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It is evident from literature that few Asian markets have strong linkage 

with US markets. The movement in one market often affects the other 

market if they have linkage. Current study explores the linkage among 

the major Asian and US stock markets using PCA and FA techniques. 

PCA identifies patterns in series on the variability while FA defines the 

structures using covariance and correlation. In this study, weekly 

closing returns of fourteen stock markets namely: KSE-100 (Pakistan), 

Nikkie225 (Japan), S&P 500(US), Nasdaq Composite and DJI (US), 

KLSE (Malaysia), BSESN (India), HIS (Hong Kong), JKSE 

(Indonesia) SSE(China), KS11(Korea), TWII (Tiwan), CSE(Sri Lanka) 

and TASI (Saudi Arabia) spanning from 1
st
 January , 2001 to 14

th
 

January, 2019 are used as case study. Only first nine PCA’s are 

constructed and from them first six PCA’s are chosen as they contain 

almost 79.4% of total variability. First two PCA provide important 

information, such that PC1 consist of a group of US and few Asian 

stock markets (BSESN, NIKKIE 225, HIS, KS11 and TWII). Whereas, 

PC2 contains all US and Asian markets (JKSE, KLSE and SSE).  

Furthermore, no relationship of KSE-100, CSE and SSE with US 

markets is found. Moreover, Factor analysis with VARIMAX method 

gives quite different results as compare to PCA. FA1 comprises of a 

group of US markets and FA2 represents only two Asian stock markets 

(KS11 and TWII). Finally, FA method is found more appropriate as it 

utilizes correlation/covariance as well.   

 
                 Copy Right, IJAR, 2019,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Managing High-dimensional data is very difficult task for the researcher. Extensive computer resources and special 

statistical methodologies are required to handle and model such data. Various methods have been devised for 

dimension reduction; significant among them are: Principal Component Analysis (PCA) and factor analysis (FA) 

that are commonly employed for clustering of data in the field of medicine, bio sciences, economics and finance etc.   

PCA is a well-known statistical technique for reducing the dimensionality and the complexity of data with minimum 

loss of information. In PCA, a large number of inter-related variables can be structured into new group of 

uncorrelated variables. Moreover, this new set of variables are ordered sequentially with the first component 

Corresponding Author:- Samreen Fatima
1
 

Address:-Assitant professor, Ph.D, Department of Statistics, Faculty of Science, University of 

Karachi, Pakistan. 

 

http://www.journalijar.com/


ISSN: 2320-5407                                                                                        Int. J. Adv. Res. 7(5), 97-105 

98 

 

explaining as much of the variation as it can. Each principal component is a linear combination of the original 

variables in which the coefficients indicate the relative importance of the respective variable.   

 

The PCA is obtained by linear combination of original (manifest) variables by considering sum of diagonal elements 

of covariance or correlation matrix as their total variance and decompose them so that, V(PC1)> V(PC2)> 

……>V(PCK). In contrast, factor analysis not only explains the diagonal terms but also the off-diagonals 

(covariance/correlation) as well. However, the aim of both techniques is to reduce the dimensionality of a data set. 

Whereas, dimension of  the dataset is defined as ‘n’ with the relationship n > q where, q is the number of factors in 

PCA/FA. 

 

PCA was first introduced by (Pearson, 1901) as a tool in exploratory data analysis and also for constructing 

predictive models. In the field of finance PCA is specifically used to identify the effectiveness of the components 

having high variability. Moreover, PCA is considered as a very powerful tool capable of handling big data problems 

efficiently. In 1931, Turnstone developed multiple factor model based on  the psychological theory by the name of 

Factor Analysis (FA) based on research work of (Pearson, 1901) and (Spearman, 1987). Furthermore, FA and PCA 

were compared and explained as two different techniques by (Jolliffe & Jolliffe, 1986). In contrast, recent study 

(Fan, Liao, & Mincheva, 2013) showed that PCA is closely related to factor analysis. However, heavy tailed errors 

and outliers of  PCA and FA were discussed by ((Fan, Wang, Wang, & Zhu, 2017) & (Sun, Zhou, & Fan, 2018)). 

