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The effects of deformation on the bulk modulus and compressibility of 

different elemental metals were computed and studied based on 

pseudopotential formalism. The electron density parameters of 

deformed metals under the application of different strains were 

obtained for different metals. The poison ratio relating the transversal 

compression to elongation in the direction of applied deformation for 

different elemental metals were computed using elastic moduli for 

homogeneous isotropic material and used in this work. The results 

obtained revealed that there is a good agreement between the computed 

and experimental value of the bulk modulus and compressibility of 

metals. There is high concentration of electron in the high density 

region than in the low density region for the bulk modulus and 

compressibility of metals these seems to suggest that the bulk modulus 

and compressibility of metals depend on  the density of valence 

electron in metals. The bulk modulus of all the metals investigated 

decreases as deformation increases. These could be due to reduction in 

electron compressible rate, fracture density and increase in inter atomic 

distance between the electrons in the metals. The effect of deformation 

is more pronounced on the polyvalent metals than in alkaline metals 

these could be due to the high electronic concentration and high 

electronic energy level of the free atom in the alkaline metal. 

Compressibility increases with an increase in deformation for all the 

metals investigated. These could be due to an increase in the collision 

between the interacting electrons in metals which forces the 

compressibility of the electron in metals to increase as deformation 

increases. 
 

                  Copy Right, IJAR, 2017,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
The simplest model for describing electrons in solid is to assume that the valence electrons of an atom in solids are 

free to move anywhere throughout the volume of the material but are not allowed to leave (Pillai, 2010). The electric 

and magnetic properties of solids are mainly determined by the properties of electrons in them, the energy levels of 

electrons hold the key to the properties of solids (Solymar and Walsh, 1984).The electrons in solid behave as a 

delocalized gas of free electrons (Elliot, 1999). 
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 Pseudopotential approach in a way gives organizing experimental and computational information about conduction 

electrons in solid in a compact and physical form (Marder, 2000).The goal of pseudopotential theory is to obtain the 

key physical properties of solids by dealing with only the valence electrons (Kiejna, 1993). Transport processes in 

solids leads to electrical conductivity, thermal conductivity, thermal resistivity etc. These are affected by electron–

electron, electron-impurity and electron-phonon scattering. Carriers in conductors move in a definite direction under 

applied fields and temperature gradients (Duan and Guojun, J.2005) 

 

The bulk modulus of solid is a measure of its resistance to uniform compression and is defined as the ratio of the 

infinitesimal pressure increase to the resulting relative decrease in volume (Animalu, 1977). Bulk modulus is 

a thermodynamic quantity, and is specify by how the temperature varies during compression (Kittel, 1976). 

Compressibility is determined by the second derivative of the total energy with respect to the volume and can also 

be express as the reciprocal of the bulk modulus of solids (Kukkonen and Wilkins, 1979). The compressibility sum 

rule expresses the self-consistency condition that the static response of the system to the long-wavelength 

perturbation is equal to the compressibility where the density dependent ground state energy obtained via the Monte 

Carlo method is used to determine the compressibility via thermodynamic relations. (Iwamoto, 1999).  

 

Deformation is the change in shape or size of solid (Backofen, 1972). A solid body is deform when a stress is 

applied to it, all solid materials exhibit nearly Hookean behaviour for small enough strain or stress (Borg,1990). 

When a material is subjected to external forces its behaviour depends not only on the magnitudes of the forces and 

the inherent strength of the material itself but also on the way the forces are applied and combined. The particular 

combination of forces may cause the material to deform elastically or plastically. The amount of deformation 

depends on knowing the intensity of the forces at all points throughout the material (Hugh Ford and Alexander, 

1977).  Metals can be deformed by compressive, tensile and torsion force. During deformation, atoms at the surface 

and interior of metals changes together with their atomic distance depending on the metallic surface area that is 

subjected to different deformation. The contact potential difference on the metal surface also changes during 

deformation (Borg, 1990).  

