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Since the quantum field theory was invented at the end of 1920s, 

attempts have been made to apply it to gravitational field. After more 

than 20 years, the formal quantum theory of gravity, which describes 

any systems as an action function in a canonical Hamiltonian method, 

achieved for the first time a state of completion. Contrary to the 

situation held for the canonical theory, a covariant treatment also was 

developed to deal with the physical conditions such that effects of 

vacuum processes must be taken into account. In this review, we start 

from a brief introduction to the history of construction of quantum 

theory of gravity and consider the applications of two quantization 

methods to inspiraling neutron star binary systems. We mainly focus on 

the gravitational quantum effects on dynamics of the gravitational 

quanta radiated from different systems by using canonical method and 

on the gravitational potential of the binaries by employing the covariant 

treatment. The possible detections and constraints to the quantum 

effects are also discussed. 
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Introduction:- 
Almost as soon as the electromagnetic fields gave birth to the quantum field theory (QFT) at the end of last 20s, 

attempts were made to apply it to other fields. In 1930, Rosenfeld was first to apply QFT to gravitational field and 

developed general methods for handling the technical difficulties involved in quantizing gravitation [1, 2]. It was 

used to compute the gravitational self-energy of a photon in the lowest order of perturbation theory, and the results 

with quadratic divergence were obtained, which confirmed the divergence malady of the field theory. During the last 

30s, which was a physics great booming era, it was recognized that the quanta of gravitational field produce no 

observable effects until the Planck energy is reached. That is to say the energy of gravitational quanta should be 

Planck scale of the order of 10
−19 

GeV, corresponding to the Planck length √
  

  
         . After these initial 

studies, there had been no essentially new developments for quantum gravidynamics about 20 years.  
 

In 1950s, stimulated by the renormalization method that makes sense of the infinities in perturbation theory by 

altering the values of quantities to compensate for effects of their self-interactions, DeWitt reperformed Rosenfeld’s 

self- energy calculation in a Lorentz-covariant and gauge-invariant manner [3], which was just the lowest-order 

calculations for perturbation theory. However, the renormalization methods were critically attacked because of its 

explicitly manipulation of divergent quantities when involving the interaction of point masses with gravity. At about 

the same time, Bergman tried to quantize the gravitational field by using the commutation relations for particle 
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position and momenta [4], which set out upon the classical canonical road in search of the Hamiltonian. Although 

immediately running into the problem of constraints, Bergman performed much valuable ground work in 

formulating and resolving the difficulties. In the meantime, Dirac published a general Hamiltonian theory [5], which 

is in principle applicable to any system described by an action functional. Pirani and Schild applied Diracs primary 

theory soon to gravitational field [6]. However, the theory had been remaining an incomplete state for several years, 

until the first and second international relativity conferences held in 1955 and 1957. It was shown that, by using 

Pirani-Schild formalism, four primary constraints, which meant that the state functional must be independent of the 

components of metric tensor, could be transformed into pure momenta by a phase transformation [7]. While the 

three of secondary constraints, implying that the state functional must be independent of the coordinates chosen in 

the space-like cross sections and hence cannot be taken to be arbitrary functional of the metric components, are 

actually the generators of infinitesimal transformations of three spatial coordinates [7]. Dirac then began to apply his 

method and the constraints to gravitational field [8–10], and the formal quantum theory of gravity achieved for the 

first time a state of completion, which is the canonical Hamiltonian quantization method [11] and focus on some 

bizarre features, arising in the case of closed finite words, of possible cosmological and even metaphysical 

significance.  

 

When dealing with the questions such as particle scattering, pair-production, pair-annihilation, and decay of 

individual quanta, the canonical theory is left untouched. A manifestly covariant treatment for quantum theory of 

gravity [12–14] was constructed by analogy with the conventional scattering-matrix theory, which lends itself to 

study the questions when physical conditions such that the effects of vacuum process are must be taken into account. 

However, the manifest covariance in conventional scattering-matrix theory denotes covariant Lorentz invariance, 

which is an expression of a geometrical symmetry processed by a system. While the gravity theory bases on the 

manifest general covariant propagators, which is accomplished by introducing a variable background metric, instead 

of a flat background. Consequently, a formalism, in which general covariance penetrates the theory, by introducing a 

c-number background metric [13], instead of the flat background, was developed, which allows us to introduce 

generally covariant particles propagators rather than just Lorentz covariant.  

 

The physical interpretation to the quantum theory of gravity, on the classical side, was to provide a characterization 

of gravitational radiation and energy [15]. While the interpretation in the quantum domain requires analysis for the 

technical structure of canonical theory [16], which we introduce in section 2.1. In the remaining part of section II, 

we apply the canonical Hamiltonian quantization methods to inspiraling neutron star (NS) binaries and review the 

quantum effects on gravitational radiations, in which we mainly discuss the Higgs-like mechanism and mass 

generation processes of gravitational quanta radiated from double neutron star (DNS) binaries and neutron star-

white dwarf (NS- WD) systems. We review the manifest covariant theory of gravity and its application to 

gravitational interactions of two-body bound systems in section III, where the quantum corrections to the static 

gravitational potential of the NS binaries systems are reviewed. Finally we give a summary for the quantum effects 

in NS binaries and discuss the possible detections and constraints.  

 

In this review, we just consider the wide NS binaries, with separation of about 10
9 

m, which move closer in a spiral 

way and expect to coalesce and merge in the Hubble time. For our calculations, we use the notations: Latin indices 

range over the values “1, 2, 3” and Greek indices over the values “0, 1, 2, 3”. The comma “,” denotes differentiation, 

while the semicolon“；”represents the covariant differentiation. The so-called “absolute units”       are used. 

We choose the space-time metric as -+++. The Riemann and Ricci tensors, and the curvature scalar are, respectively, 

taken as 

    
     

 

  
    

 

  
    

    
     

    
  (   ) 

        
  (   ) 

    
 

 
( )         (   ) 

   
  

 

 
   (                 )     

     
  (   ) 

In these conventions,   
( )  is non-negative in a space-time containing normal matter and satisfies the Einstein’s 

equations. The corresponding tensor   
( )  is positive in the 3-space-like cross sections of positive curvatures. 
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Canonical Quantization And Massive Gravitational Quanta In NS Binaries:- 

I. Canonical Hamiltonian Quantization Method 

The beginning of the canonical theory follows the decomposition of the metric tensor in terms of new variables 

“     ” [11], 

(   )  .
       