According to the researchers, PCA is one of the most growing techniques applied to study the market cross-

correlation and systemic risk ((Billio, Getmansky, Lo, & Pelizzon, 2012), (Kritzman, Li, Page, & Rigobon, 2010) 

and (Zheng, Podobnik, Feng, & Li, 2012)). In addition to this, for summarizing the large data sets in a way that 

relationship and patterns can be understood easily, factor analysis (FA) is used. In contrast to PCA, FA normally 

regroup the variables into a limited set of clusters based on shared variance. Hence, it helps to isolate (clusters) and 

concepts. According to (Bartholomew, Knott, & Moustaki, 2011), FA reduces dimensionality of large sets of 

measurable and unobservable variables that are represented by fewer latent variables sharing a common variance. 

Furthermore, (Egloff, Leippold, & Wu, 2010) suggested a two-factor model of volatility by applying PCA to 

analyze the dimensionality of the volatility dynamics, capturing the long and short-term fluctuations in the volatility 

term structure. Both optimistic and pessimistic view of investors by using PCA is discussed by (M. Baker & 

Wurgler, 2006) ). Whereas, (S. R. Baker, Bloom, & Davis, 2016) described a policy which measures uncertainty 

index of Economic policy. As a case study, (Chong, Yap, & Mohamad, 2013) applied Factor Analysis on twenty 

eight financial ratios of trading companies listed with Malaysian Stock Exchange and examined their distributional 

properties and found seven are positively skewed . Moreover, (Armeanu & Lache, 2008) selected eight variables of 

insurance companies which were operated in the Romanian market in 2006. Armeanu used PCA method to examine 

the financial strength of the insurance companies. Further discussion on principal component analysis for analysis of 

stock portfolio management is done by (Pasini, 2017). Their result showed that PCA was useful to diversify the risk 

which is helpful for the investor.  

 

The main objectives of the study are manifold: 1) To explore the linkage among the Asian and US stock markets. 2) 

To make groups based on the variability using two statistical techniques Principal Component Analysis and Factor 

Analysis. 3) To observe the similarities among the selected Asian Stock markets.  

 

The outline of this paper is as follows: Firstly, section 2 presents a brief introduction of Principal Component 

Analysis and Factor Analysis. Secondly, section 3 deals with data analysis using Principal Analysis and Factor 

Analysis methods based on data from 1
st
 January 2001 to 16

th
January, 2019 of the selected stock markets data of 

closing price data. Finally, section 4 summarizes the conclusion. 

 

Materials and Methods:- 
Statistical Analysis 

Statistical analysis is carried out using the following well-known techniques. In this study, these techniques are 

applied using Eviews 9 and Minitab 17 software. 

 

Component Analysis 

Principal component analysis (PCA) is a technique mostly used to highlight strong patterns present in a dataset. If a 

number of possibly correlated variables are transformed into a smaller number of uncorrelated variables, they are 

called principal components. Dealing with large number of variables, PCA is found extremely useful in eliminating 

or reducing dimensions. 

https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Predictive_modeling
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Let X1, X2,. . . , Xp, is a vector of  ‘p’ random variables whose variance and covariance matrix exists. Principal 

components are specific linear combinations such that these linear combinations are independent and obtained by 

applying Eigen analysis on its covariance matrix, which provides new axes. The new axes represent the directions 

with maximum variability and provide a simpler description of the covariance structure. Therefore, Principal 

component mainly depends on the covariance/correlation matrix and hence the assumption of multivariate normality 

is not required. 

 

The linear combinations of ‘p’ random variables and Eigen vectors is mathematically defined as a system of linear 

regression equations, 

                                 Y1= e11x1+ e12x2+⋯+e1pxp 

        .      .         .      ……  . 

                                                                 Yp= ei1x1+ ei2 x2+⋯+eipxp 

 

Which can be represented in matrix notation as follows, 

 

 

Where i=1,2…p , matrix of Eigen vectors  
ppti

e


 , X= 1p
x

  and Y is also 1p
y

 vector. 

Furthermore,  
pni

xX


 has population variance covariance matrix represented by 

Var(Yi) = 
 

p

k
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l

klilik ee
1 1

 = ei′ Σ ei. 

In general, population covariance matrix or population data are not available therefore MLE is used in place of 

population covariance matrix ( ). 