 

Over the years, the bulk modulus and the electron compressibility of solids has been studied both theoretically and 

experimentally. Osiele and Edenma, (2009) developed a model for computing the bulk modulus of metals based on 

the theory of structureless pseudopotential. The results obtained revealed that the calculated and experimental bulk 

modulus of metals varies in the same manner with experimental values. Ling and Gelatt(1981) used a local 

pseudopotential constructed from the bulk stability condition alone to calculate the shear and bulk moduli of 19 

simple metals. They also studied the chemical trends in the elastic modulus of the simple metals and calculated the 

ratio of shear modulus to bulk modulus, the result obtained was in good agreement with experimental value. Vackar 

et al, (1998) developed the all-electron pseudopotential model and used it to calculate the lattice constant and bulk 

modulus of silicon, diamond, non-magnetic cobalt, cubic TiC and hexagonal TiS. The results they got were in 

satisfactory agreement with experimental values. Osiele et al (2011) develop a model for computing thermal 

resistivity, compressibility ratio and screening parameter of metals based on free electron theory. The result obtained 

revealed that thermal resistivity of metals increases with an increase in the electron gas parameter. While the 

compressibility ratio of metals decreases with an increase in the electron gas parameter. On the screening parameter, 

the thermal resistivity also increases with an increase in the screening parameter while the compressibility ratio 

decreases with an increase in the screening parameter. Keijna and Pogosov, (2000) experimentally investigate the 

effect of deformation on electronic properties of some metals by measuring directly a sample of deformed metal 

using kelvin method. They observed that the contact potential difference of metals decreases when tensed and 

increases when compressed. Adeshakin and Osiele (2012) computed the surface energy and surface stress of 

deformed metals based on the structureless pseudopotential formalism. The results obtained revealed that 

deformation causes a reduction of surface energy and this reduction is more pronounced in simple and alkaline 

metals. Tensile stress is present in most metallic surfaces whose surface stress were computed, although a few 

metals possess compressive stress on their surfaces. In the presence of deformation, the surface stress of some 

metals decreases, while deformation causes an increase in the surface stress of some metals. Adesakin, (2016) 

develop a model to compute the electrical conductivity of different elemental metals based on pseudopotential 

formalism. The results obtained revealed that there is a good agreement between the computed and experimental 

value of the electrical conductivity of metals. There is high concentration of electron in the high density region than 

the low density region. The electrical conductivity of metals decreases as deformation (strains) increases for all the 

metals investigated. The effect of deformation is more pronounced on the electrical conductivity of noble and 

transition metals than in alkaline metals. 

https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Thermodynamic
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In this work the structureless pseudopotential is extended to the study of the effects of linear deformation on the 

Bulk modulus and compressibility of some metals. This will give an insight into how the Bulk modulus and 

compressibility of metals changes with deformation. The metals were chosen based on their technological and 

industrial applications and availability of some physical constants of metals that is required for computation.  

 

Theory And Calculations:- 

Electrons are quantum not classical particles and so the allowed electronic states must be the solutions of the 

Schrodinger equation which in the general (non-relativistic) case where the potential energy V is a function of both 

space and time is: 

ħ
2

2𝑚𝑒
𝛻2ѱ 𝑟, 𝑡 + 𝑉 𝑟, 𝑡 ѱ 𝑟, 𝑡 = 𝑖ħ

𝜕

𝜕𝑡
 ѱ 𝑟, 𝑡                                   2.1  

 

Where 𝑚𝑒  is the electron mass, ħ is the normalised Planck’s constant and ѱ 𝑟, 𝑡  is the electron wavefunction. 

The energy functional of the system of interacting electron in an external potential arising from the interaction with 

ions represented by a local pseudopotential ϕ can be expressed as a functional of the valence electronic density as 

 𝐸 𝑛 = 𝑇𝑠 𝑛 + 𝐸𝑥𝑐  𝑛 +
1

2
 𝑑3𝑟 𝑑3𝑟′

𝑛 𝑟 𝑛 𝑟 ′ 

 𝑟′ − 𝑟 
+  𝑑3𝑟 𝜙  𝑟 − 𝑅𝑖  𝑛 𝑟 

+
1

2
 

𝑍2

 𝑅𝑖 − 𝑅𝑗  
                                                                              2.2 

𝑖

 

 

where the first three terms represents the kinetic, exchange-correlation and electrostatic energy of the interacting 

system. The two last terms describes the interaction of electrons with the ions at sites 𝑅𝑖  via a pseudopotential, ϕ and 

the Coulomb interaction between the ions. 

