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Support Vector Machines (SVM)represent one of the most promising 
Machine Learning (ML) tools that can be applied to the problem of traffic 

classification in IP networks. In the case of SVMs, there are still open 

questions that need to be addressed before they can be generally applied to 

traffic classifiers. Identifying and categorizing network traffic by application 

type is challenging because of the continued evolution of applications, 

especially of those with a desire to be undetectable. The diminished 

effectiveness of port-based identification and the overheads of deep packet 

inspection approaches motivate us to classify traffic by exploit To tackle this 

critical problem, we propose a novel traffic classification scheme which has 

the capability of identifying zero-day traffic as well as accurately classifying 

the traffic generated bypre-defined application classes. 
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Introduction:-  

Classification of traffic can help identify different applications and protocols that exist in a network, which is a basic 

tool for network management [1]. For example, most of QOS control mechanisms has a traffic classification module 

in order to properly prioritize different applications across the limited bandwidth. In addition, to implement 

appropriate security policies, it is essential for any network manager to obtain a proper understanding of the 

applications and protocols in the network traffic. In the last decade, traffic classification has absorbed much 

attention in the industry. Identifying network traffic using port numbers was the norm in the recent past. This 

approach was successful because many traditional applications use port numbers assigned by or registered with the 

Internet Assigned Numbers Authority. The accuracy of this approach, however, has been seriously dented because 

of the evolution of applications that do not communicate on standardized ports. Many current generation P2P 
applications use ephemeral ports, and in some cases, use ports of well-known services such as Web and FTP to 

make them indistinguishable to the port-based classifier. 

 

Techniques that rely on inspection of packet contents have been proposed to address the diminished effectiveness of 

port-based classification. These approaches attempt to determine whether or not a flow contains a characteristic 

signature of a known application. Studies show that these approaches work very well for today’s Internet traffic, 

including P2P flows. In fact, commercial bandwidth management tools use application signature matching to 

enhance robustness of classification Nevertheless, packet inspection approaches pose several limitations. First, these 

techniques only identify traffic for which signatures are available. Maintaining an up-to-date list of signatures is a 

daunting task. Recent work on automatic detection of application signatures partially addresses this concern. 

Second, these techniques typically employ “deep” packet inspection because solutions such as capturing only a few 

payload bytes are insufficient or easily defeated (See Section 4.5 for empirical evidence of this.). Deep packet 
inspection places significant processing and/or memory constraints on the bandwidth management tool. On our 
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network, for example, we have observed that during peak hours, effective bandwidth is often limited by the ability 

of the deployed commercial packet shaping tool to process network flows. Finally, packet inspection techniques fail 

if the application uses encryption. Many Bit Torrent clients such as Azureus, μtorrent, and Bit Comet already allow 

use of encryption. 

 

In our work, we develop and evaluate a technique that enables us to build a traffic classifier using flow statistics 
from both labeled and unlabeled flows. Specifically, we build the learner using both labeled and unlabeled flows and 

show how unlabeled flows can be leveraged to make the traffic classification problem manageable. This semi 

supervised approach to learning a network traffic classifier is one key contribution of this work. There are three 

main advantages to our proposed semi-supervised approach. First, fast and accurate classifiers can be obtained by 

training with a small number of labeled flows mixed with a large number of unlabeled flows. Second, our approach 

is robust and can handle both previously unseen applications and changed behavior of existing applications. 

Furthermore, our approach allows iterative development of the classifier by allowing network operators the 

flexibility of adding unlabeled flows to enhance the classifier’s performance. 

  

Material and Methods:- 
This section presents a robust traffic classification scheme to deal with zero-day applications. . There are three 

important modules in the proposed framework: 

 Unknown discovery. 

 “Bag of flows” (BoF)-based traffic classification. 

 System update. 

 

Unknown discovery:- 

We propose a two-step method of unknown discovery to extract zero-day traffic samples from a set of unlabeled 
network traffic crucial to the RTC scheme. The first step is the -means based identification of zero-day traffic 

clusters. The second step is zero-day sample extraction using random forest. Given the relabeled training sets and an 

unlabeledset, we roughly filter out some zero-day samples out by using a semi-supervised idea for the first step. The 

labeled and unlabeled samples are merged to feed the clustering algorithm, -means. The -means clustering aims to 

partition the traffic flows into clusters, to minimize the within-cluster sum of squares. The traditional -means 

algorithm uses an iterative refinement technique. Given an initial set of randomly selected centroids, the algorithm 

proceeds by alternating between the assignment step and the update step. 

 

Bag-of-flows based traffic classification:- 

For robust traffic classification, we further propose a new classification method that considers flow correlation in 

realworldnetwork traffic and classifies correlated flows togetherrather than in single flows. Given the Pre-labeled 

training sets and the zero-day sample set produced byte module of unknown discovery, we can build classifier for 
the -class classification. Is able to categorize zero-day traffic into a generic unknown class. Following our previous 

work [4], we incorporate flow correlation into the traffic classification process in order to significantly improve 

identification accuracy. Flow correlation can be discovered byte 3-tuple heuristic. That is, in a short period of time, 

the flows sharing the same destination IP, destination port, and transport protocol are generated by the same 

application/protocol. 
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Figure 1: Flow diagram of robust traffic classification. 

System Update:- 

The figure 1 shows the robust traffic classification with unknown discovery and BoF-based traffic classification, the 

proposed scheme has identified zero-day traffic when performing traffic classification. The module of system 

updates proposed to achieve fine-grained classification of zero-day traffic. The purpose is to learn new classes in 

identified zero-day traffic and to complement the system's knowledge. The capability of learning new classes makes 

the proposed scheme different to the conventional traffic classification method. Given a set of zero-day traffic, 

which is the outcome of BoF-based traffic classification, we perform –means clustering to obtain the clusters. For 

each cluster, we randomly select several sample flows (e.g., three) for manual inspection. To guarantee high purity 

of new training sets, the consensus strategy is adopted to make a prediction. If all the selected flows indicate a new 
application/protocol, we create a new class and use the flows in the cluster as its training data. For a new class that 

has been created during the system update, the flows in the cluster will be added to the training setoff that class.  
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Result and Discussion:- 
Snapshots:- 
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The above snapshot shows the work flow of my project. At first it is tested for the trained data, if it is available in 
the database it shows that it is a trained data otherwise if the searched text is not available in the database, then it 

shows that as the zero day traffic. It creates the new cluster class for the zero day traffic. If you again entering same 

data at the second time it shows that it is trained data because it is stored in the database. 
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