The sample estimate of ∑ is obtained by sample variance-covariance matrix, given by 

S=   







n
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From this sample variance-covariance matrix estimates of Eigen values, 1̂ , 2̂ ,. . . , p̂  the corresponding 

Eigenvectors p21 ê, . . ,.ˆ,ˆ ee are computed . Since we know that, 
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The Eigen values 
j

̂  are the variance of the corresponding PC. 

So, the estimated principal components using the Eigenvectors as coefficients can be written as  

 

 

                                                                   .     .            .        …..    .         

           

 

 

In this study returns of daily closing prices of the stock market i.e., p = 14 (x1, x2,…,x14) have been considered for 

analysis. Where, Xi’s are the returns of the i
th
 series (see in abstract). 

 

Furthermore, the first ‘k’ principal components out of ‘p=14’ components are selected in such a way that the 

proportion of variation explained by those first ‘k’ principal components is to be as large as possible. 

    

Factor Analysis 

In factor analysis the p-observable variables (x1, x2,…, xp) are grouped according to higher correlations, i.e. groups 

of variables are formed in such a way that variables within a particular group are highly correlated. Factor analysis 

explores the latent structure defined by linear combination of manifest variables. FA has few latent variables f1, 

f2,…., fm which also explain covariance and correlation among the observable variables.  

~

'

~
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The factor analysis model is written in vector form as, 

                                                X-µ = Ʌf +ɛ        

Where, Ʌ is the matrix of factor loadings, ‘f ’ represents vector of common factors and  ‘ɛ’ represents specific 

factor. FA basically focuses on modeling the covariance among the Y’s. So, the variance/covariance matrix (Σ) can 

be expressed in terms of Ʌ and ψ as ∑p = ɅɅ´ + ψ. Here the variance of ‘xi’ is partitioned into communality (due to 

f’s) and a specific variance (unique to xi), given by var (xi) = iimii   2
2

2
1

2  . . . . 

Where, ci
2
 = imii

2
2

2
1

2  . . .    = Communality and ψi = Specific variance. The communality, ci
2
 is also 

referred as the i
th

 explained by the specific variance and Ψi is called unique variance or residual variance. The larger 

communality for each variable is indicative of a successful factor analysis. 

 

One disadvantage of the factor analysis model is that it does not always fit the data. In such cases, two problems are 

faced regarding the estimates: (1) Number of factors are not known, and (2) it is unclear that what the factors are? 

The other statistical procedures, however, do not lead to such obvious consequences regarding the estimates or tests 

in case of failure of assumptions. A transformation of the factor loadings and the resulted transformation of the 

factors are called factor rotation. It happens in many cases that all factor loadings obtained from initial loadings by 

an orthogonal transformation are not easily interpretable. It is therefore a common practice to rotate them in some 

way to achieve a simpler structure. In fact, it is always desirable to have a pattern of loadings such that each variable 

is loaded high on a single factor and has small loadings on the remaining factors. This transformation rotates the 

common factors in m-dimensional space. Moreover, there are various methods of carrying out Factor analysis, 

however in this study Factor Rotation using VARIMAX method is used. 

 

Factor Rotation using VARIMAX method 

The most common method for factor rotation is the VARIMAX procedure, which maintains axes at right angles. 

This is a method that also minimizes the number of variables with high loadings on a factor. 

 

Let the rotated matrix of factor loadings be denoted by L
*
=[ lij

*
] and ci

2 
represents the i

th
 communality then, 

iijij cll /
~ *  is defined as the rotated coefficients in terms of square root of communalities. If P is an ‘mm’ 

orthogonal matrix such that L
*
= LP and F

*
=P´ F, then the matrix P is chosen to maximize the following: 
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Where, maximized value of ‘V’ means that squares of the loadings are spread out on each variable as much as 

possible. The interpretations of common factors become simpler by finding groups of very large and very small 

coefficients in any column of the rotated matrix of factor loadings.   

 

Data Analysis and Results:- 
Weekly closing returns of fourteen  markets data: KSE-100 (Pakistan) , Nikkie 225 (Japan), S & P 500, Nasdaq 

Composite and DJI (US), KLSE (Malaysia), BSESN (India), HIS (Hong Kong), JKSE (Indonesia) SSE(China), 

KS11(Korea), TWII (Tiwan), CSE (Sri Lanka) and TASI (Saudi Arabia) markets are obtained from yahoo 

finance.com. Furthermore, for visual understanding data from 1
st
 January, 2001 to 14

th
 January, 2019 is plotted in a 

graph given below, Figure 1. 
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Figure 1:-time series plot of daily share price of considered stock markets. 