   

     
/  (   )  .

         

                /, (2.1) 

where          
          . Then the conventional Einstein Lagrangian density can, in terms of the new variables, 

be taken as 

  √   
( )    

 

 (    
        

( ) )   ( 
 

  )
  
  ( 

 

      
 

       )
  
 (   ) 

where       (   ) and      (   )  are the determinant of 4-metric     and 3-metric    , respectively, and 

      here. The quantity     transforms as a symmetric tensor under spatial coordinate transformations, which is 

called the extrinsic curvature tensor and describes the curvature of 4-dimensional space-time that it is embedded, 

    
 

 
   (               )  

                      (   ) 

The contracted forms   
( )  and     

      in Eq. (2.2) are referred to as the intrinsic and extrinsic curvatures, which 

play the roles of potential energy and kinetic energy, respectively. The integrand of Eq. (2.2) gives the Lagrangian,  

   ∫  
 

 (    
        

( ) )    (   ) 

which has the classical form, i.e. “kinetic energy minus potential energy”. The Lagrangian (2.4) is general 3-

dimensional coordinate invariant and obeys the primary and secondary constraints. The primary constraints have the 

explicit forms 
  

    
   

  

     
   (   ) 

which express the fact that the Lagrangian (2.4) is independent of the arbitrary velocities     and     . While the 

secondary or dynamical constraints show the coordinates-independent properties of Lagrangian (2.4) and read 

    (   ) 
     (   ) 

Here,    
 

 (    
        

( ) ) , with Hamiltonian   ∫    appears as the difference of the extrinsic 

curvature and intrinsic curvature.         
  

    (            ) 
  , where     

  

      
   

 

 (        ) relates to 

Hamiltonian via   ∫(                    ) 
    , with   

  

    
 and    

  

     
. The condition (2.6) is the 

Hamiltonian constraint, which states that the intrinsic curvature equals the extrinsic one in a flat space-time and 

essentially describes the intrinsic dynamics of the gravitational field.  

  Then we can quantize the gravitational field. In the quantum theory, Poisson brackets become commutators. That is 

to say the constraints Eqs. (2.5), (2.6), and (2.7) become conditions on state vector   that describe the field [5, 9],  
  

    
    

  

     
               (   ) 

instead of operator equations. While the basic commutation relations of the canonical variables read  

[    ]    ( ⃗   ⃗ ) [    
  ]     

  
 [     

    ]      
      (2.9) 

 

II. Graviton — Massless or Massive? 

For almost a century, the theory of general relativity [17] has been widely accepted as the correct theory in 

describing gravitational force [18–20] by experiments of gravitationally bound astronomical systems, e.g. solar 

system, binary pulsars, coalescing binary black holes, and so on. In quantum field theory [21], the fundamental 

forces are mediated by the exchanges of corresponding particles. Graviton is the hypothetical elementary particle 

that mediates the force of gravitation in the framework of quantum theory of gravity. According to Einstein general 

relativity, the gravitational force propagates at the speed of light. Therefore, the graviton must be a spin-2 tensor 

boson and is expected to be massless. Massless particles are characterized by how they transform under rotations 

transverse to their directions of motion. The transformation rule for bosons is characterized by a non-negative 

integer helicity. Any sort of interaction terms of helicity-0 massless particles carried by scalar field is consistent with 

Lorentz invariance. For positive helicities, the field must carry gauge symmetry if we write interactions with 

manifest Lorentz symmetry and locality. The consistent self-interactions of helicity-1 massless particles are the non-
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Abelian gauge theories. The required gauge symmetry of helicity-2 particle carried by tensor field is the linearized 

general coordinate invariance. Moreover, general relativity, as a quantum theory, must be treated as an effective 

field theory valid at energies up to a cutoff at the Planck energy, beyond which some unknown high-energy effects 

will correct the Einstein-Hilbert action.  

 

It is well known that the supernova data [22, 23] indicate that the universe is accelerating in its expansion. From 

general relativity, there must be dark energy density of            , which is simplest interpreted as a constant 

term in the Einstein-Hilbert action and gives a small vacuum energy of      . Whereas arguments from QFT 

suggest a much larger value, up to the order of unity [24]. It is therefore tempting to modify general relativity in the 

infrared, by adding additional scalar degrees of freedom (d.o.f.), which producing the accelerating universe from 

nothing [25], instead of a dark energy component. That is the massive gravity [26], which is an extension of general 

relativity by simply adding a mass term to the Einstein-Hilbert action [27]. As a spin-2 theory, a healthy theory of 

massive gravity should have 5 d.o.f.. However, many theories of massive gravity tend to suffer from an additional 

ghost d.o.f.. Recent years, more efforts were made to realize a ghost-free massive gravity, by adding some more 

general polynomial terms onto the massive term in the action, which have achieved acceptable results [25, 26].  

 

Many experiments and observations have been dedicated to the constraints for graviton mass [28], such as 

experiments in solar system, cosmological observations, and direct and indirect gravitational-wave detections from 
inspiralling and coalescing compact binaries. For the graviton with a mass mg, the Newtonian gravitational potential 

 
 

 
 of a static point-like source is changed to a Yukawa one, with an exponential suppression      , from which we 

would probe length scales associated with the Compton wavelength of the mass to find large deviations from 

Newtonian potential, look for very small deviations to the gravitational force at distances less than the Compton 

wavelength, and thus constrain the graviton mass. By neglecting the relativistic corrections, the best and most 

rigorous model-independent bound on the graviton mass in solar systems comes from the planet Mars yields 

                at    level [29]. With the recent direct detections of gravitational waves (GWs), e.g. 

GW150914 [30] and GW151226 [31], a more careful calculation for GW150914 waveform by aLIGO gives 

                at 90% confidence [32], which is largely model-independent and mainly relies on the 

dispersion relation the helicity-2 modes of the massive graviton     ⃗⃗    
 . Some indirect GW detection with 

pulsar timing data of the periodic pulses of binary pulsars from PSR B1913+16 and PSR B1534+12 yield the bound 

                [33] at 90% confidence, by considering the induced sizable changes for the period due to their 

GW emissions. While an array of 300 spaced millisecond pulsars with 100 ns timing accuracy a 10 yr observation 

would bound the graviton mass               [34], by analyzing the angular correlation between the timing 

residual of pulsar pairs modified by a graviton mass. Smaller bounds on graviton mass were given from the 

cosmological observations [28].  

