

RESEARCH ARTICLE

STRONGLY HOLLOW-δ-LIFTING MODULES.

SaadA.Alsaadi and Rasha M.Jeathoom.

Department of mathematics, College of science, Mustansiriyah University.

Manuscript Info	Abstract
Manuscript History	In this paper, we introduce and study the concept of strongly hollow- δ -
Received: 16 February 2017 Final Accepted: 08 March 2017 Published: April 2017	lifting modules as a proper generalization of strongly hollow- δ -lifting modules. We call an R-module M is strongly hollow- δ -lifting if for every submodule N of M with $\frac{M}{N}$ hollow, then there is a fully invariant direct summand K of M such that K N and $\frac{N}{N} \ll_{\delta} \frac{M}{N}$. Several
	characterizations and properties of strongly hollow- δ -lifting modules are obtained. Modules related to strongly hollow- δ -lifting modules are given.
	are obtained. Modules related to strongly hollow- δ -lifting modules a given.

Copy Right, IJAR, 2017,. All rights reserved.

Introduction:-

N. Orhan, D. keskin and R. Tribak introduced the concept hollow-lifting modules as a generalization of lifting modules. An R-module M is called Hollow –lifting if every submodule N of M such that M/N is hollow has coessential submodule that is a direct summand of M. Also, following[10], an R-module M is strongly hollow-lifting if every submodule N of with $\frac{M}{N}$ hollow, then there exists a stable(fully invariant) direct summand K of M such that K \subseteq N and $\frac{N}{K} \ll \frac{M}{K}$. On other direction, an *R*-module *M* is called hollow- δ -lifting if for everysubmodule *A* of *M* with $\frac{M}{A}$ hollow, then there exists a direct summand *B* of *M* such that $B \subseteq A$ and $\frac{A}{B} \ll_{\delta} \frac{M}{B}$ [12].

In this paper we introduce and study the concept of strongly hollow- δ -lifting modules as generalization of strongly hollow- δ -lifting if for every submodule N of M with $\frac{M}{N}$ hollow, there exists a fully invariant direct summand K of such that $K \subseteq N$ and $\frac{N}{K} \ll_{\delta} \frac{M}{K}$. Throughout this paper R will denote arbitrary associative ring with identity and all R-modules are unitrary left R-module, $N \subseteq M$ will mean N is a submodule of an R-module M. Let M be an R-module and N be a submodule of M. N is called δ -small submodule of M (denote $N \ll_{\delta} M$) if $N+K \neq M$, for any proper submodule K of M such that $\frac{M}{K}$ singular [11]. A submodule N of M is called δ -coclosed in M if whenever K be a submodule of M with $\frac{M}{K}$ singular and $\frac{N}{K} \ll_{\delta} \frac{M}{K}$ implies N=K [4]. If N and K are submodules of M, then N is δ -supplement submodule of K in M if M=N+K and $N \cap K \ll_{\delta} K$, if every submodule has a δ -supplement submodule in M, then M is called δ -supplemented module [3]. A submodule A of an R-module M is called stable if $f(A)\subseteq A$ for each homomorphism f:A \rightarrow M. An R-module M is stable if every submodule of M is duo if every submodule of M is fully invariant [6].

Strongly hollow-δ-lifting Modules:-

As a proper generalization of strongly hollow-lifting modules and as a strong concept of hollow- δ -lifting modules, we introduce the following concept:

Definition (2.1):- An *R*-module M is called strongly hollow- δ -lifting if for every submodule A of M with $\frac{M}{A}$ hollow, there is a fully invariant direct summand B of M such that $B \subseteq N$ and $\frac{A}{p} \ll_{\delta} \frac{M}{p}$.

Examples and Remarks (2.2):-

Evrey strongly hollow- δ -lifting is hollow- δ -lifting .But the converse is not true in general. In fact, $M=Z_4\oplus Z_8$ is hollow- δ -lifting Z-module. But M is not strongly hollow- δ -lifting, since $A=Z_4\oplus \frac{4Z}{8Z}$ is a submodule of M with $\frac{M}{A} \cong 4Z$ hollow, while A is not δ -small submodule and not contain any a fully invariant direct summand B of M such that $B\subseteq A$ and $\frac{A}{B} \ll_{\delta} \frac{M}{B}$. Therefore M is not strongly hollow- δ -lifting.

2. Evrey strongly hollow-lifting is strongly hollow- δ -lifting. But the converse is not true in general. 3. Let M be an indecomposable R-module. Then M is strongly hollow- δ -lifting if and only if M is hollow- δ -lifting module.

