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1. Introduction:-  

For better or for worse, science has long been married to mathematics. Generally it has 

been for the better. Especially since the days of Galileo and Newton, math has nurtured science. 

Rigorous mathematical methods have secured science‟s fidelity to fact and conferred a timeless 

reliability to its findings.During the past century, though, a mutant form of math has deflected 

science‟s heart from the modes of calculation that had long served so faithfully. Science was 

seduced by statistics, the math rooted in the same principles that guarantee profits for Las Vegas 

casinos. Supposedly, the proper use of statistics makes relying on scientific results a safe bet. But 

in practice, widespread misuse of statistical methods makes science more like a crapshoot.  

Its science‟s dirtiest secret: The “scientific method” of testing hypotheses by statistical analysis 

stands on a flimsy foundation. Statistical tests are supposed to guide scientists in judging whether 

an experimental result reflects some real effect or is merely a random fluke, but the standard 

methods mix mutually inconsistent philosophies and offer no meaningful basis for making such 

decisions. Even when performed correctly, statistical tests are widely misunderstood and 

frequently misinterpreted. As a result, countless conclusions in the scientific literature are 

erroneous, and tests of medical dangers or treatments are often contradictory and confusing.  

Replicating a result helps establish its validity more securely, but the common tactic of 

combining numerous studies into one analysis, while sound in principle, is seldom conducted 

properly in practice.  

Experts in the math of probability and statistics are well aware of these problems and have for 

decades expressed concern about them in major journals. Over the years, hundreds of published 

papers have warned that science‟s love affair with statistics has spawned countless illegitimate 

findings. In fact, if you believe what you read in the scientific literature, you shouldn‟t believe 

what you read in the scientific literature. Corresponding Author:-Vinay Kumar. 

Address:- Department of Statistics M.D. University, Rohtak(Haryana)-124001. 
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“There is increasing concern,” declared epidemiologist John Ioannidis in a highly cited 2005 

paper in PLoS Medicine, “that in modern research, false findings may be the majority or even the 

vast majority of published research claims.”Ioannidis claimed to prove that more than half of 

published findings are false, but his analysis came under fire for statistical shortcomings of its 

own. “It may be true, but he didn‟t prove it,” says biostatistician Steven Goodman of the Johns 

Hopkins University School of Public Health. On the other hand, says Goodman, the basic 

message stands. “There are more false claims made in the medical literature than anybody 

appreciates,” he says. “There‟s no question about that.”  

Nobody contends that all of science is wrong, or that it hasn‟t compiled an impressive array of 

truths about the natural world. Still, any single scientific study alone is quite likely to be 

incorrect, thanks largely to the fact that the standard statistical system for drawing conclusions is, 

in essence, illogical. “A lot of scientists don‟t understand statistics,” says Goodman. “And they 

don‟t understand statistics because the statistics don‟t make sense.” 

2. Statistical insignificance 

Nowhere are the problems with statistics more blatant than in studies of genetic 

influences on disease. In 2007, for instance, researchers combing the medical literature found 

numerous studies linking a total of 85 genetic variants in 70 different genes to acute coronary 

syndrome, a cluster of heart problems. When the researchers compared genetic tests of 811 

patients that had the syndrome with a group of 650 (matched for sex and age) that didn‟t, only 

one of the suspect gene variants turned up substantially more often in those with the syndrome 

— a number to be expected by chance.  

“Our null results provide no support for the hypothesis that any of the 85 genetic variants tested 

is a susceptibility factor” for the syndrome, the researchers reported in the Journal of the 

American Medical Association. How could so many studies be wrong? Because their conclusions 

relied on “statistical significance,” a concept at the heart of the mathematical analysis of modern 

scientific experiments. Statistical significance is a phrase that every science graduate student 

learns, but few comprehend. While its origins stretch back at least to the 19th century, the 

modern notion was pioneered by the mathematician Ronald A. Fisher in the 1920s. His original 

interest was agriculture. He sought a test of whether variation in crop yields was due to some 

specific intervention (say, fertilizer) or merely reflected random factors beyond experimental 

control.  

Fisher first assumed that fertilizer caused no difference — the “no effect” or “null” hypothesis. 