 

III. Scalarizations in NS Binaries 

From recent detected GW events in black hole (BH) [30, 31] and NS binaries [35], its clear that the Einsteins 

general relativity has been so far a sound theory in describing gravitational radiation during the phase of merger and 

ringdown in coalescing compact binaries, whose dynamics locates in the strong-field regime. However, several 

observations indicated an excess orbital decay in the Hulse-Taylor system, PSR 1913+16, predicted by general 

relativistic quadrupole formula [36, 37]. The long baseline of precise timing observations for PSR J1738+0333 [38] 

have indicated an excess orbital decay of         
         . Both systems are wide inspirialing binary pulsars, in which 

the field equations are always solved in weak field limits. The Lunar Laser Ranging experiments give the limit on 

dipole radiation of  ̇      =       
         , which directly translates to a dipole radiation constraint on the deviations 

from the quadruple formula.  
 

It was proposed that a nontrivial scalar configuration comes about in strong-field regime [39]. By making an 

analogy with the spontaneous magnetization of ferromagnets below the Curie temperature, a NS, with a 

compactness of 
    

   
 (    and     are the mass and radius of NS, respectively.   is the Newtonian gravitational 

constant.) above a given critical value, will exhibit a nontrivial configuration, and a scalar field settles in the interior 

[40], i.e. a spontaneous scalarization occurs for the NS. The NS-WD binaries usually contain a massive recycled NS 

[41-43], owing to the recycling process [44], which thus more tends to undergo a spontaneous scalarization. It was 

indicated that NS in binary pulsar, with a mass of 1.4  ⟪, would develop a strong scalar charge even in absence of 
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external scalar solicitation for strong couplings and with vanishing asymptotic value [40]. The spontaneously 

scalarized component modifies the exterior space-time and produces external scalar field     in its vicinity, which 

contributes to a scalar asymptotic solution. In the meantime, a scalarization of NS suffers from a change of 

compactness [45], which enhances the gravitational interaction with its companion. As a result, the companion star 

is also scalarized, which is assigned to be an induced scalarization [46], and the other external scalar field     

subsequently appears around the secondly scalarized component. 

 

  The two external scalar fields,     and     around the spontaneously scalarized NS      and the induced scalarized 

companion star    , dynamically interplay with each other, governed by the following relations [46] 

  
(   )

  =   
( )

   
  

( )
  

 
 (    ) 

  
(   )

  =   
( )

   
  

( )
  

 
 (    ) 

Here,   
( )

   and   
( )

   represent the  th (   ) induced external scalar fields around the scalarized components 

     and     , respectively. “ ” denotes the distance from the center of the binary. The feedback mechanism 

described by Eq. (2.10) and Eq. (2.11) results in an iteratively induced scalarization of two components, which 

enhances the strength of external scalar fields, as well as the gravitational interaction between two scalarized stars. 

Accordingly, the Newtonian gravitational interaction of the binary is modified according to [40] 

      
       

      
 

       

      
 (    ) 

where     and     represent the masses of the spontaneously scalarized NS and the induced scalarized companion, 

    and     denote the scalar charges of corresponding components with the definition of 

                  (      )          [47], and        is the orbital separation of the binary. The local Newtonian 

gravitational constant is accordingly modified as an effective one, 

         (              ) (    ) 
The second term in the bracket,        describes the 1- and 2-order post-Newtonian corrections to the dynamics of 

the binary systems, and the     denotes the terms of dissipative corrections to the Newtonian dynamics that 

accounts of the backreaction of GW emission. Either the continuous enhancement of external scalar fields or the 

different scalar charges carried by two components that sources an emission of dipolar gravitational scalar radiation 

will contribute to a gravitational scalar counterpart field   in an inspiraling NS binary. We assign the inspiraling NS 

binaries with both quadruple tensor gravitational wave radiations and dipolar gravitational scalar counterparts to be 

the dynamically scalarized systems. The associated process is referred to the dynamical scalarization of NS binaries.  

 

It was shown that “spontaneous scalarization” leads to very significant deviations from Einstein’s general relativity 

in conditions involving binary-pulsar systems [45], which do not necessarily vanish when the weak-field scalar 

coupling tends to zero. The non-perturbative strong-field deviations away from general relativity due to the 

appearance of scalar fields, measured by a dimensional scalar coupling factor [45], could have a significant impact 

on the emission of GWs in NS systems [39]. The equations of motion for scalarized NSs binary systems have been 

modified, which produce dipolar gravitational scalar counterparts of gravitational tensor waves, depending on the 

coupling strength between scalar fields and the star matter [46]. As a consequence, the dynamics of scalarized 

inspiraling NS binary is encoded not only by the gravitational tensor metric    , but also by a gravitational scalar 

counterpart field, which naturally renders the scalar-tensor theory [47] of gravity to be the alternative theory to 

Einstein’s general relativity describing the scalarized binary systems.  

 

  Please note that in our discussion, we just consider the systems with relatively wide separation of      , which 

will evolve about     years before coalescence and merger. The reason why we don’t consider the coalescing 

systems is that the scalarization cannot occur during the merger phase because of the very short duration of less than 

one second for BH binaries and of less than one hundred seconds for NS systems. 

 

IV. Massive Gravitational Quanta in DNS Binaries 

1. Massive gravitational scalar background field in DNS systems 

The external scalar fields,     and    , around two components in a scalarized NS binaries, dynamically interact 

with each other following Eqs. (3.1.1) and (3.1.2). The feedback effects contribute to a continual enhancement of 

scalar configurations inside two components, as well as the external scalar fields. As a consequence, a convergence 

of   
( )

   and   
( )

   occurs, which produces a gravitational scalar background field   . Therefore, the binary system 
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immerses in the gravitational scalar background field    , and the dynamics of the DNS binary deviates from 

Einstein's general relativity, which has an influence on its orbital evolution [47-49]. 

 

Because of a very approximate compactness of two NSs [41] in a DNS binary, we can neglect the effects of 

differences in couplings between scalar field and the NS matter. Therefore, the scalar-tensor action that describes the 

scalarized DNS binary can be written as, 

  ∫   √  (
   

 

 
  

 

 
                (  ))  (    ) 

Here,     
 

√   
 is the reduced Planck constant.   and   are the Ricci scalar and the determinant of the 

gravitational tensor metric    , respectively.     (  ) is the gravitational scalar potential of DNS, which consists 

of the dynamical coupling of     to        and a self-coupling term of   , 

    (  )   
 

 
        

  
 

 
  

  (    ) 

Here,       
          

   
 is a dimensionless coupling constant and characterizes the coupling strength between    

and matters in the scalarized stars, whose value depends on the compactness of stars consisting of the binary [39, 40, 

47].   is the self-coupling constant of gravitational scalar counterpart field, which is roughly of the order of unity. 