Proof:- Let A be a submodule of M with $\frac{M}{A}$ hollow and since M is hollow- δ -lifting, then there is a direct summand B of M such that B \subseteq A and $\frac{A}{B} \ll_{\delta} \frac{M}{B}$. Since M is an indecomposable ,therefore B=(0) ,so $\frac{A}{(0)} \ll_{\delta} \frac{M}{(0)}$ such that B=(0) is a fully invariant direct summand of M. Thus M is strongly hollow- δ -lifting. (2) \Rightarrow (1) It is clear.

Proposition(2.3):- If M is hollow- δ -lifting module, then every δ -coclosed submodule B of M with $\frac{M}{B}$ hollow is direct summand.

Proof:-Let M is strongly hollow- δ -lifting module and let A be δ -coclosed submodule such that $\frac{M}{A}$ hollow. Thus there is a fully invariant direct summand B of M such that B \subseteq A and $\frac{A}{B} \ll_{\delta} \frac{M}{B}$. But A is δ -coclosed, so A=B and hence A is a fully invariant direct summand of M.

Recall that an R-module M is hollow-SS-module if every direct summand D of M with $\frac{M}{D}$ hollow is stable. Equivalently, M is hollow-SS-module if and only if every direct summand D of M with $\frac{M}{D}$ is fully invariant [10].

Now, the following proposition gives characterization of strongly hollow- δ -lifting by using hollow-SS-module and in the same time we give another a condition under which a hollow- δ -lifting module is strongly hollow- δ -lifting module.

Proposition(2.4):- If M is strongly hollow- δ -lifting, then M is hollow SS-module and hollow- δ -lifting.

Proof:- Let M is strongly hollow- δ -lifting, then M is hollow- δ -lifting. We want to show that M is hollow SS-module ,let B be a direct summand of M with $\frac{M}{B}$ hollow and hence B is δ -coclosed by proposition(2.3),B is fully invariant and hence M is hollow SS-module.

Recall that an R-module M is satisfies the condition(δ^*), if for every direct summands A and B of M and $A \cap B \ll_{\delta} B$, then $A \cap B = 0$ [2].

Now, the following proposition, we prove that this proposition valid on strongly hollow- δ -lifting module without extra condition(δ^*).

Proposition(2.5):- Let M be a strongly hollow- δ -lifting module. If A and B are direct summands of M such that $\frac{M}{A \cap B}$ hollow, then $A \cap B$ is a direct summand of M.

Proof:-Suppose that A and B are direct summands of M. Since $\frac{M}{A \cap B}$ hollow, therefore $\frac{M}{A}$ and $\frac{M}{B}$ are hollow[1,proposition(2.1.2)].Since M is strongly hollow- δ -lifting by proposition(2.4), then M is hollow SS-module and hence we have A and B are fully invariant submodule. By[7], if A and B are fully invariant direct summands of M, then A \cap B is a direct summand of M.

Proposition(2.6): An R-module M is strongly hollow- δ -lifting if and only if for every submodule A of M with $\frac{M}{A}$ hollow, there is a fully invariant direct summand B of M with B \subseteq A such that M=B \oplus L, and A \cap L \ll_{δ} L.

Proof:- Let M is strongly hollow- δ -lifting module and let A be a submodule of M with $\frac{M}{A}$ hollow, then there is a fully invariant direct summand B of M such that B \subseteq A and $\frac{A}{B} \ll_{\delta} \frac{M}{B}$. Let M=B \oplus L, where L be a submodule of M. Let f: $\frac{M}{B} \rightarrow L$ be an mapping defined by f(m+B)=l, where m=b+l such that b \in B and l \in L. But $\frac{A}{B} \ll_{\delta} \frac{M}{B}$, so by[2,lemma(1.2.7)] and since f($\frac{A}{B}$)={f(a+k+B) |a \in A and k \in (A \cap L)}={k| k \in (A \cap L)}=A \cap L \ll_{δ} L.

Conversely, let A be a submodule of M with $\frac{M}{A}$ hollow. By assumption there is a fully invariant direct summand B of M with B⊆A such that M=B⊕L and A∩L≪ $_{\delta}$ L . Let $\frac{A}{B} \ll_{\delta} \frac{M}{B}$. Let $\frac{A}{B} + \frac{Y}{B} = \frac{M}{B}$ such that $\frac{M}{Y}$ singular . Hence, M=A+Y .By modular ,A=A∩M=A∩(B⊕L)=B⊕(A∩L),so M=B⊕((A∩L)+Y=(A∩L)+Y. But (A∩L) \ll_{δ} L, therefore $(A\cap L)\ll_{\delta}$ M . Also, since $\frac{M}{Y}$ singular . Thus M=Y and so $\frac{A}{B} \ll_{\delta} \frac{M}{B}$. Therefore , M is strongly hollow- δ -lifting.

Proposition(2.7):-Let M be an R-module. Then the following statements are equivalent:

1. M is strongly hollow- δ -lifting module.

2. Evrey submodule A of M with $\frac{M}{A}$ hollow, can be written as A=B \oplus S with B is a fully invariant direct summand of M and S \ll_{δ} M.