He then calculated a number called the P value, the probability that an observed yield in a 

fertilized field would occur if fertilizer had no real effect. If P is less than .05 — meaning the 

chance of a fluke is less than 5 percent - the result should be declared “statistically significant,” 

Fisher arbitrarily declared, and the no effect hypothesis should be rejected, supposedly 

confirming that fertilizer works. Fisher‟s P value eventually became the ultimate arbiter of 

credibility for science results of all sorts - whether testing the health effects of pollutants, the 

curative powers of new drugs or the effect of genes on behaviour. In various forms, testing for 

statistical significance pervades most of scientific and medical research to this day.But in fact, 

there‟s no logical basis for using a P value from a single study to draw any conclusion. If the 

chance of a fluke is less than 5 percent, two possible conclusions remain: There is a real effect, 

or the result is an improbable fluke. Fisher‟s method offers no way to know which is which. On 

the other hand, if a study finds no statistically significant effect, that doesn‟t prove anything, 
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either. Perhaps the effect doesn‟t exist, or maybe the statistical test wasn‟t powerful enough to 

detect a small but real effect. “That test itself is neither necessary nor sufficient for proving a 

scientific result,” asserts Stephen Ziliak, an economic historian at Roosevelt University in 

Chicago. 

Soon after Fisher established his system of statistical significance, it was attacked by other 

mathematicians, notably Egon Pearson and Jerzy Neyman. Rather than testing a null hypothesis, 

they argued, it made more sense to test competing hypotheses against one another. That approach 

also produces a P value, which is used to gauge the likelihood of a “false positive” - concluding 

an effect is real when it actually isn‟t. What eventually emerged was a hybrid mix of the 

mutually inconsistent Fisher and Neyman-Pearson approaches, which has rendered 

interpretations of standard statistics muddled at best and simply erroneous at worst. As a result, 

most scientists are confused about the meaning of a P value or how to interpret it. “It‟s almost 

never, ever, ever stated correctly, what it means,” says Goodman. 

Correctly phrased, experimental data yielding a P value of .05 means that there is only a 5 

percent chance of obtaining the observed (or more extreme) result if no real effect exists (that is, 

if the no-difference hypothesis is correct). But many explanations mangle the subtleties in that 

definition. A recent popular book on issues involving science, for example, states a commonly 

held misperception about the meaning of statistical significance at the .05 level: “This means 

that it is 95 percent certain that the observed difference between groups, or sets of samples, is 

real and could not have arisen by chance.”  

That interpretation commits an egregious logical error (technical term: “transposed conditional”): 

confusing the odds of getting a result (if a hypothesis is true) with the odds favouring the 

hypothesis if you observe that result. A well-fed dog may seldom bark, but observing the rare 

bark does not imply that the dog is hungry. A dog may bark 5 percent of the time even if it is 

well-fed all of the time. (See Box 2) 

Another common error equates statistical significance to “significance” in the ordinary use of the 

word. Because of the way statistical formulas work, a study with a very large sample can detect 

“statistical significance” for a small effect that is meaningless in practical terms. A new drug 

may be statistically better than an old drug, but for every thousand people you treat you might 

get just one or two additional cures — not clinically significant. Similarly, when studies claim 

that a chemical causes a “significantly increased risk of cancer,” they often mean that it is 

just statistically significant, possibly posing only a tiny absolute increase in risk. Statisticians 

perpetually caution against mistaking statistical significance for practical importance, but 

scientific papers commit that error often. Ziliak studied journals from various fields — 

psychology, medicine and economics among others — and reported frequent disregard for the 

distinction. 

“I found that eight or nine of every 10 articles published in the leading journals make the fatal 

substitution” of equating statistical significance to importance, he said in an interview. Ziliak‟s 

data are documented in the 2008 book The Cult of Statistical Significance, co-authored with 

Deirdre McCloskey of the University of Illinois at Chicago. 