  The iterative interplay and convergence of   
( )

      perturb    and cause small gravitational scalar background 

fluctuations   (    ). The background fluctuating field also has effects on both the gravitational tensor metric 

and the gravitational background scalar field, via an exponential transformation    , which follows the couplings 

[39, 45, 46],  

   
           √        √   (    ) 

         (    ) 
where    

  and    are transformed gravitational tensor metric and its determinant.   
  is the transformed gravitational 

background scalar field. By expanding the transformed metric    
  about a Minkowski background in terms of Eq. 

(2.16), we express them as 

   
         

 ,    
             (    ) 

where           
    . The Eq. (2.16) remains unchanged. Under the transformation of  , we, using Eq. (2.16) and 

Eq. (2.17), find that the kinetic term in action (2.14) is transformed into a canonical kinetic term, 
 

 
√             =

 

 
√           

     
  (    ) 

           (    ) 

which is scale-invariant. The transformed action then reads 

   ∫   √   (
   

 

 
   

 

 
        

     
      (  

 ))  (    ) 

  In the process of conformal transformation, the solutions of external scalar fields        with mass dimensions [40] 

involves a dimensional constant   with the Planck mass scale, which appears in the transformed gravitational scalar 

potential     (  
 ), 

    (  
 )   

 

 
    

   
 

 
  

   (    )  

The Planck-scale constant   √
 

      
 here appears to be related to the scalar charges of the scalarized NSs via the 

effective gravitational constant      according to Eq. (2.13) [47]. It is the appearance of the mass-dimensional 

constant   that is responsible for a process of spontaneous breaking of symmetry, which allows us to apply the 

similar recipe to the Higgs mechanism in the standard model. Thus the gravitational scalar background field 

becomes a massive one. 

 

Actual NSs observed in DNS binaries, with important deviations from general relativity in strong-field regime, 

would develop strong scalar charges in the absence of an external scalar field for enough negative values of  , i.e. 

    [39, 40, 46]. The self-coupling constant   is of the order of unity, i.e.    . By considering that the interplay 

between     and     is long-range force, the behavior of transformed gravitational background scalar field   
  near 

spatial infinity endows it with a vacuum expectation value (VEV)    
 , 
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 (    ) 

which is obtained from the condition 
     (  

 )

   
  (  

 )   
  . Therefore, the gravitational scalar background field   

  

is a combination of its VEV    
  and the fluctuating field of the spatial infinity approximate value. Substituting the 

VEV (    ) into the Lagrangian of   
  extracted from Eq. (2.21), we get the mass of   

  [50], 

(  
   )       (    ) 

 

It was proven that non-perturbative strong-gravitational-field effects developed in NSs for a dimensionless coupling 

constant     , which causes order-of-unity deviations from general relativity [39]. The general properties of 

binary systems consisting of scalarized NSs can be described by       , because of binary-pulsar measurements 

[38, 43, 51]. For     , NSs in binary pulsar, with mass of 1.4  ⟪, would develop strong scalar charges even in 

absence of external scalar solicitation, and a more negative value of   corresponds to a less compact NS [40]. Most 

of the measured more massive NS in detected DNS systems have masses of ~1.3-1.44  ⟪ [41]. Consequently, the 

coupling constant locates in a range of          within a quadratic coupling model described in Eq. (2.22) 

[40]. The scalar charges mildly vary with the compactness of NSs [46] and will be ~1 only in the last stages of the 

evolution of NS binaries or close transient encounters. For NSs in 9 so-far detected DNS systems, the scalar charges 

are around 0.2 within solar-system bound [52] in the Fierz-Jordan-Brans-Dicke (FJBD) theory, by considering its 

dependence on the ``sensitivities"       [53, 54]. Accordingly, the mass of gravitational scalar background field is 

of the order of Planck mass scale [45], which plays the role of the gravitational scalar counterpart of gravitational 

waves in scalarized inspiraling DNS binary. During this process, the gravitational background scalar fluctuation 

field   is the only massless field, which plays the role of Higgs-like field. 

 

2. Mass of gravitons from DNS 

Variation of the transformed action (2.21), with respect to the transformed metric (2.16) and the transformed scalar 

background field (2.17), yields the following e.o.m. in vacuum, 

(   
  

 

 
   
   )   

      
     

  
 

 
    (    

 )  
 

 
        

   
 

 
      

   (    ) 

         
           

         
   (    ) 

where     is the curved space d’Alembertian that is defined by    =√     (√      
   )  

  Let us write the gravitational scalar background field   
  as the combination of its VEV    

  and a fluctuating field 

  ̃ 
  of the spatial infinity approximate value of   

 , according to 

  
     

   ̃ 
  (    ) 

Then we expand the transformed scalar potential     (  
 ) of Eq. (2.22) in a Taylor series about the VEV of   

  

(2.23), 

    (  
 )   (   

 )   (   
 )   ̃ 

  
 

 
  (   

 )
  
 ̃ 

     (    ) 

Considering the weak field scalar perturbation of   
  in Eq. (2.27), we expand the field equations in weak field limit,  

(   
  

 

 
   
   )   

      
     

  
 

 
    (    

 )  
 

 
(  

   ) (  
     

 )
 
     (    ) 

( 
   (  

   ) )  
  (  

   )    
  (    ) 

Here, we use the expansion Eq. (2.28) and just consider the leading-order terms. The expanded field equations that 

are consistent at all orders in (
 

 
)  is required. We solve the e.o.m. of massive scalar field Eq. (2.30) in a static 

spherically symmetric configuration, which yields an exterior solution of   
  far from the DNS system,  

  
     

     
     

  

 
    

     (    ) 

where    
      

       
 is the reduced mass of DNS. Therefore, the mass   

    is the ordinary mass parameter in the 

Klein-Gordon equation (2.30) of   
 , arising from the Higgs-like potential (2.22). In the meanwhile, the mass of   

