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Introduction:-

N. Orhan, D. keskin and R. Tribak introduced the concept hollow-lifting modules as a generalization of lifting
modules. An R-module M is called Hollow —lifting if every submodule N of M such that M/N is hollow has
coessential submodule that is a direct summand of M. Also, following[10], an R-module M is strongly hollow-lifting

if every submodule N of with % hollow, then there exists a stable(fully invariant) direct summand K of M such that
KSN and % & % . On other direction, an R-module M is called hollow-§-lifting if for everysubmoduleA of M with
% hollow, then there exists a direct summandB of M such that B € A and% Ks % [12].

In this paper we introduce and study the concept of strongly hollow-§-lifting modules as generalization of strongly
hollow-lifting and as a strong concept of hollow-§-lifting modules. We call an R-module M is strongly hollow-§-

lifting if for every submodule N of M with % hollow, there exists a fully invariant direct summand K of such that

KSN and % L % . Throughout this paper R will denote arbitrary associative ring with identity and all R-modules

are unitrary left R-module, NEM will mean N is a submodule of an R-module M. Let M be an R-module and N be a
submodule of M. N is called §-small submodule of M (denote N« sM) if N+K #=M,for any proper submodule K of

M such that % singular [11]. A submodule N of M is called §-coclosed in M if whenever K be a submodule of M

with % singular and % s % implies N=K [4]. If N and K are submodules of M, then N is §-supplement submodule
of Kin M if M=N+K and NNK<«sK, if every submodule has a §-supplement submodule in M, then M is called §-
supplemented module [3]. A submodule A of an R-module M is called stable if f(A)< A for each homomorphism
f:A—>M . An R-module M is stable if every submodule of M is stable [9] Recall that a submodule K of M is fully
invariant if g(K)< K for all feEnd(M) , an R-module M is duo if every submodule of M is fully invariant [6].

Corresponding Author:-SaadA. Alsaadi. 1508
Address:-Department of mathematics, College of science, Al-Mustansiriyah University.


http://www.journalijar.com/

ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 1508-1511

Strongly hollow-4-lifting Modules:-
As a proper generalization of strongly hollow-lifting modules and as a strong concept of hollow-&-lifting modules,
we introduce the following concept:

Definition (2.1):- An R-module M is called strongly hollow-§-lifting if for every submodule A of M with % hollow,
there is a fully invariant direct summand B of M such that B € N and% Ks %.

Examples and Remarks (2.2):-
Evrey strongly hollow-§-lifting is hollow-§-lifting .But the converse is not true in general. In fact, M=Z,®Zg is

hollow-4-lifting Z-module. But M is not strongly hollow-§-lifting, since A=Z4ea;‘—§ is a submodule of M with
% =47 hollow, while A is not §-small submodule and not contain any a fully invariant direct summand B of M such

that BSA and % L % . Therefore M is not strongly hollow-§-lifting.

2.Evrey strongly hollow-lifting is strongly hollow-§-lifting. But the converse is not true in general.
3.Let M be an indecomposable R-module. Then M is strongly hollow-§-lifting if and only if M is hollow-§-lifting
module.

Proof:- Let A be a submodule of M with % hollow and since M is hollow-§-lifting, then there is a direct summand B
of M such that BEA and % Ks %. Since M is an indecomposable ,therefore B=(0) ,so (AT) Ks % such that B=(0) is a
fully invariant direct summand of M. Thus M is strongly hollow-§-lifting.

(2)=(1) It is clear.

Proposition(2.3):- If M is hollow-§-lifting module, then every §-coclosed submodule B of M with % hollow is
direct summand.

Proof:-Let M is strongly hollow-§-lifting module and let A be §-coclosed submodule such that % hollow. Thus there

is a fully invariant direct summand B of M such that BEA and % K %. But A is §-coclosed, so A=B and hence A is
a fully invariant direct summand of M. m

Recall that an R-module M is hollow-SS-module if every direct summand D of M with % hollow is stable.
Equivalently, M is hollow-SS-module if and only if every direct summand D of M with % is fully invariant [10].

Now, the following proposition gives characterization of strongly hollow-§-lifting by using hollow-SS-module and
in the same time we give another a condition under which a hollow-§-lifting module is strongly hollow-&-lifting
module.

Proposition(2.4):- If M is strongly hollow-8-lifting , then M is hollow SS-module and hollow-§-lifting.