The total energy required to assemble the valence electrons and ions to form the solid which is the binding energy is 

  𝐸 = 𝑇𝑠 𝑛 + 𝐸𝑥𝑐 + 𝑊𝑅 + 𝐸𝑚                                                                          2.3  
 

Where 𝑇𝑠  is the kinetic energy, 𝐸𝑥𝑐  is the sum of the exchange and correlation energies, 𝑊𝑅  is the average value of 

the non-Coulombic part of the pseudopotential and 𝐸𝑚  is the Madelung energy of points ions embedded in a 

uniform negative background. 

Based on the density functional theory in the low density limit, the kinetic and exchange energies are given as 

(Kiejna and Wojciechowski, 1996) 

𝑇𝑠 =
1.105

𝑟𝑠2
𝑎𝑛𝑑 𝐸𝑥𝑐 =

−0.458

𝑟𝑠
                                                                      2.4  

 

Where 𝑟𝑠 is the electron density parameter, which is describe as the radius of a sphere containing one electron on the 

average. 

The correlation energy used in this work is that of Carperly and Alder as parameterised by Perdew and Zunger and 

is given as 

 𝐸𝑐 =
−0.1423

1 + 1.0529𝑟𝑠
2 + 0.3334𝑟𝑠

                                                                               2.5  

From equation (2.3), the binding energy is 

     𝐸 =
1.105

𝑟𝑠2
−

0.458

𝑟𝑠
−

0.1423

1 + 1.0529𝑟𝑠2 + 0.3334𝑟𝑠
+ 𝑊𝑅 + 𝐸𝑚                      2.6  

The average value of the repulsive part of the pseudopotential is 

𝑊𝑅 =
𝑛

2
 𝑑𝑟𝑊𝑅 𝑟 =

𝑛𝑎𝑣
2

 4𝜋 𝑟2
𝑍

𝑟
𝑑𝑟 = 2𝜋𝑛𝑎𝑣𝑟𝑐                                         2.7  

Where 𝑛𝑎𝑣  is the average density of the electron. 

The self-energy of the electrostatic interaction average over the whole Wigner-Seitz sphere is 

𝐸𝑒𝑠 =

1
2 𝑉

 𝑟 4𝜋 𝑟2𝑑𝑟

4𝜋𝑟0
3

3

=
3𝑍

5𝑟0
                                                                                   2.8  

The factor of half is to avoid double counting. The positive contributions are compensated for by the negative 

energy of the electrons interacting with the uniform positive background. 
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The Medelung energy for a jellium system is given by (Perdew and Zunger, 1981) as 

𝐸𝑚 =
−3𝑍

2𝑟0
+ 𝐸𝑒𝑠 =

−9𝑍

10𝑟0
                                                                                          2.9  

Where 𝑟0 = 𝑍
1

3 𝑟𝑠 . Substituting equation (2.7) and (2.9) into (2.8), the binding energy according to the structureless 

pseudopotential model is obtain as 

𝐸 =
1.105

𝑟𝑠2
−

0.458

𝑟𝑠
−

0.1423

1 + 1.0529𝑟𝑠2 + 0.3334𝑟𝑠
+ 2𝜋𝑛𝑟𝑐 −

9𝑍

10𝑟0
                2.10  

But 𝑟0 = 𝑍
1

3 𝑟𝑠 , and 𝑛 = 4𝜋
𝑟𝑠

3 , hence 

𝐸 =
1.105

𝑟𝑠2
−

0.458

𝑟𝑠
−

0.1423

1 + 1.0529𝑟𝑠2 + 0.3334𝑟𝑠
+

3𝑟𝑐
2

2𝑟𝑠3
−

9𝑍
2

3 

10𝑟𝑠
                2.11  

Where 𝑟𝑠 is the electron density parameter of metals and 𝑟𝑐  is the Ashcroft core radius given as (Perdew,et, al, 1990) 

