as F is a Finsler metric. So the (1.2) implies the following

$$\frac{1+k_1b^2+s^2(k_3+k_2b^2)}{1+(k_1+k_3)s^2+k_2s^4} > 0, \forall |s| \le b < b_0.$$
(3.6)

Taking s = 0 we have $1 + k_1 b^2 > 0$ than $1 + k_1 s^2 \ge \min\{1, 1 + k_1 b^2\}$.

On other hand, we have $(k_1, k_2, k_3) = (2, 0, -3)$ and by taking s = b in (2.3), then

$$\phi''(s) = \{\phi(s) - s\phi'(s)\} \frac{2 + 0s^2}{1 + (2 + 0s^2)s^2 - 3s^2},$$

= $\{\phi(s) - s\phi'(s)\} \frac{2}{1 - s^2}.$ (3.7)

ISSN:2320-5407

And when $(k_1, k_2, k_3) = (-3, 0, 2)$ we have

$$\phi''(s) = \{\phi(s) - s\phi'(s)\} \frac{-3 + 0s^2}{1 + (-3 + 0s^2)s^2 + s^2},$$

= $\{\phi(s) - s\phi'(s)\} \frac{-3}{1 + s^2}.$ (3.8)

It is clear that the solution of (3.7) and (3.8) is given by

$$\phi(s) = \frac{c}{1 \mp s^2},\tag{3.9}$$

for some constant c. This implies that is of Randers type, which is a contradiction. This completes our proof in this case.

Case 2: dim(G/H) = 2. By Theorems 2.1 and 2.2, we only need to prove the theorem under the assumption that F is given by $F = \alpha \pm \frac{\beta^2}{\alpha}$, where the Riemannian metric α and the 1-from β are both G-invariant. We will also use the above local coordinate system and setting n = 2. Note that $b_2 = b$ and $s_2 = 0$. By Theorem 2.2,

• if $F = \alpha + \frac{\beta^2}{\alpha}$ is a Douglas metric, then at the origin o = H, we have

$$r_{22} = b_{22} = 2\tau(o)(1-b^2).$$

Since $b^2 < 1$ when $F = \alpha + \frac{\beta^2}{\alpha}$ is positive definite, we conclude that $\tau(o) = 0$.

• If $F = \alpha - \frac{\beta^2}{\alpha}$ is a Douglas metric, then at the origin o = H, we have

$$r_{22} = b_{2|2} = 2\tau(o)(1+b^2) = 0.$$

Thus we also have $\tau(o) = 0$. Since α and β are both *G*-invariant, the scalar function $\tau(x)$ is a constant. Therefore $\tau = \tau(o) = 0$, which implies that *F* is a Berwald metric.

This completes the proof of Theorem under the assumption that both α, β are G-invariant.

Let u be a vector corresponding to β in the subspace V given in the above. Then the condition for F to be a Berwald metric is equivalent to the following:

$$\langle [v,w]_m,u\rangle = 0 \quad for \quad all \quad v,w \in m, \tag{3.10}$$

$$\langle [u, v_1]_m, v_2 \rangle + \langle [u, v_2]_m, v_1 \rangle = 0 \quad for \quad all \quad v_1, v_2 \in m.$$
 (3.11)

By Theorem 3.4 and a direct observation, we have

Theorem 3.5. Let $F = \frac{(\alpha+\beta)^2}{\alpha}$ be a homogeneous Finsler square metric on G/H, where the Riemannian metric α and the 1-from β are both G-invariant. Suppose the Lie algebra g of G is perfect, i.e., g = [g, g], then F is a Douglas metric if and only if F is a Riemannian metric.

Proof. By Theorem 3.4, if $F = \alpha \phi(\frac{\beta}{\alpha})$ is a Douglas metric, then it is a Berwald metric or a Douglas metric of Randers type. Let $g = \eta + m$ denote a reductive decomposition of g. If F is a Douglas metric of Randers type, then F can be expressed in the form $F = \tilde{\alpha} + \tilde{\beta}$, where α and β are both G-invariant, and β is a closed 1-form. In this case, there exists a vector $u \in m$ satisfying (3.10), where the inner product $\langle ., . \rangle$ is corresponding to $\tilde{\alpha}$, and the vector u is corresponding to $\tilde{\alpha}$ with respect to the inner product. Now the condition that Ad(h)(u) = u for all $h \in H$ is equivalent to

$$[v, u] = 0 \quad for \quad all \quad v \in \eta. \tag{3.12}$$

Since the inner product $\langle ., . \rangle$ is *G*-invariant, we have

$$\langle [v, w_1]_m, w_2 \rangle + \langle [v, w_2]_m, w_1 \rangle = 0 \quad for \quad all \quad v \in \eta, w_1, w_2 \in m.$$
 (3.13)