3. Every submodule A of M with $\frac{M}{A}$ hollow, can be written as A=B+S with B is a fully invariant direct summand of M and S \ll_{δ} M.

Proof:- $(1 \Rightarrow 2)$. Let A be a submodule of M with $\frac{M}{A}$ hollow. Since M is strongly hollow- δ -lifting, then there is a fully invariant direct summand B of M such that $B \subseteq A$ and $\frac{A}{B} \ll_{\delta} \frac{M}{B}$. Let $M = B \oplus L$, where L be a submodule of M. By modular law, $A = A \cap M = A \cap (B \oplus L) = B \oplus (A \cap L)$. By the same argument of proposition (2.6), we have $A \cap L \ll_{\delta} L$. Let $S = A \cap L$, so $A = B \oplus S$, where B is a fully invariant direct summand of M and $S \ll_{\delta} M$. (2 \Rightarrow 3) It is clear.

 $(3 \Longrightarrow 1)$.Let A be a submodule of M with $\frac{M}{A}$ hollow. From(3),A=B+S, where B is a fully invariant direct summand of M and S \ll_{δ} M. Let M=B \oplus L,where L be a submodule of M. Let $\frac{A}{B} + \frac{Y}{B} = \frac{M}{B}$ such that $\frac{M}{Y}$ singular ,then M=A+Y and so M=B+S+Y=S+Y. Since $\frac{M}{Y}$ singular and since S \ll_{δ} M ,therefore M=Y. Hence $\frac{A}{B} \ll_{\delta} \frac{M}{B}$ and so M is strongly hollow- δ -lifting.

Proposition(2.8):- Let $M=N \oplus K$ be a duo module such that N and K are strongly hollow- δ -lifting modules. Then M is strongly hollow- δ -lifting.

Proof:-Let M=N \oplus K be a duo module and let B be a submodule of M with $\frac{M}{B}$ hollow. Now, $\frac{M}{B} = \frac{N \oplus K}{B} = \frac{N \oplus B}{B} \oplus \frac{K \oplus B}{B}$ by[5,lemma(2.2.12)]. Since $\frac{M}{B}$ hollow we can assume that $\frac{M}{B} = \frac{N \oplus B}{B}$, so $\frac{N \oplus B}{B} \cong \frac{N}{N \cap B}$ and hence $\frac{N}{N \cap B}$ hollow. Since B is fully invariant submodule of M, then B=(B \cap N) \oplus (B \cap K) by [8]. Since N and K are strongly hollow- δ -lifting. Thus B \cap N=H_1 \oplus L_1, where H₁ is a fully invariant direct summand of N and L₁ $\ll_{\delta} N$. In the same way ,we have B \cap K=H_2 \oplus L_2,where H₂ is a fully invariant direct summand of K and L₂ $\ll_{\delta} K$. Then B=H \oplus L,where H=H₁ \oplus H₂ is a fully invariant direct summand of K and L₂ $\ll_{\delta} K$ is strongly hollow- δ -lifting. By proposition(2.7).

References:-

- 1. Hassan, A.A. On hollow-lifting modules, M.SC. Thesis college of Science University of Baghdad ,2010.
- 2. Hassan, S.S. Some Generalizations on δ -lifting modules, M.SC. Thesis, College of Science University of Baghdad, 2011.
- 3. Kason, M.T. δ -lifting modules and δ -supplemented modules, Algebra. Colloquium, 14(1) (2007), 53-60.
- 4. Lomp C. and E.Byyukasik ,(When δ -semiperfect rings are semiperfect, Turk.J.Math., 33,(2004), 1-8.
- 5. Orhan, N.D.K. Tutuncu and R. Tribals, On hollow-lifting modules, Taiwanese J .Math , 11(2),(2007),545-568.
- 6. Ozcan, A.C. Duo Modules, Glasgow Math. J.Trust 48(2006) 533-545.
- 7. Roman, S. Bear and Quasi Modules, Ph.D.Thesis,(2004), The Ohio State University.
- 8. Y. Talebi and T. Amoozegar, Strong F1-Lifting module. International Electronic J. Of Algebra 3(2008),75-82.
- 9. Abbas, M.S. On fully stable modules, Ph.D. Thesis, University of Baghdad, 1991.
- 10. Saaduon, N.Q. Strongly hollow-lifting modules, M.SC. Thesis, College of Science University of Al-Mustansiriyah,2014.
- 11. Zhou, Y.Q. Generalization of perfect, semiperfect and semiregular rings, Algebra.Colloquium 7(2002),305-318.
- 12. Saad A.Alsaadi and Rasha M. Jeathoom, strongly hollow- δ -lifting modules, to appear.