3. Multiplicity of mistakes 

Even when “significance” is properly defined and P values are carefully calculated, statistical 

inference is plagued by many other problems. Chief among them is the “multiplicity” issue - the 

https://www.sciencenews.org/article/odds-are-its-wrong#box2
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testing of many hypotheses simultaneously. When several drugs are tested at once, or a single 

drug is tested on several groups, chances of getting a statistically significant but false result rise 

rapidly. Experiments on altered gene activity in diseases may test 20,000 genes at once, for 

instance. Using a P value of .05, such studies could find 1,000 genes that appear to differ even if 

none are actually involved in the disease. Setting a higher threshold of statistical significance 

will eliminate some of those flukes, but only at the cost of eliminating truly changed genes from 

the list. In metabolic diseases such as diabetes, for example, many genes truly differ in activity, 

but the changes are so small that statistical tests will dismiss most as mere fluctuations. Of 

hundreds of genes that misbehave, standard stats might identify only one or two. Altering the 

threshold to nab 80 percent of the true culprits might produce a list of 13,000 genes - of which 

over 12,000 are actually innocent. 

Recognizing these problems, some researchers now calculate a “false discovery rate” to warn of 

flukes disguised as real effects. And genetics researchers have begun using “genome-wide 

association studies” that attempt to ameliorate the multiplicity issue.Many researchers now also 

commonly report results with confidence intervals, similar to the margins of error reported in 

opinion polls. Such intervals, usually given as a range that should include the actual value with 

95 percent confidence, do convey a better sense of how precise a finding is. But the 95 percent 

confidence calculation is based on the same math as the .05 P value and so still shares some of its 

problems. 

4. Clinical trials and Errors 

Statistical problems also afflict the “gold standard” for medical research, the randomized, 

controlled clinical trials that test drugs for their ability to cure or their power to harm. Such trials 

assign patients at random to receive either the substance being tested or a placebo, typically a 

sugar pill; random selection supposedly guarantees that patients‟ personal characteristics won‟t 

bias the choice of who gets the actual treatment. But in practice, selection biases may still occur, 

Vance Berger and Sherri Weinstein noted in 2004 in Controlled Clinical Trials. “Some of the 

benefits ascribed to randomization, for example that it eliminates all selection bias, can better be 

described as fantasy than reality,” they wrote. 

Randomization also should ensure that unknown differences among individuals are mixed in 

roughly the same proportions in the groups being tested. But statistics do not guarantee an equal 

distribution any more than they prohibit 10 heads in a row when flipping a penny. With 

thousands of clinical trials in progress, some will not be well randomized. And DNA differs at 

more than a million spots in the human genetic catalog, so even in a single trial differences may 

not be evenly mixed. In a sufficiently large trial, unrandomized factors may balance out, if some 

have positive effects and some are negative. (See Box 3) Still, trial results are reported as 

averages that may obscure individual differences, masking beneficial or harmful effects and 

possibly leading to approval of drugs that are deadly for some and denial of effective treatment 

to others.  

“Determining the best treatment for a particular patient is fundamentally different from 

determining which treatment is best on average,” physicians David Kent and Rodney Hayward 

wrote in American Scientist in 2007. “Reporting a single number gives the misleading 

impression that the treatment-effect is a property of the drug rather than of the interaction 

between the drug and the complex risk-benefit profile of a particular group of patients.”  

 

https://www.sciencenews.org/article/odds-are-its-wrong#box3
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Another concern is the common strategy of combining results from many trials into a single 

“meta-analysis,” a study of studies. In a single trial with relatively few participants, statistical 

tests may not detect small but real and possibly important effects. In principle, combining 

smaller studies to create a larger sample would allow the tests to detect such small effects. But 

statistical techniques for doing so are valid only if certain criteria are met. For one thing, all the 

studies conducted on the drug must be included - published and unpublished. And all the studies 

should have been performed in a similar way, using the same protocols, definitions, types of 

patients and doses. When combining studies with differences, it is necessary first to show that 

those differences would not affect the analysis, Goodman notes, but that seldom happens. 

“That‟s not a formal part of most meta-analyses,” he says. 

Meta-analyses have produced many controversial conclusions. Common claims that 

antidepressants work no better than placebos, for example, are based on meta-analyses that do 

not conform to the criteria that would confer validity. Similar problems afflicted a 2007 meta-

analysis, published in the New England Journal of Medicine that attributed increased heart attack 

risk to the diabetes drug Avandia. Raw data from the combined trials showed that only 55 people 

in 10,000 had heart attacks when using Avandia, compared with 59 people per 10,000 in 

comparison groups. But after a series of statistical manipulations, Avandia appeared to confer an 

increased risk. 