 

Returns of above mentioned indices are calculated by taking the logarithmic ratio of
tp and

1tp ,  1/log  ttt ppr . 

Moreover, descriptive statistics of the returns are summarized in Table 1 which shows that all countries have 

positive mean returns indicating the fact that prices increased during the selected period. Furthermore, stock markets 

except CSE are negatively skewed and show a high probability of earning returns which is greater than mean. 

Whereas, kurtosis for each series is much larger than normal distribution value indicating that the tails of each series 

are thicker than the normal distribution. Nevertheless, DJI, Nikkie225, S&P 500 and TASI  have thicker tails among 

all of them which is also confirmed by Jarque-Bera test statistics at 5% level of significance. Therefore, the null 

hypothesis of normality needs to be rejected. 

 

Table 1:-Provides general statistics of returns of fourteen stock markets for the period 1
st
 January, 2001 to 14

th
 

January, 2019. 

 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera Probability 

DLOG(BSESN) 0.002 0.004 0.132 -0.174 0.030 -0.495 6.382 486.973 0.000 

DLOG(CSE) 0.003 0.001 0.180 -0.113 0.025 0.787 9.533 1770.363 0.000 

DLOG(DJI) 0.001 0.003 0.107 -0.200 0.023 -1.072 11.926 3303.779 0.000 

DLOG(HIS) 0.001 0.002 0.117 -0.178 0.029 -0.259 5.780 313.484 0.000 

DLOG(IXIC) 0.001 0.003 0.131 -0.175 0.030 -0.561 6.448 515.459 0.000 

DLOG(JKSE) 0.003 0.004 0.116 -0.233 0.030 -0.952 9.211 1654.738 0.000 

DLOG(KLSE) 0.001 0.002 0.067 -0.114 0.018 -0.771 7.937 1048.966 0.000 

DLOG(KS11) 0.001 0.003 0.170 -0.229 0.030 -0.695 9.112 1540.763 0.000 

DLOG(KSE-100) 0.003 0.006 0.109 -0.201 0.031 -1.157 8.389 1348.776 0.000 

DLOG(NIKKEI 225) 0.000 0.002 0.114 -0.279 0.030 -1.091 11.202 2824.341 0.000 

DLOG(SP&500) 0.001 0.002 0.114 -0.201 0.024 -0.924 10.737 280.49 0.000 

DLOG(SSE) 0.000 0.000 0.139 -0.159 0.033 -0.285 5.808 321.887 0.000 

DLOG(TASI) 0.001 0.003 0.138 -0.238 0.034 -1.400 10.954 2787.907 0.000 

DLOG(TWII) 0.001 0.002 0.183 -0.131 0.028 -0.197 6.881 596.650 0.000 

Notes: Authors calculations using Eviwes 9 software. 

 

The pair wise correlations between the markets are computed to measure the relationship (see Table 2). Correlation 

matrix shows that all three considered markets of US have strong positive correlation. It is interesting to note that 

KSE-100, TASI and CSE have weak correlations with all markets under consideration, showing that price 

movements in these markets are independent to certain extent. However, remaining pairs of Asian and US markets 

returns series have moderate correlations between 0.5 to 0.7. 
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Table 2:-Correlation of selected returns  
 BSESN CSE DJI HIS IXIC JKSE KLSE KS11 KSE-100 Nikkie 225 S&P-500 SSE TASI TWII 