  

plays precisely a role in the Yukawa-like correction      
     to the standard Newtonian form of gravitational 

potential  
   

 
 in the scalarized DNS binary system. 
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We expand the left-hand side of Eq. (2.29) in weak field limit, by using the weak field perturbations of tensor metric 

Eq. (2.18) and the small perturbative coupling          
 

 
      

 ̃ 
 

   
 
   , with          

 . Imposing the 

harmonic gauge   (   
  

 

 
    

 )    and         and neglecting the higher-order terms, we rewrite the e.o.m. 

of gravitons as 

 
   

 

 
   ̅  

  
   

 

 
         

      (
 ̃ 

 

   
 
)

     
     

  
 

 
   (    

 )  
 

 
   (  

   ) (  
     

 )
 
 (    ) 

where  ̅  
     

  
 

 
    

  and the flat-space d’Alembertian           . Let us study the scalar-mediated 

propagations of gravitons outside the scalarized DNS binary. Substituting the solution of   
  (2.31) into the e.o.m. of 

gravitons (3.2.19), we then write the wave solution of gravitons (2.32) as [55] 

 ̅  
  ∫  ∫

   ⃗ 

(  ) 
   ( ⃗⃗   ⃗    )  ∑   

  

 

    

(  )     (    ) 

Here,     denotes the amplitude of tensor gravitational waves radiated from the orbital decaying DNS. 

∑   
   

    (  )     is the Fourier expansion of the gravitational scalar field   
 , with the gravitational background 

scalar fluctuation fields σ, which is converged by the nth induced scalar background   
( )

      of two NSs.   
   is in 

the form of exterior solutions (2.31).   
 

The Klein-Gordon equation of gravitons (2.33) therefore reads 

.  
(  

   )    
     

 ̃
/  ̅  

    (    ) 

where  ̃ is the semi-major axis of the elliptical DNS binary system. By defining [56]  

(  
   )  

(  
   )    

     

 ̃
 (    ) 

we find that the gravitons acquire a mass of   . In the scenario, the propagations of massive gravitational 

background scalar field   
  modifies the Newtonian potential of DNS and contributes to a Yukawa-like one 

 
    

    

 
. The Yukawa-corrected potential has influence on the propagations of tensor gravitational waves, via the 

entrance of massive scalar component and the scalar charges into the e.o.m. of gravitational waves. As a 

consequence, the massive gravitational background scalar field and two external scalar fields, manifested as scalar 

charges in the effective gravitational constant, have been eaten by the massless gravitons, remaining healthy massive 

gravitons with five d.o.f.. 

 

3. Applications to detected DNS binaries in our galaxy 

According to the expressions of (2.23) and (2.24), we rewrite the mass of gravitons, Eq. (2.35), as  

(  
   )  (  )

 

   (  )         ̃
  . (2.36) 

It is found that the mass of graviton depends on three quantities, i.e. the separation of DNS system represented by  ̃, 

the coupling strength between gravitational scalar field and the NSs that is characterized by the dimensionless 

coupling constant  , and the scalar charges that is related to both the Planck scale constant   and the effective 

gravitational constant     . Consequently, the mass of gravitons rests with the intrinsic properties of DNS, i.e. the 

separation of the binaries and the compactness of two NSs, which is not a certain value and mildly variable. 

 

Accordingly, the gravitons radiated in a DNS binary with a semi-separation of       have masses of the order of 

         , which mildly vary with the compactness of NSs and the separation between them (TABLE I). The 

gravitons radiate from closer DNS binaries possess a higher mass, which corresponds with current simulations that 

higher-frequency gravitational waves come from the closer binaries.  

 

Table I:- 

Source     

(  ) 
    

(  ) 
     

(Days) 

Ecc   
    

     eV 



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 7(5), 693-717 

701 

 

PSR J1811-1736        
              

      18.8 0.828 0.106 

PSR J1829+2456          
               

     1.176 0.139 0.711 

PSR J1913+16                         0.323 0.617 0.972 

PSR B1534+12                         0.421 0.274 1.292 

PSR B2127+11C                       0.335 0.681 1.408 

PSR J1756-2251          
               

      0.320 0.181 1.574 

PSR J1906+0746 1.37 1.25 0.166 0.085 2.427 

PSR J0737-3039                       0.102 0.088 3.356 

Notes.     and     are the masses of spontaneous scalarized NS and induced scalarized NS in units of solar mass, 

respectively.      denotes the orbital period in units of days. “Ecc” is the eccentricity for each binary system.  

 

V. Massive Gravitational Quanta in NS-WD Binaries 

1. Massive gravitational scalar radiation field in NS-WD 

It is well known that NS is a more compact object than WD. Consequently, the strength of couplings between the 

scalar configurations inside stars and the NS/WD matter are different. A distinct dependence of masses on the scalar 

fields for NS and WD actually sources an emission of dipolar gravitational scalar radiation in a post-Newtonian 

inspiraling scalarized binary [46], in addition to the quadruple tensor gravitational waves. Accordingly, the 

dynamics of a scalarized inspiraling NS-WD system is governed by a gravitational scalar radiated field   , together 

with the gravitational tensor metric    . The scalar charge of a scalarized NS-WD binary can be extracted from the 

behavior of the gravitational scalar radiated field near spatial infinity [47], i.e. 

     
  

  
 

 
  (

 

  
)  (    ) 

where the iterative interplay and convergence of the external scalar fields     and     around NS and WD are 

considered, and   
  is the asymptotic value of the gravitational scalar radiated field in spatial infinity. Accordingly, 

the dynamics of an inspiraling scalarized NS-WD binary system, suffering from the post-Newtonian corrections, is 

described by the following scalar-tensor action, 

  ∫    √  .
 

    
 

 

 
                  (  )/  ∑ ∫     (     ) (  )

 

   
 (    ) 

  The gravitational scalar potential of NS-WD binary       (  )  results from two interactions, i.e. the self-

interactions of    and the interactions between    and matter fields of NS and WD. The gravitational scalar radiated 

field is associated with the non-perturbative strong-field effects [39], which contributes to a potential of the runaway 

form [57] that satisfies              (  )   ,    
    

      (  )
 

      (  )
  ,    

    

      (  )
  

      (  ) 
  , ..., as well as 

             (  )   ,    
    

      (  )
 

      (  )
  ,    

    

      (  )
  

      (  ) 
  , ... (      (  )

         (  )    , 

and       (  )
           (  )    

 
, etc.). Thus, the self-interactions of gravitational scalar radiated field, 

whose behavior is described by Eq. (2.37), lead to a monotonically decreasing potential, 

   
 

  

  
 (    ) 

where   has the unit of mass. The NS/WD matter interacts directly with the gravitational scalar radiated field    

through a conformal coupling of the form             . The values of        are also usually negative for WDs [58]. 