Proof:- Let M is strongly hollow-§-lifting, then M is hollow-§-lifting. We want to show that M is hollow SS-
module ,let B be a direct summand of M with % hollow and hence B is §-coclosed by proposition(2.3),B is fully
invariant and hence M is hollow SS-module.m

Recall that an R-module M is satisfies the condition(6*), if for every direct summands A and B of M and
ANB<« B, then ANB=0 [2].

Now, the following proposition, we prove that this proposition valid on strongly hollow-§-lifting module without
extra condition(6™).

Proposition(2.5):- Let M be a strongly hollow-&-lifting module. If A and B are direct summands of M such that %
hollow, then ANB is a direct summand of M.
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Proof:-Suppose that A and B are direct summands of M. Since % hollow, therefore % and % are

hollow[1,proposition(2.1.2)].Since M is strongly hollow-§-lifting by proposition(2.4) , then M is hollow SS-module
and hence we have A and B are fully invariant submodule. By[7], if A and B are fully invariant direct summands of
M, then AnB is a direct summand of M. m

Proposition(2.6):-An R-module M is strongly hollow-§-lifting if and only if for every submodule A of M with %
hollow, there is a fully invariant direct summand B of M with BEA such that M=B@L, and ANL<«sL.

Proof:- Let M is strongly hollow-6-lifting module and let A be a submodule of M with % hollow, then there is a
fully invariant direct summand B of M such that BCA and % L % .Let M=B@® L, where L be a submodule of M .
Let f: %—>L be an mapping defined by f(m+B)=I, where m=b+l such that beB and I€L. But %«5 %, SO
by[2,lemma(1.2.7)] and since f(%):{f(a+k+B) [a€A and ke(ANL)}={k| ke(ANL)}=AnL<K;L.

Conversely, let A be a submodule of M with % hollow. By assumption there is a fully invariant direct summand B of

M with BSA such that M=B@®L and AnL<«sL . Let % K %. Let % + g = % such that % singular . Hence, M=A+Y

.By modular ,A=ANM=AN(BAL)=BH(AnL),so0 M=B@((AnL)+Y=(ANL)+Y. But (ANnL)<KsL, therefore
(ANL)«<sM . Also, since %singular . Thus M=Y and so % K % . Therefore , M is strongly hollow-§-lifting.m

Proposition(2.7):-Let M be an R-module. Then the following statements are equivalent:
1. Miis strongly hollow-§-lifting module.

2. Evrey submodule A of M with % hollow, can be written as A=B@S with B is a fully invariant direct summand
of M and S« sM.

3. Every submodule A of M with % hollow, can be written as A=B+S with B is a fully invariant direct summand of
M and S« s M.

Proof:- (1=2). Let A be a submodule of M with % hollow. Since M is strongly hollow-3-lifting, then there is a

fully invariant direct summand B of M such that BEA and % Ls %. Let M=B@®L, where L be a submodule of M. By

modular law, A=ANM=AN(BOL)=BB(ANL). By the same argument of proposition (2.6), we have ANL<sL. Let
S=AnL, so A=B@S, where B is a fully invariant direct summand of M and S« sM.
(2=3) It is clear.

(3=1).Let A be a submodule of M with % hollow. From(3),A=B+S, where B is a fully invariant direct summand of
M and S&sM. Let M=B@L,where L be a submodule of M. Let % + g = % such that % singular ,then M=A+Y and

S0 M=B+S+Y=S+Y. Since % singular and since S«sM therefore M=Y. Hence %«5 % and so M is strongly
hollow-§-lifting. m

Proposition(2.8):- Let M=N@®K be a duo module such that N and K are strongly hollow-§-lifting modules. Then M
is strongly hollow-§-lifting.

Proof:-Let M=N@®K be a duo module and let B be a submodule of M with % hollow. Now, % = N% = %@K%
ince X M_N®B NOB . N_ N i i
by[5,lemma(2.2.12)]. Since = hollow we can assume that ST, S0 = and hence Y hollow. Since B is

fully invariant submodule of M, then B=(BNN)@® (BNK) by [8]. Since N and K are strongly hollow-§-lifting. Thus
BNN=H;®L;, where H; is a fully invariant direct summand of N and L; «sN. In the same way ,we have
BNK=H,®L,,where H, is a fully invariant direct summand of K andL, < sK. Then B=H@®L,where H=H,;@®H, is a
fully invariant direct summand of M and L=L;®L, <5 M and hence M=N@®K is strongly hollow-§-lifting. By
proposition(2.7). &
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