BSESN 
1.00              

CSE 
0.19 1.00             

DJI 
0.48 0.13 1.00            

HIS 
0.59 0.16 0.56 1.00           

IXIC 
0.47 0.16 0.84 0.58 1.00          

JKSE 
0.44 0.13 0.32 0.48 0.30 1.00         

KLSE 
0.42 0.16 0.31 0.53 0.32 0.52 1.00        

KS11 
0.53 0.11 0.50 0.65 0.54 0.45 0.48 1.00       

KSE-100 
0.16 0.04 0.13 0.16 0.11 0.12 0.14 0.17 1.00      

Nikkie225 
0.49 0.16 0.58 0.63 0.58 0.40 0.39 0.61 0.12 1.00     

S&P500 
0.49 0.15 0.97 0.59 0.91 0.34 0.32 0.53 0.11 0.60 1.00    

SSE 
0.16 0.06 0.15 0.36 0.15 0.22 0.24 0.22 0.09 0.22 0.15 1.00   

TASI 
0.13 0.10 0.13 0.14 0.13 0.15 0.15 0.12 0.13 0.20 0.14 0.11 1.00  

TWII 
0.46 0.13 0.42 0.62 0.48 0.42 0.48 0.69 0.19 0.51 0.45 0.23 0.12 1.00 

Notes: Authors calculations using Eviwes 9 software.  

 

PCA and Factor Analysis 

Weekly averages of daily return series of selected Asian and US markets are used for the PCA and factor analysis. 

These methods assume that the variables have no serial correlations. Moreover, PCA combines the selected stock 

markets (having maximum variability) in terms of the similarities of their co-movements. Furthermore, it is well 

known that markets with correlated and close co-movement patterns are not good from portfolio diversification 

perspective. Whereas, PCA technique not only investigates the co-movement patterns of the Asian stock markets but 

also provides information for portfolio diversification prospects for investors. In short, there is no rule of thumb to 

determine the number of clusters of returns with similar contemporaneous movement patterns. Therefore, in order to 

identify similar movement pattern in each PCA, the Eigen values and the associated percentage of variance are 

considered.  

 

However, the criteria to select appropriate number of the PCS is based on the proportion of percentages associated 

with each PC. In the current study, 14 stock market returns are considered and nine statistically significant PCS are 

considered from 14, given in Table 3. First, PCA consists of S&P500, BSESN, Nikkie 225, HIS, KS11, TWII, DJI 

and NASDAQ using the criteria iablesvarof.nototal/1 . The first PC contains 42% cumulative variation to 

the total variation in the returns of the fourteen stock markets under consideration. This PC shows strong link 

between stable Asian stock markets and three US markets. Moreover, second PC indicates interesting results that is, 

JKSE, KLSE and SSE have strong relationship with each other however, they all have opposite movements with 

selected US markets. Furthermore, PC3 contains only TASI, whereas, PC4 shows that CSE and KSE-100 move in 

opposite directions. While, PC5 contains only SSE and PC6 shows that SSE and TASI have opposite movements. 

Moreover, in PC7, JKSE moves opposite to TWII and KLSE and PC8 represents only BSESN. At last, PC9 

indicates Nikkie 225 and JKSE have negative influence on KLSE. Therefore, extracting first nine PCS contribute to 

91.5% variation in all. The rest of the five PCS account for remaining 8.5% of variation. Historical literature shows 

that mostly PC1 or only few PCS contain maximum information ((Pérignon, Smith, & Villa, 2007), (Kritzman et al., 

2010), (Billio et al., 2012), and (Zheng et al., 2012)). To put it in a nut shell, it is decided that first six PCS are 

significant among the nine constructed PCS as they contain 79.4% variation and the remaining three PCS have less 

than 5% variation.  

Table 3(a & b) provide the result of PCA including: Eigen values, eigenvectors, and proportion of variability using 

both covariance and correlation matrixes.   

 

Table 3a:-Eigen analysis of the Correlation Matrix 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 

Eigenvalue 5.93 1.43 1.036 0.977 0.904 0.834 0.659 0.548 0.478 0.434 0.3 0.279 0.164 0.02 

Proportion 0.424 0.102 0.074 0.07 0.065 0.06 0.047 0.039 0.034 0.031 0.021 0.02 0.012 0.001 

Cumulative 0.424 0.526 0.6 0.67 0.735 0.794 0.841 0.88 0.915 0.946 0.967 0.987 0.999 1 

Notes: Authors calculations using Minitab 17 software. 
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Table 3b:-Eigen vectors 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