So the exponential coupling function is an increasing function of   . The combined effects of self-interactions of    

described by Eq. (2.39) and the conformal coupling give us the form of the scalar potential       (  ) in Eq. 

(2.38), 

      (  )  
  

  
        

 
 
        

  (    ) 

It can be found that       (  ) is an explicit function of energy density        
 of the external scalar fields       , 

which depends on the masses of the stars (a function of the density for each star       ) and the coupling strength 

between interior scalar configuration and matter components of NS/WD [40]. 

 

The summation part of Eq. (2.38) describes the action of matter components making up the NS and the WD. In the 

sum over     we give the world line action for the number of any species of matter and particles consisting in the 

NS and the WD and we use    to represent the integral of the matter action along world line. The couplings of 

matter components inside the stars to the scalar field arise from the dependence of the masses        on   . The 
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NS/WD matter couples to the gravitational tensor metric     via the conformal transformation             , 

according to the rescaling relation, 

   
                   (    ) 

 

The combined gravitational scalar potential       (  )  Eq. (2.40) in NS-WD system, consisting of a 

monotonically decreasing potential (2.39) and a monotonically increasing interaction             , actually displays a 

minimum. By minimizing the differentiation of the gravitational scalar potential with respect to   , i.e. 

      (  )
  ∑

      

      
       

 
 
        

    (    ) 

we can get the minimum value of    at the minimum potential   
   . Around this minimum, the gravitational scalar 

radiated field acquires an effective mass, which is obtained by evaluating the second derivative of the potential at 

  
   , 

(  
     )        (  )

     
    ∑

      
 

  
     

       
 
 

        

    
    (    ) 

Equations (2.42) and (2.43) imply that both the local value of the gravitational scalar radiated field   
    and the 

mass of scalar counterpart depend on the local energy density of external scalar fields produced by two scalarized 

components. It can be found, from Eq. (2.43), that the gravitational scalar radiated field become more massive in a 

higher        
 environment.  

 

The gravitational scalar interaction between NS and WD, mediated by a massive gravitational scalar radiated field, 

typically acquires an exponential Yukawa suppression, which results in a finite range of Yukawa type of potential 

energy, 

 ( )          

       

 
    

       (    ) 

Here the product         is referred to as the interaction strength. The mass of gravitational radiated scalar field is 

characterized by the inverse of the range of a Yukawa potential (2.44). Most of the NS-WD binaries have very small 

orbital eccentricity of            [41], i.e. approximate circular orbits. Accordingly, the scalarized NS and WD 

orbit with each other and form a ring-configuration-orbit on the binary plane. The distance     from the center of the 

NS-WD binary plane to the outer boundary of the ring configuration corresponds to the semi-separation of an NS-

WD binary, which is of the order of      m [41], and the central thickness of the ring approximately equals the 

diameter of the WD, i.e.           . By comparing the radius of NS and WD with the separation between them, we 

can get 
  

 
       . Accordingly, the orbit of NS-WD binary can be assigned to be a thin-ring orbit. The 

gravitational scalar interaction between NS and WD are therefore screened in the thin ring configuration, with an 

interaction range of the same order of the orbital width           . Consequently, the corresponding mass of 

gravitational radiated scalar field in NS-WD binary is estimated as   
                   . 

 

2. Solutions of gravitational scalar radiation field 

The e.o.m. of the gravitational scalar radiation field can be derived by varying the action (2.38) with respect to   , 

which reads 

           (  )
  ∑

      

             
 
 
        

  (    )  

  In the framework of thin-orbit-ring configuration for scalarized NS-WD binary system, with spherically symmetric 

semi-sphere outer boundary, we consider an infinitesimal volume element within the orbital ring. The gravitational 

scalar field can be solved in a static, spherically symmetric regime. Accordingly, the e.o.m. (2.45) is reduced to 

        ⁄  (   ⁄ )(      ⁄ )        (  )
  ∑

      

      
       

 
 
        

  (    ) 

where the coordinates    denotes the distance from the center of orbital ring for the binary. This differential equation 

(3.3.10) is subject to the following boundary conditions, 

        
                          ⁄   

       
             ⁄   

      
         (    ) 

Here, the thickness of the orbital ring    is related to      
,     

, and the Newtonian potential of the binary system 

          ⁄ , which is given by [57] 
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    ⁄ (     
      

)  ⁄ ∑          
     

 (    ) 

 

In analogy with the electrostatic shield of an electronic conducting shell, the deposited scalar energy is screened and 

dominates in the ring orbit, and the scalar charges are distributed on the surface of outer boundary with the radius of 

       . Therefore, the gravitational scalar field inside the ring     
 can be considered as perturbations, i.e. 

    
      

.  

 

Aiming to investigate the influence of the massive gravitational scalar field on the propagations of gravitons, we are 

just interested in the solutions outside the system, i.e. solutions in the region of        . By solving Eq. (2.46) 

and using the boundary conditions (2.47), we get the exact exterior solutions, 

  ( 
      )       

(  
     

      

 ∑               
)
     

     (   
  

 
)

  
      

 (    ) 

By considering that the field density contrast     
      

 and in the limit of thin-ring orbit     , the 

combination of Eq. (2.48) and Eq. (2.49) gives the approximative solutions 

  ( 
      )  

∑            

   

   

 

   
   

       

  
      

. (2.50) 

 

3. Scalar-mediated mass of gravitons 

Variation of the action (2.38) with respect to the metric gives us the following e.o.m., 

(    
 

 
    )   

           
 

 
   (    )

     (             
 
 

        

 ) (    ) 

We consider the weak-field scalar and tensor perturbations, i.e.            ,    =     
    , as well as the 

small perturbative coupling         
 

 
     

   

     
   . Expanding the left-hand side of Eq. (2.51) in the weak-

field limits, we rewrite the e.o.m. of gravitons as  

( 
 
 ̅   

 

 
        (        

⁄ ))   
             

 

 
   (     )

  
 

 
   (  

     ) (        
)
 
 

(    ) 

where we impose the harmonic gauge conditions of   (    
 

 
    )    and        , and the expansion of 

      (  ) in Taylor series about      
 is also used.  