𝑟𝑐 =  
−2

15
 

9𝜋

4
 

2
3 

𝑟𝑠 +
1

6𝜋
 

9𝜋

4
 

1
3 

𝑟𝑠
2 +

1

5
𝑍

2
3 𝑟𝑠

2 +
2

9
𝑟𝑠

4
𝑑𝐸𝑐
𝑑𝑟𝑠

 

1
2 

                 2.12  

Where 𝐸𝑐  is the correlation energy given by equation (2.5) 

Since the conduction electrons in a solid is being treated as a gas of particles, albeit a quantum gas, they will exert a 

pressure given at zero kelvin by (Pillai, 2010) 

𝑃 = − 
𝜕𝐸

𝜕𝑉
 
𝑁

                                                                                                              (2.13) 

Since it is assumed that the potential energy is zero, the origin of the pressure is regarded as being due to the 

repulsion experienced by electrons caused by the Pauli Exclusion Principle, when they are compressed and tend to 

occupy the same region space.  

The bulk modulus which measures resistance to structure preserving volume-changing for an underformed metal is 

(Ling and Gelatt, 1981) 

 𝐵 = −𝑉  
𝜕𝑝

𝜕𝑣
 
𝑇,𝑁

=
1

12𝜋
 

1

𝑟𝑠2

𝜕2𝐸

𝜕𝑟𝑠2
−

2

𝑟𝑠2

𝜕𝐸

𝜕𝑟𝑠
                                                      (2.14) 

While compressibility for an undeformed metals is obtained as 

 𝜏 =
1

1

12𝜋
 

1

𝑟𝑠2
𝜕2𝐸

𝜕𝑟𝑠2−
2

𝑟𝑠2
𝜕𝐸

𝜕𝑟𝑠
 
         (2.15)  

     

Considering only the kinetic energy of the free-electron for which 𝑃 ∝ 𝑉
−5

3 , the zero kelvin electronic contribution 

to the bulk modulus is (Elliott, 1997) 

𝐵𝐾𝐸 =
0.586

𝑟𝑠5
 𝑎. 𝑢                                                                                                       2.16  

The compressibility of the uniform electron gas is determined by the second derivative of the total energy with 

respect to volume 

𝐾 =  𝑉
𝜕2𝐸

𝜕𝑉2
 

−1

                                                                                                         2.17  

The compressibility of the ratio of the non-interacting electron gas 𝐾𝑓𝑟𝑒𝑒  to that of the interacting electron gas K is 

given as (Bowen Etal, 1974) 
𝐾𝑓𝑟𝑒𝑒
𝐾

=  1 −
4

𝜋
∝ 𝑟𝑠

1

4

𝜋𝛼

24
𝑟𝑠

5
𝑑

𝑑𝑟𝑠
 

1

𝑟𝑠2

𝑑𝐸𝑐
𝑑𝑟𝑠

                                                           2.18  

Where 𝑟𝑠 is the electron density parameter, ∝=  4
9𝜋  

1
3 
 and 𝐸𝑐  is the correlation energy per electron which is 

given by equation (2.5) 

For a deformed metal, the average electron density parameter of metal is 

𝑟𝑠𝑢 = 𝑟𝑠 1 +  1 − 2𝑣 𝑈𝑥𝑥  
1

3                                                                                 2.19  
where 𝑣 is the Poisson ratio relating the transversal compression to elongation in the direction of applied 

deformation and 𝑈𝑥𝑥 is the uniaxial strain. 

The bulk modulus and the compressibility of the deformed solid at absolute zero is given by 

𝛽 =
1

12𝜋
 

1

𝑟𝑠𝑢 2

𝜕2𝐸

𝜕𝑟𝑠𝑢 2
−

2

𝑟𝑠𝑢 2

𝜕𝐸

𝜕𝑟𝑠𝑢
                                                                            2.20  
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and 

ɣ =
1

𝛽
=

1

1
12𝜋  

1
𝑟𝑠𝑢 2

𝜕2𝐸
𝜕𝑟𝑠𝑢 2 −

2
𝑟𝑠𝑢 2

𝜕𝐸
𝜕𝑟𝑠𝑢

 
                                                                         (2.21) 

 

This study generalized the work of Kiejna and Pogosov (2000) due to the shortcomings of the electron density 

parameter of deformed metals. They failed to account for metal dilation by assuming a constant value for the 

Poisson ratio of metals which leads to neglect of the uniaxial strain in their computation. In this work, the Bulk 

modulus and electron compressibility of deformed metals were computed using equation (2.20) and (2.21) and how 

deformation affects these properties of metals is studied. Also the variations of Bulk modulus and electron 

compressibility with electron density parameters were computed and studied using equation (2.14) and (2.15).  