S&P 500 0.341* -0.421* -0.06 0.036 0.063 -0.039 -0.183 0.102 0.031 

BSESN 0.29* 0.09 0.028 -0.102 -0.19 0.081 -0.078 -0.809* 0.33 

KSE-100 0.093 0.203 -0.406 0.621* -0.481 -0.376 -0.135 0.01 -0.063 

Nikkei 225 0.317* -0.039 -0.013 -0.001 0.067 0.077 0.26 -0.121 -0.419 

HIS 0.342* 0.119 0.12 -0.001 0.073 -0.078 0.102 -0.138 0.122 

SSE 0.136 0.32* 0.06 0.129 0.706* -0.55 -0.062 -0.07 0.001 

JKSE 0.245 0.333* 0.113 -0.119 -0.053 0.249 -0.556* 0.016 -0.599* 

KS11 0.324* 0.118 0.169 0.058 -0.117 0.077 0.396* 0.064 -0.118 

TWII 0.3* 0.188 0.15 0.061 -0.144 0.028 0.479* 0.276 0.02 

DJI 0.329* -0.419* -0.064 0.053 0.058 -0.056 -0.205 0.079 0.029 

NASDAQ 0.331* -0.388* -0.045 0.025 0.046 -0.057 -0.067 0.132 0.064 

CSE 0.097 0.082 -0.459 -0.732* -0.195 -0.418* 0.089 0.079 -0.083 

TASI 0.096 0.154 -0.722* 0.104 0.365 0.516* 0.121 0.001 0.083 

KLSE 0.252 0.372 0.106 -0.122 -0.081 0.142 -0.308 0.432 0.551* 

Notes: * indicates selected stock markets of each PC.  Authors calculations using Minitab 17 software. 

 

In Factor analysis maximum likelihood with unrotating method is adopted. Whereas, in maximum likelihood the 

first factor contains S&P500, BSESN, NIKKIE 225, HIS, KS11, TWII, DJI and NASDAQ same as the first PC. 

Furthermore, FA2 indicating interesting result that JKSE, KLSE and SSE have strong relationship to each other 

while they have opposite effect with all selected US markets. In addition to this, FA3 having TASI, FA4 showing 

CSE and KSE-100 both have negative influence on each other and FA5 has SSE only. Whereas, FA6 represents SSE 

and TASI move in opposite direction, in FA7 TWII and KLSE have negative impact on JKSE and FA8 has BSESN. 

Furthermore, Nikkie 225 and JKSE have negative impact on KLSE in FA9. Overall results obtained from FA are 

same as PCA. 

 

Table 4a:-Principal Component Factor Analysis of the Correlation Matrix :Unrotated Factor Loadings  

Variable FA1 FA 2 FA 3 FA 4 FA 5 FA 6 FA 7 FA 8 FA 9 Communality 

S&P 500 0.83 -0.503 -0.061 0.036 0.06 -0.036 -0.148 0.075 0.021 0.98 
BSESN 0.706 0.108 0.028 -0.101 -0.18 0.074 -0.064 -0.599 0.228 0.973 

KSE-100 0.228 0.242 -0.413 0.613 -0.457 -0.344 -0.11 0.008 -0.044 0.998 

Nikkei 225 0.772 -0.047 -0.013 -0.001 0.064 0.071 0.211 -0.089 -0.289 0.743 

HIS 0.834 0.142 0.123 -0.001 0.069 -0.072 0.083 -0.102 0.085 0.765 

SSE 0.332 0.383 0.061 0.128 0.671 -0.502 -0.051 -0.051 0.001 0.985 

JKSE 0.597 0.398 0.115 -0.117 -0.05 0.227 -0.452 0.012 -0.414 0.972 

KS11 0.791 0.142 0.172 0.058 -0.111 0.07 0.321 0.047 -0.081 0.808 

TWII 0.731 0.225 0.153 0.06 -0.137 0.025 0.389 0.204 0.014 0.825 

DJI 0.802 -0.501 -0.065 0.052 0.055 -0.051 -0.167 0.059 0.02 0.939 

IXIC) 0.807 -0.464 -0.046 0.025 0.044 -0.052 -0.055 0.097 0.044 0.888 

CSE 0.236 0.098 -0.467 -0.723 -0.185 -0.381 0.072 0.058 -0.058 0.999 

TASI 0.234 0.184 -0.735 0.103 0.347 0.471 0.098 0.001 0.058 0.994 

KLSE 0.615 0.445 0.108 -0.12 -0.077 0.13 -0.25 0.32 0.381 0.935 

Variance 5.9391 1.4299 1.0364 0.9766 0.9036 0.8339 0.6589 0.5481 0.4779 12.8044 

% Var 0.424 0.102 0.074 0.07 0.065 0.06 0.047 0.039 0.034 0.915 

Notes: Authors calculations using Minitab 17 software. 