 

We then substitute the exterior approximative solutions (2.50) of    into Eq. (2.52) and follow the gauge selection 

described in [55]. It is evident that the motion of gravitons has the wave solutions, with the modifications resulting 

from the gravitational scalar radiation [59, 60], 

 ̅   ∫  ∫
   ⃗ 

(  ) 
   ( ⃗⃗   ⃗    ) ∫     (  

      )     
(  )

  

 
.  ∑        

   
      

     
/  (    ) 

Here, we consider the plane-wave solutions of the gravitational scalar radiation    ∫     
(  )  (  

      )    

[61]. The quantities “ ”, “ ⃗ ”, and “ ” denote the frequency, the wave vector and the amplitude of tensor 

gravitational waves radiated from the orbital decaying NS-WD system, while those with “ ” are the corresponding 

quantities for the gravitational scalar radiation. 

 

Then the Klein-Gordon equation of gravitons reads 

[  (  
     ) (   

   )⁄ ] ̅     (    ) 

Consequently, we can find that the gravitons acquire a mass, which is expressed as [62] 

(  
     )  (  

     ) (   
   )⁄ . (2.55) 

The asymptotic value of the gravitational scalar radiation field near spatial infinity    
 is constrained to      

  

     in weak-field tests, for a coupling strength of about -6 [40]. In the binary-pulsar measurements [38, 43, 51], 

   
 is constrained to very close to zero, and it is usually to be taken as    

 
 

 ⁄           . Because of a less 

compactness and relatively lower surface gravity of WD, we consider    
 

 
 ⁄       in NS-WD binary. 

Accordingly, we estimate the gravitons radiated from NS-WD binaries can acquire a mass of the order of 

        . From Eq. (2.43), the mass of gravitational scalar radiation field is a function of energy density of stars' 
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scalar configurations and also depends on the strength of the scalar field and the scalar coupling strength. Therefore, 

the value of graviton mass   
      in NS-WD systems mildly varies according to the microphysics of the interior 

of NS/WD and intrinsic properties of the binaries. 

 

VI. Discussions 

The mass generation mechanism of gravitational quanta in both DNS and NS-WD binaries requires the scalarization 

of the system, which necessitates firstly the scalarization of each component. Noting that the spontaneous 

scalarization takes place in the interior of a NS, locating in a binary system, when its compactness 
  

     
 is above a 

given critical threshold even in the absence of scalar sources. The subsequently induced scalarizations also occur in 

each companion star of the spontaneously scalarized NSs. That is to say both spontaneous scalarization and induced 

scalarization occur in the interior of a single star. So the components in DNS binaries and NS-WD systems undergo 

scalarizations via same mechanisms. However, the binding energy of NS and WD are different, which contributes to 

differences in the dependence of the masses of NS/WD on the scalar configurations (i.e. scalar charges). An obvious 

difference in the dependence of the masses on the scalar field of two components in one binary system actually 

sources an emission of dipolar gravitational scalar radiation [46]. As a result, the causes of gravitational scalar 

counterpart field are distinct in DNS and NS-WD systems.  

 

  In inspiraling DNS binaries, the two NS components possess very similar binding energy [41], and the scalar 

charges are very close to each other. Consequently, the dipolar gravitational radiation is negligible. With the 

iteratively interplay, the strengths of external scalar field around each component is enhanced, and a convergence 

finally occurs. As a consequence, a gravitational scalar background field appears, which plays the role of the 

gravitational scalar counterpart of quadruple gravitational tensor waves. In inspiraling NS-WD systems, owing to a 

different binding energy of NS and WD, the dependence of masses of NS/WD on scalar configurations is different. 

Therefore, the two components in NS-WD binary carry different scalar charges, which is responsible for a dipolar 

gravitational scalar radiation. Accordingly, the gravitational scalar radiated field plays the role of the gravitational 

scalar counterpart for quadruple gravitational tensor waves in a post-Newtonian corrected inspiraling scalarized NS-

WD system. Consequently, the scalarized inspiraling DNS and NS-WD systems, suffering from gravitational scalar 

counterparts, dip in gravitational scalar potentials, resulting from different mechanism, which contribute to distinct 

physical processes. In the inspiraling scalarized DNS binaries, because of the iterative interplay of two external 

scalar fields, the gravitational scalar background field suffers from fluctuations. The scalar fluctuations couple to 

both tensor metrics and gravitational scalar background field, which transfer the couplings of scalar fields in to a 

Higgs-like gravitational scalar potential Eq. (2.22), with an appearance of a mass-dimensional constant. It is the 

appearance of Planck-scale mass-dimensional constant that is responsible for a process of spontaneous breaking of 

symmetry. Thus the gravitational scalar background field becomes a massive one, in which the gravitational scalar 

fluctuation field is the massless field and plays the role of Higgs-like field. Therefore, the mass of gravitational 

scalar counterpart in inspiraling scalarized DNS, expressed by Eq. (2.24), is of the order of Planck mass scale, which 

depends on the coupling strength between the gravitational background scalar field and NS matter. In inspiraling 

scalarized NS-WD binaries, the gravitational scalar potential is then consisting of a monotonically decreasing self-

interaction of the gravitational scalar radiated field and a scalar-energy-density-dependent exponential increasing 

coupling to NS/WD matters. The non-monotonic potential displays a minimum, which contributes to a massive 

gravitational scalar counterpart. The reason why the gravitational scalar counterpart in NS-WD system becomes 

massive is that the gravitational scalar radiated field oscillates around a local minimum of the gravitational scalar 

potential, with high scalar energy density. By considering the Yukawa-suppression effects on an environment of 

high scalar energy density, we estimate the mass of dipolar gravitational scalar counterpart of quadruple tensor 

gravitational waves in NS-WD binaries, expressed by Eq. (2.43), as of the order of          , which depends on 

the orbital scale of the NS-WD system. 

 

As far as the gravitons, the mass generation mechanism is that two external scalar fields and the gravitational scalar 

counterpart, carrying three d.o.f. in all, are eaten by the massless gravitons, with two d.o.f.. Finally, the gravitons 

possess five d.o.f. and become massive ones. The graviton masses have the same order of         , which depend 

on the intrinsic properties of the systems. 