 

Results And Discussion:- 
Figure 1 shows the variation of bulk modulus with electron density parameter for some monovalent, divalent, 

trivalent and polyvalent metals. Figure 1 revealed that there is high concentration of electron in the high density 

region than the low density region for both computed and experimental values of the bulk modulus. These seem to 

suggest that the higher the density of valence electron and the electronic concentration of metal the higher the bulk 

modulus and the lower the density of valence electron and electronic concentration of metal the lower the bulk 

modulus. In the high density region we have the alkaline metals and in the lower density region we have the noble 

and inner transition metals. Although, the bulk modulus of metals in figure 1 seems not to exhibit a particular trend 

and these could be due to the fact that there are some basic properties that contribute to the bulk modulus of metals 

that the model does not take into consideration such as the nature of chemical bonding, impurity atom and atomic 

size of the metals. The trend exhibited by metals in figure 1 revealed that there is an agreement between the 

computed and experimental values of the bulk modulus. This is more pronounce in some of the metals the high 

density region. The experimental value of the bulk modulus used in these work is obtained from solid state Physics 

by Kittel (1976). Figure 2 shows the variation of compressibility with electron density parameter for group one, 

group two, group three and transition metals. The trend exhibited by metals in figure 2 seems to be linear and exhibit 

a neither increase nor decrease in compressibility for metals the high density region but towards where rs≥ 2.75 a.u 

there is a clear increase in the compressibility of the metals as we go from one metals to another. The trend exhibited 

by metals in figure 2 shows that compressibility is truly the inverse of bulk modulus. Figure 2 revealed that metals in 

the high density region have low compressibility while metals in the low density region have high compressibility. 

These could be due to the variable valence electron contribution in the solid and the nature of their electronic state 

structure. 

 

Figure 3 shows the variation of bulk modulus with deformation for some monovalent, divalent, trivalent and 

polyvalent metals. Figure 3 revealed that the bulk modulus of all the metals investigated decreases with an increase 

in deformation. These could be due to reduction in electron compressible rate, fracture density and the pressure 

increase during deformation. The trend exhibited by metals in figure 3 shows that potassium has the lowest bulk 

modulus while molybdnum were found to be having the highest bulk modulus among all the metals subjected to 

different deformation. These could be due to the high electronic concentration, high equilibrium distance between 

the electron and high electronic energy level of the free atom in the alkaline metal that cause the bulk modulus of 

potassium to be the least affected among all the metals subjected to different deformation. Figure 3 also revealed 

that metals in the high density region has high bulk modulus while metals in the low density region were found to be 

having low bulk modulus among all the metals subjected to different deformation.  These seems to suggest that as 

deformation increase the pressure and the atomic volume of the metals increases and thereby reduces the strength of 

interaction between the electron which forces the bulk modulus of  the metals to decrease as deformation increases. 

Furthermore, the trend exhibited by metals in figure 3 revealed that as deformation increases, there is an increase in 

the electron temperature due to delocalisation as these may cause a decrease in some of the elastic properties that the 

bulk modulus of metals depend upon.  

 

Figure 4 shows the variation of compressibility with deformation for some metals containing group one, group two, 

group three and transition metals. Figure 4 revealed that the electron compressibility increase with an increase in 

deformation for all the metals investigated. These seems to suggest that as deformation increases the collision and 

temperature between the interacting electron in metals increases and their by forces the compressibility of the 

electron in metals to increase as deformation increases.  Figure 4 also revealed that metals in the high density region 

has low compressibility while metals in the low density region has high compressibility, these could be due to the 
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change in the electronic energy level of the free atoms in the solid that causes the number of valence electrons per 

unit cell to occupy more sites during deformation which result to an increase in the compressibility as deformation 

increases. Among all the metals subjected to different deformation, potassium has the highest compressibility; this 

could be due to the high density of the free valence electron, compression factor and electronic concentration in the 

metal. The trend exhibit by metals in figure 3 and 4 revealed that the bulk modulus and compressibility of metals is 

strongly affected by deformation.  