  

Next Factor loading VARIMAX technique is applied and the results of FA are quite different from PCS. FC1 has all 

US markets. While the remaining factors that is FC2 to FC9 contain only individual markets i.e, TWII, SSE, 

BSESN, JKSE, TASI, CSE, KSE-100 and KLSE respectively. 

 

Table 4b:-Result of FA using VARIMAX method 

Variable FA1 FA 2 FA 3 FA 4 FA 5 FA 6 FA 7 FA 8 FA 9 Communality 

S&P 500 0.944* 0.228 0.038 -0.125 -0.094 0.044 -0.039 -0.028 0.082 0.98 

BSESN 0.289 0.294 0.03 -0.863* -0.16 0.045 -0.082 -0.065 0.137 0.973 
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KSE-100 0.052 0.096 0.035 -0.047 -0.034 0.058 -0.009 -0.988* 0.034 0.998 

Nikkei 225 0.459 0.603 0.113 -0.18 -0.272 0.157 -0.08 0.005 -0.137 0.743 

HIS 0.404 0.553 0.29 -0.362 -0.155 0.027 -0.055 -0.036 0.226 0.765 

SSE 0.063 0.128 0.974* -0.032 -0.07 0.044 -0.016 -0.035 0.076 0.985 

JKSE 0.154 0.245 0.088 -0.15 -0.892* 0.05 -0.042 -0.042 0.235 0.972 

KS11 0.304 0.795* 0.056 -0.183 -0.16 0.019 -0.007 -0.06 0.134 0.808 

TWII 0.216 0.829* 0.062 -0.067 -0.056 0.019 -0.048 -0.099 0.259 0.825 

DJI 0.929* 0.198 0.043 -0.13 -0.093 0.034 -0.031 -0.048 0.069 0.939 

IXIC) 0.881* 0.292 0.036 -0.107 -0.034 0.034 -0.06 -0.022 0.088 0.888 

CSE 0.078 0.057 0.017 -0.061 -0.036 0.044 -0.99* -0.009 0.053 0.999 

TASI 0.07 0.058 0.043 -0.033 -0.043 0.987* -0.043 -0.058 0.051 0.994 

KLSE 0.152 0.309 0.106 -0.147 -0.253 0.07 -0.072 -0.044 0.841* 0.935 

Variance 3.1918 2.4402 1.081 1.0426 1.0405 1.0202 1.0131 1.0075 0.9675 12.8044 

% Var 0.228 0.174 0.077 0.074 0.074 0.073 0.072 0.072 0.069 0.915 

Notes: * indicates selected stock markets in FA. Authors calculations using Minitab 17 software. 

 

Conclusion:- 
PCA is a method for multivariate data analysis and is used in many fields to extract relevant information from 

confusing data sets. Also, PCA provides means of identifying patterns in data and expressing the data in a way that 

highlights their similarities and differences among them. An advantage of PCA is its quality of quantifying the 

importance of each dimension in describing the variability of a data set. This method reduces the number of 

dimensions, without loss of information to great extent. Moreover, this paper presents the possible use of PCA in the 

stock volatility domain to reduce the dimension of data. In this case study, we used three US states and eleven Asian 

countries returns variables describing closing price data. First five PCS contains approximately 79.45% of the 

information provided by the original nine constructed PCS. Furthermore, PCA and FA (Unrotated Factor Loadings) 

methods yield same groups. Whereas, VARIMAX factor rotating method reveals a picture of the stock markets 

different from those of PCS and factor analysis. According to the available empirical analysis VARIMAX factor 

rotating method has been proved to be a good extracting method so far. In contrast to PCA, FA explains covariances 

and correlations between the variables and also unveils the hidden structure of the series. The results obtained from 

First FA shows US market only whereas second FA displays KS11 and TWII. However, remaining seven FA 

contains individual stock markets returns.  
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