Combining (3.12) and (3.13), we obtain

$$\langle [v,w]_m,u\rangle = 0 \quad for \quad all \quad v \in \eta, w \in m.$$

$$(3.14)$$

5455N:2320-5407

Now the assumption g = [g, g] implies that there exists two vectors $w, v \in g$ such that [w, v] = u. Let $w = w_1 + w_2$ and $v = v_1 + v_2$, where $w_1, v_1 \in m$ and $w_2, v_2 \in \eta$. Then we have

$$[w,v] = [w_1,v_1] + [w_1,v_2] + [w_2,v_1] + [w_2,v_2].$$
(3.15)

Therefore by (3.10) and (3.14), we have

$$\begin{aligned} \langle u, u \rangle &= \langle u, [w, v]_m \rangle \\ &= \langle u, [w_1, v_1]_m \rangle + \langle u, [w_1, v_2]_m \rangle + \langle u, [w_2, v_1]_m \rangle \\ &= 0. \end{aligned}$$

Thus u = 0, which implies that F is a Riemannian metric. If $F = \alpha \phi(\frac{\beta}{\alpha})$ is a Berwald metric with α and β both G-invariant, then there exists a vector $u \in m$ satisfying (3.10). Then a similar argument shows that F is also a Riemannian metric.

4. Conclusion

The important example of Finsler space are different type of (α, β) -metric are Randers metric, Kropina metric and other special (α, β) -metric. In [13] Ramesha M and S. K. Narasimhamurthy are devoted the necessary and sufficient conditions for a Finsler space with a special (α, β) -Metric $F = C_1 \alpha + C_2 \beta + \frac{\beta^2}{\alpha}$: $C_2 \neq 0$, to be a Douglas space and also to be Berwald space. H. Liu and S. Deng in [19] have shown the necessary and sufficient conditions for Randers homogeneous of Douglas type to be Berwaled and Riemannian metric.

In this present article we consider homogenous Finsler square metric $F = \frac{(\alpha + \beta)^2}{\alpha}$ of Douglas type, and we investigate the necessary and sufficient conditions for the homogenous Finsler square metric to be Douglas metric, then if has following properties:

- (1) it is a Berwald metric or Randers type, and
- (2) it is a Riemannian metric.

References

- [1] Z. Shen and C. Yu, On Einstein square metrics, Publ. Math. Debrecen, 85(3-4) (2014), 413-424.
- [2] Z. Szabo, Positive definite Berwald spaces (Structure theorems on Berwald spaces), Tensor, N. S. 35(1981), 25-39.
- [3] S. S. Chern and Z. Shen, RiemanFinsler Geometry, Nankai Tracts Math., Vol. 6, World Scientific 12(2005).
- [4] M. Matsumoto, Theory of Finsler spaces with (α, β) -metric, Rep. Math. Phys., 31 (1992), 4383.
- [5] Il-Yong Lee and Hong-Suh Park, Finsler spaces with infinite series (α, β)-metric, J. Korean Math. Soc., 41(3) (2004), 567589.
- [6] Il-Yong Lee and Myung-Han Lee, On Weakly-Berwald spaces of special (α, β)-Metric, Bull. Korean Math. Soc., 43 (2) (2006),425441.
- [7] S. Bacso and M. Matsumoto, On Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen, 51 (1997), 385-406.
- [8] Z. Shen and G. Civi Yildirim, On a Class of Projectively Flat metrics with Constant Flag Curvature, Canadian Journal of Mathematics, 60 (2008), 443456.
- [9] L. Zhou, A Local classification of a class of (α, β) -metric with constant flag curvature, Differential Geometry and its Applications, 28 (2010), 170193.
- [10] L. Berwald, OUber die n-dimensionalen Geometrien konstanter Krummung, in denen die Geradendie kurzesten sind, Math. Z., 30(1929), 449-469.
- [11] J. Douglas, The general geometry of paths, Ann. of Math, 29 (1927-28), 143-168.
- [12] B. Li, Z. Shen and Y. Shen, On a class of Douglas metrics, Studia Sci. Math. Hungarica, 46 (2009),355-365.

- [13] Ramesha M, S. K. Narasimhamurthy, Conformal Change of Finsler Special (α, β) -Metric is of Douglas Type, JPRM, Volume 8, Issue 1 (2016)ISSN: 2395-0218.
- [14] S. Deng and Z. Hou, The group of isometries of a Finsler space, SPacific J. Math.207 (2002), 149155.
- [15] M. Matsumoto, The Berwald connection of a Finsler space with an (α, β) -metric, Tensor (N.S.) 50 (1991), 1821.
- [16] S. Deng and Z. Hou, Invariant Randers metrics on homogeneous Riemannian manifolds, J. Phys. A 37 (2004), 43534360; corrigendum, ibid 39 (2006), 52495250.
- [17] S. Deng and Z. Hu, Curvatures of homogeneous Randers spaces, Adv. Math. 240(2013), 194226.
- [18] G. Yang, On a class of two-dimensional Douglas and projectively flat Finsler metrics, preprint (2013), http://arxiv.org/abs/1302.3150.
- [19] H. Liu and S. Deng, Homogeneous (α, β) -metrics of Douglas type, Forum Math. 27(2015), 31493165.