 
Figure 1:-Variation of Bulk Modulus with Electron Density Parameter for Undeformed Metals. 

 

 
Figure 2:- Variation of Compressibility with Electron Density Parameter for Undeformed Metals 
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Figure 3:- Variation of Bulk Modulus with Deformation for some Metals 

 

 
 

 
Figure 4:- Variation of Compressibility with Deformation for Some Metals. 
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Table 1: Bulk modulus of Deformed Metals (Nm
-2

) 

                                                           Strain 

Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

K 4.96 0.0268 0.0236 0.0210 0.0188 0.0170 0.0155 0.0142 0.0131 0.0122 

Cu 2.67 0.281 0.248 0.221 0.200 0.181 0.166 0.152 0.141 0.131 

Ag 3.02 0.178 0.157 0.140 0.126 0.114 0.104 0.0958 0.0884 0.0821 

Be 1.87 1.636 1.445 1.291 1.164 1.058 0.967 0.890 0.823 0.765 

Mg 2.65 0.443 0.390 0.347 0.312 0.283 0.258 0.237 0.219 0.203 

Cr 1.86 1.688 1.474 1.317 1.187 1.079 0.987 0.908 0.840 0.780 

Fe 2.12 1.027 0.906 0.808 0.728 0.661 0.604 0.555 0.513 0.476 

Ni 2.07 1.123 0.991 0.884 0.796 0.723 0.661 0.607 0.561 0.521 

Zn 2.31 0.745 0.656 0.585 0.526 0.477 0.436 0.401 0.370 0.343 

Cd 2.59 0.483 0.425 0.379 0.341 0.309 0.282 0.259 0.239 0.222 

Al 2.07 1.469 1.294 1.152 1.036 0.939 0.857 0.787 0.727 0.674 

Bi 2.25 0.525 0.465 0.416 0.376 0.342 0.313 0.289 0.267 0.248 

Ti 1.92 1.952 1.720 1.533 1.379 1.251 1.142 1.049 0.969 0.899 

Y 2.61 0.607 0.533 0.474 0.426 0.385 0.351 0.322 0.297 0.276 

Sn 2.22 1.360 1.195 1.061 0.594 0.864 0.788 0.723 0.667 0.618 

Pb 2.30 1.187 1.043 0.927 0.832 0.754 0.687 0.630 0.581 0.539 

Mo 1.61 6.107 5.372 4.781 4.296 3.892 3.551 3.259 3.008 2.789 

W 1.62 5.260 4.630 4.123 3.707 3.360 3.067 2.817 2.600 2.412 

Au 2.39 1.183 1.039 0.923 0.828 0.749 0.683 0.626 0.577 0.535 

Pt 2.00 2.028 1.784 1.587 1.426 1.292 1.179 1.082 0.998 0.926 

Ta 2.84 0.750 0.658 0.584 0.523 0.473 0.431 0.394 0.363 0.336 

 

Table 2: Compressibility of Deformed Metals (m
2
N) 