In principle, a proper statistical analysis can suggest an actual risk even though the raw numbers 

show a benefit. But in this case the criteria justifying such statistical manipulations were not met. 

In some of the trials, Avandia was given along with other drugs. Sometimes the non-Avandia 

group got placebo pills, while in other trials that group received another drug. And there were no 

common definitions. 

“Across the trials, there was no standard method for identifying or validating outcomes; events ... 

may have been missed or misclassified,” Bruce Psaty and Curt Furberg wrote in an editorial 

accompanying the New England Journal report. “A few events either way might have changed 

the findings.”  

More recently, epidemiologist Charles Hennekens and biostatistician David DeMets have 

pointed out that combining small studies in a meta-analysis is not a good substitute for a single 

trial sufficiently large to test a given question. “Meta-analyses can reduce the role of chance in 

the interpretation but may introduce bias and confounding,” Hennekens and DeMets write in the 

Dec. 2 Journal of the American Medical Association. “Such results should be considered more as 

hypothesis formulating than as hypothesis testing.”  

These concerns do not make clinical trials worthless, nor do they render science impotent. Some 

studies show dramatic effects that don‟t require sophisticated statistics to interpret. If the P value 

is 0.0001 — a hundredth of a percent chance of a fluke — that is strong evidence, Goodman 

points out. Besides, most well-accepted science is based not on any single study, but on studies 

that have been confirmed by repetition. Any one result may be likely to be wrong, but confidence 

rises quickly if that result is independently replicated. 

“Replication is vital,” says statistician Juliet Shaffer, a lecturer emeritus at the University of 

California, Berkeley. And in medicine, she says, the need for replication is widely recognized. 

“But in the social sciences and behavioral sciences, replication is not common,” she noted in San 

Diego in February at the annual meeting of the American Association for the Advancement of 

Science. “This is a sad situation.” 
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5. Bayes watch 

Such sad statistical situations suggest that the marriage of science and math may be desperately 

in need of counseling. Perhaps it could be provided by the Rev. Thomas Bayes.  

Most critics of standard statistics advocate the Bayesian approach to statistical reasoning, a 

methodology that derives from a theorem credited to Bayes, an 18th century English clergyman. 

His approach uses similar math, but requires the added twist of a “prior probability” - in essence, 

an informed guess about the expected probability of something in advance of the study. Often 

this prior probability is more than a mere guessed -it could be based, for instance, on previous 

studies.  

Bayesian math seems baffling at first, even to many scientists, but it basically just reflects the 

need to include previous knowledge when drawing conclusions from new observations. To infer 

the odds that a barking dog is hungry, for instance, it is not enough to know how often the dog 

barks when well-fed. You also need to know how often it eats - in order to calculate the prior 

probability of being hungry. Bayesian math combines a prior probability with observed data to 

produce an estimate of the likelihood of the hunger hypothesis. “A scientific hypothesis cannot 

be properly assessed solely by reference to the observational data,” but only by viewing the data 

in light of prior belief in the hypothesis, wrote George Diamond and Sanjay Kaul of UCLA‟s 

School of Medicine in 2004 in the Journal of the American College of Cardiology. “Bayes‟ 

theorem is ... a logically consistent, mathematically valid, and intuitive way to draw inferences 

about the hypothesis.” (See Box 4)  

With the increasing availability of computer power to perform its complex calculations, the 

Bayesian approach has become more widely applied in medicine and other fields in recent years. 

In many real-life contexts, Bayesian methods do produce the best answers to important 

questions. In medical diagnoses, for instance, the likelihood that a test for a disease is correct 

depends on the prevalence of the disease in the population, a factor that Bayesian math would 

take into account. 

But Bayesian methods introduce confusion into the actual meaning of the mathematical concept 

of “probability” in the real world. Standard or “frequentist” statistics treat probabilities as 

objective realities; Bayesians treat probabilities as “degrees of belief” based in part on a personal 

assessment or subjective decision about what to include in the calculation. That‟s a tough 

placebo to swallow for scientists wedded to the “objective” ideal of standard statistics. 