                                                           Strain 

Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

K 4.96 37.259 42.419 47.725 53.169 58.742 64.439 70.253 76.179 82.212 

Cu 2.67 3.561 4.033 4.517 5.012 5.518 6.034 6.559 7.094 7.638 

Ag 3.02 5.632 6.388 7.163 7.957 8.769 9.597 10.442 11.301 12.175 

Be 1.87 0.611 0.692 0.775 0.859 0.946 1.033 1.123 1.215 1.308 

Mg 2.65 2.257 2.565 2.881 3.205 3.536 3.875 4.220 4.571 4.929 

Cr 1.86 0.599 0.678 0.759 0.842 0.927 1.013 1.101 1.191 1.282 

Fe 2.12 0.973 1.104 1.237 1.374 1.514 1.657 1.802 1.950 2.101 

Ni 2.07 0.891 1.009 1.131 1.256 1.384 1.514 1.647 1.782 1.919 

Zn 2.31 1.343 1.524 1.710 1.900 2.095 2.294 2.496 2.703 2.913 

Cd 2.59 2.069 2.351 2.640 2.936 3.239 3.549 3.865 4.187 4.514 

Al 2.07 0.681 0.773 0.868 0.965 1.065 1.167 1.270 1.376 1.483 

Bi 2.25 1.904 2.151 2.403 2.661 2.924 3.193 3.466 3.744 4.026 

Ti 1.92 0.512 0.581 0.652 0.725 0.800 0.876 0.953 1.032 1.112 

Y 2.61 1.649 1.876 2.110 2.350 2.595 2.846 3.102 3.362 3.628 

Sn 2.22 0.735 0.837 0.941 1.048 1.157 1.269 1.383 1.499 1.618 

Pb 2.30 0.843 0.959 1.079 1.201 1.327 1.455 1.586 1,720 1.856 

Mo 1.61 0.164 0.186 0.209 0.233 0.257 0.282 0.307 0.332 0.359 

W 1.62 0.190 0.216 0.243 0.270 0.298 0.326 0.355 0.385 0.415 

Au 2.39 0.845 0.963 1.084 1.208 1.335 1.465 1.597 1.733 1.870 

Pt 2.00 0.493 0.561 0.630 0.701 0.774 0.848 0.924 1.002 1.0804 

Ta 2.84 1.333 1.520 1.713 1.912 2.115 2.323 2.535 2.752 2.972 
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Table 3: Calculated Bulk Modulus and Compressibility of Undeformed Metals and their Experimental values 

obtained from Kittel (1976) 

Metals rs(a.u) Cal. Bulk Modulus 

Nm
-2 

x 10
11

 

Exp. Bulk Modulus 

Nm
-2 

x 10
11 

 

Cal. Compressibility 

x 10
-11

m
2
N 

Exp. Compressibility  

x 10
-11 

m
2
N 

K 4.96 0.031 0.032 32.25 31.00 

Cu 2.67 0.322 1.37 3.10 0.73 

Ag 3.02 0.204 1.007 4.90 0.99 

Be 1.87 1.876 1.003 0.53 1.00 

Mg 2.65 0.511 0.354 1.96 2.82 

Cr 1.86 1.914 1.901 0.52 0.53 

Fe 2.12 1.181 1.683 0.85 0.59 

Ni 2.07 1.290 1.86 0.78 0.54 

Zn 2.31 0.857 0.598 1.17 1.67 

Cd 2.59 0.557 0.467 1.80 2.14 

Al 2.07 1.693 0.722 0.59 1.39 

Bi 2.25 0.601 0.315 1.66 3.17 

Ti 1.92 2.247 1.051 0.45 0.95 

Y 2.61 0.700 0.366 1.43 2.73 

Sn 2.22 1.570 1.11 0.64 0.90 

Pb 2.30 1.370 0.430 0.73 2.33 

Mo 1.61 7.042 2.725 0.14 0.37 

W 1.62 6.060 3.232 0.17 0.31 

Au 2.39 1.367 1.732 0.73 0.99 

Pt 2.00 2.339 2.783 0.43 0.36 

Ta 2.84 0.869 2.00 1.15 0.50 

 

Conclusion:- 
In this work, a generalized approach for computing and studying the effect of linear deformation on bulk modulus 

and compressibility of metals based on the structureless pseudopotential formalism is presented. The results 

obtained for bulk modulus and compressibility of undeformed metals were in agreement with the experimental 

values which shows the validity of the model used in the computation. There is high concentration of electron in the 

high density region than the low density region for both computed and experimental values of the bulk modulus. 

Metals in the high density region have low compressibility while metals in the low density region have high 

compressibility. These could be due to the variable electron contribution in the solid and the nature of their 

electronic state structure. The bulk modulus and compressibility of metals is strongly affected by deformation due to 

the trend exhibited by different metals during deformation (strain).  
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