“Subjective prior beliefs are anathema to the frequentist, who relies instead on a series of ad hoc 

algorithms that maintain the facade of scientific objectivity,” Diamond and Kaul wrote. 

Conflict between frequentists and Bayesians has been on-going for two centuries. So science‟s 

marriage to mathematics seems to entail some irreconcilable differences. Whether the future 

holds a fruitful reconciliation or an ugly separation may depend on forging a shared 

understanding of probability.  

“What does probability mean in real life?” the statistician David Salsburg asked in his 2001 

book The Lady Tasting Tea. “This problem is still unsolved, and ... if it remains unsolved, the 

whole of the statistical approach to science may come crashing down from the weight of its own 

inconsistencies.” 

__________________________________________________________________________ 

BOX 1: Statistics Can Confuse 

https://www.sciencenews.org/article/odds-are-its-wrong#box4
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Statistical significance is not always statistically significant. 

It is common practice to test the effectiveness (or dangers) of a drug by comparing it to a placebo 

or sham treatment that should have no effect at all. Using statistical methods to compare the 

results, researchers try to judge whether the real treatment‟s effect was greater than the fake 

treatments by an amount unlikely to occur by chance. 

By convention, a result expected to occur less than 5 percent of the time is considered 

“statistically significant.” So if Drug X outperformed a placebo by an amount that would be 

expected by chance only 4 percent of the time, most researchers would conclude that Drug X 

really works (or at least, that there is evidence favouring the conclusion that it works). 

Now suppose Drug Y also outperformed the placebo, but by an amount that would be expected 

by chance 6 percent of the time. In that case, conventional analysis would say that such an effect 

lacked statistical significance and that there was insufficient evidence to conclude that Drug Y 

worked. 

If both drugs were tested on the same disease, though, a conundrum arises. For even though 

Drug X appeared to work at a statistically significant level and Drug Y did not, the difference 

between the performance of Drug A and Drug B might very well NOT be statistically significant. 

Had they been tested against each other, rather than separately against placebos, there may have 

been no statistical evidence to suggest that one was better than the other (even if their cure rates 

had been precisely the same as in the separate tests). 

“Comparisons of the sort, „X is statistically significant but Y is not,‟ can be misleading,” 

statisticians Andrew Gelman of Columbia University and Hal Stern of the University of 

California, Irvine, noted in an article discussing this issue in 2006 in the American Statistician. 

“Students and practitioners [should] be made more aware that the difference between 

„significant‟ and „not significant‟ is not itself statistically significant.” 

A similar real-life example arises in studies suggesting that children and adolescents taking 

antidepressants face an increased risk of suicidal thoughts or behavior. Most such studies show 

no statistically significant increase in such risk, but some show a small (possibly due to chance) 

excess of suicidal behavior in groups receiving the drug rather than a placebo. One set of such 

studies, for instance, found that with the antidepressant Paxil, trials recorded more than twice the 

rate of suicidal incidents for participants given the drug compared with those given the placebo. 

For another antidepressant, Prozac, trials found fewer suicidal incidents with the drug than with 

the placebo. So it appeared that Paxil might be more dangerous than Prozac. 

But actually, the rate of suicidal incidents was higher with Prozac than with Paxil. The apparent 

safety advantage of Prozac was due not to the behavior of kids on the drug, but to kids on 

placebo — in the Paxil trials, fewer kids on placebo reported incidents than those on placebo in 

the Prozac trials. So the original evidence for showing a possible danger signal from Paxil but 

not from Prozac was based on data from people in two placebo groups, none of whom received 

either drug. Consequently it can be misleading to use statistical significance results alone when 

comparing the benefits (or dangers) of two drugs. 

_______________________________________________________________________ 

BOX 2: The Hunger Hypothesis 
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A common misinterpretation of the statistician‟s P value is that it measures how likely it is that a 

null (or “no effect”) hypothesis is correct. Actually, the P value gives the probability of 

observing a result if the null hypothesis is true, and there is no real effect of a treatment or 

difference between groups being tested. A P value of .05, for instance, means that there is only a 

5 percent chance of getting the observed results if the null hypothesis is correct. 

It is incorrect, however, to transpose that finding into a 95 percent probability that the null 

hypothesis is false. “The P value is calculated under the assumption that the null hypothesis is 

true,” writes biostatistician Steven Goodman. “It therefore cannot simultaneously be a 

probability that the null hypothesis is false.” 

Consider this simplified example. Suppose a certain dog is known to bark constantly when 

hungry. But when well-fed, the dog barks less than 5 percent of the time. So if you assume for 

the null hypothesis that the dog is not hungry, the probability of observing the dog barking 

(given that hypothesis) is less than 5 percent. If you then actually do observe the dog barking, 

what is the likelihood that the null hypothesis is incorrect and the dog is in fact hungry? 

Answer: That probability cannot be computed with the information given. The dog barks 100 

percent of the time when hungry, and less than 5 percent of the time when not hungry. To 

compute the likelihood of hunger, you need to know how often the dog is fed, information not 

provided by the mere observation of barking. 

_______________________________________________________________________ 

BOX 3: Randomness and Clinical Trials 

Assigning patients at random to treatment and control groups is an essential feature of controlled 

clinical trials, but statistically that approach cannot guarantee that individual differences among 

patients will always be distributed equally. Experts in clinical trial analyses are aware that such 

incomplete randomization will leave some important differences unbalanced between 

experimental groups, at least some of the time. 

“This is an important concern,” says biostatistician Don Berry of M.D. Anderson Cancer Center 

in Houston. 

In an e-mail message, Berry points out that two patients who appear to be alike may respond 

differently to identical treatments. So statisticians attempt to incorporate patient variability into 

their mathematical models. 

“There may be a googol of patient characteristics and it‟s guaranteed that not all of them will be 

balanced by randomization,” Berry notes. “But some characteristics will be biased in favor of 

treatment A and others in favor of treatment B. They tend to even out. What is not evened out is 

regarded by statisticians to be „random error,‟ and this we model explicitly.” 

Understanding the individual differences affecting response to treatment is a major goal of 

scientists pursuing “personalized medicine,” in which therapies are tailored to each person‟s 

particular biology. But the limits of statistical methods in drawing conclusions about subgroups 

of patients pose a challenge to achieving that goal. 

“False-positive observations abound,” Berry acknowledges. “There are patients whose tumors 

melt away when given some of our newer treatments.… But just which one of the googol of 

characteristics of this particular tumor enabled such a thing? It‟s like looking for a needle in a 

haystack ... or rather, looking for one special needle in a stack of other needles.” 
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_______________________________________________________________________ 

BOX 4: Bayesian Reasoning 

Bayesian methods of statistical analysis stem from a paper published posthumously in 1763 by 

the English clergyman Thomas Bayes. In a Bayesian analysis, probability calculations require a 

prior value for the likelihood of an association, which is then modified after data are collected. 

When the prior probability isn‟t known, it must be estimated, leading to criticisms that subjective 

guesses must often be incorporated into what ought to be an objective scientific analysis. But 

without such an estimate, statistics can produce grossly inaccurate conclusions. 

For a simplified example, consider the use of drug tests to detect cheaters in sports. Suppose the 

test for steroid use among baseball players is 95 percent accurate — that is, it correctly identifies 

actual steroid users 95 percent of the time, and misidentifies non-users as users 5 percent of the 

time. 

Suppose an anonymous player tests positive. What is the probability that he really is using 

steroids? Since the test really is accurate 95 percent of the time, the naïve answer would be that 

probability of guilt is 95 percent. But a Bayesian knows that such a conclusion cannot be drawn 

from the test alone. You would need to know some additional facts not included in this evidence. 

In this case, you need to know how many baseball players use steroids to begin with — that 

would be what a Bayesian would call the prior probability. 

Now suppose, based on previous testing, that experts have established that about 5 percent of 

professional baseball players use steroids. Now suppose you test 400 players. How many would 

test positive? 

• Out of the 400 players, 20 are users (5 percent) and 380 are not users. 

• Of the 20 users, 19 (95 percent) would be identified correctly as users. 

• Of the 380 nonusers, 19 (5 percent) would incorrectly be indicated as users. 

So if you tested 400 players, 38 would test positive. Of those, 19 would be guilty users and 19 

would be innocent nonusers. So if any single player‟s test is positive, the chances that he really is 

a user are 50 percent, since an equal number of users and nonusers test positive. 
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