 

According to Higgs mechanism in standard model, the mass generation associates with spontaneous symmetry 

breaking. The mass generation of gravitational quanta in NS binaries basically due to the appearance of the 

gravitational scalar counterpart field, which spontaneously breaks the Lorentz invariance constructed in the 
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framework of general relativity, during the process of orbital decay. As the magnitude of deviations from general 

relativity depends non-linearly on the binding energy, the more massive NSs, e.g. PSRs J0348+0432 with mass of 

            and J1614-2230 with mass of            , can be more promising systems used to probe the 

non-perturbative strong-field deviations away from general relativity, which is qualitatively very different compared 

to other binary-pulsar experiments. The effect is true even for DNS binaries that have small differences on their 

binding energies.  

 

Covariant Treatment And Quantum Corrections To The Gravitational Potentail In 

Scalarized NS Binaries:- 
I. Covariant Quantum Theory of Gravity 

Contrary to the situation in the canonical quantum theory of gravity discussed in section 2.1, a manifestly covariant 

treatment for quantum theory of gravity [13, 14] was constructed by analogy with the conventional scattering-matrix 

theory, which lends itself to study the questions such as the scattering, pair-production, pair-annihilation, and decay 

of individual quanta. However, the manifest covariance in conventional scattering-matrix theory denotes covariant 

Lorentz invariance, which is an expression of a geometrical symmetry processed by a system. The gravity theory 

bases on the manifest general covariant propagators, which is accomplished by introducing a variable background 

metric, instead of a flat background. 

 

The theory begins with the selection of an action functional 

  ∫     (   ) 

The Lagrangian is a function of dynamical variables and a finite number of their space-time derivatives at a single 

point, whose choice basically irrelevant to the development of the theory of a given field and should be determined 

only by the convenience, which are in practice limit drastically by various criteria, such as covariance, self-

consistency of the field equations, the existence of the vacuum as a state of lowest energy, and the positive 

definiteness of the quantum mechanical Hilbert space. 

 

The covariant quantum theory of gravity begins with a treatment of the propagations of small disturbances on a 

classical background, which plays the fundamental role as a technical instrument for probing vacuum process and as 

an arbitrary fiducial point for the quantum fluctuations. The transition from classical to quantum regime is made via 

the Poisson bracket of Peierls [63]. We use the commutation relations for the asymptotic fields to define the 

incoming and outgoing states. With the aid of a canonical form for the commutator function [13], we can define two 

distinct Feynman propagators relative to an arbitrary background. One of these is manifestly covariant and 

propagates both nonphysical and physical quanta. While the other propagates only physical quanta and lacks 

manifest covariance, which is used to define the external line wave function. By the construction of full S-matrix 

theory [13, 14], we can calculate the gravitational scattering of two scalar particles, scattering of gravitons by scalar 

particles, and graviton-graviton scattering. 

 

II. Quantum Corrections to Gravitational Potential 

In scalarized NS binaries, the gravitational interactions between two scalarized components realize via the 

exchanges of corresponding gravitational quanta, i.e. gravitons and gravitational scalar particles. In classical 

gravitational theory, the modified Newtonian potential expressed by Eq. (2.12) is approximately valid for the 

gravitational interactions in a gravitationally bounding scalarized NS binary system, due to the exchanges of both 

gravitons and scalar particles. With a definition of bound state potential in the framework of general relativity, the 

relativistic corrections to the Newtonian law, arising from higher order effects (
  

  
)  and nonlinear terms in the field 

equations of order 
  

 
 (         ), in a Hamiltonian treatment were completed [64], which was obtained in the 

form of 

       

       

      

 (       )

      
 (   ) 

where     is a numerical constant which would depend on the precise definition of the potential. The classical 

relativistic corrections to the Newtonian potential of two bodies also were discussed [65, 66], with general 

agreement with the above result, although in unavoidably ambiguously defining the potential.  
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The theory of general relativity has been widely accepted in describing the gravitationally bound systems consisting 

of two compact extended objects. The post-Newtonian approximation to general relativity [67, 68], i.e. 

systematically solving the Einstein equations with nonrelativistic sources, is employed as the conventional approach 

to calculating the initial inspiral of the system as it slowly loses energy to gravitational radiation [55]. In order to 

investigate the gravitational radiation power spectra emitted by nonrelativistic bound systems, the dynamics of two 

components, which are treated as point particles, in a binary system coupled to gravity was described in an effective 

field theory framework [69], in which the observables appearing in long-wavelength physics are consistent with 

general coordinate invariance of general relativity. 

 

General relativity, with low energy degrees of freedom and gravitational interactions, is a consistent effective field 

theory [70], which allows, in principle, its quantization to be carried out without knowledge of microphysics details. 

By using the effective field theory approach with background field quantization methods [13, 14], the leading long-

distance quantum corrections to the one-particle-irreducible Newtonian potential were calculated [70, 71], which 

result in a finite correction,  

       

       

      

 

      
  (   ) 

where     is a numerical constant. However, many works dedicated to the choices between various definitions of 

the potential depending on the physical situation and the way of defining the total energy. By using the Arnowitt-

Deser-Misner formula for the total energy of the gravitational system, the Wilson loop description for the 

gravitational potential has been done [72, 73]. The quantum corrections to Newtonian potential for an arbitrary 

gravitational field that includes the back-reaction produced by a quantum scalar field of mass was considered by 

deriving an in-in effective equations [74]. For the simplicity and intuitiveness, a number of authors employed the 

scattering amplitude itself to define the potential [65, 75-78]. The obtained particular effects, from summing one-

loop Feynman diagrams with off-shell gravitons, applies to point particle masses [78]. The quantum gravitational 

effects of a pair of localized polarizable objects, associated with two-graviton exchange from the induced 

gravitational quadrupole moments due to quantum fluctuations in the metric, was computed [79]. 

 

In this section, we shall treat the components in the scalarized system as massive scalar point sources and employ 

the background field method [13, 14], in order to investigate the quantum corrections to the modified Newtonian 

potential (2.12) in scalarized NS binaries. 

 

1. Effective Field Theory Description 

Neglecting the extended scales, we treat the stars in scalarized NS binary systems as massive scalar point particles. 

The action that describes the scalarized binary reads, 

  ∫   (           )  ∫   √  (
 

  
  

 

 
          

 

 
     

 

 
    

   )    (   ) 

Here,                              .    is the gravitational scalar counterpart developed during the 

dynamical scalarization [50].    and          represent the effective Lagrangian of the gravitational tensor terms and 

the terms of scalar particles, respectively.   √     is the gravitational coupling.  

  In order to treat action (   ) as an effective field theory, one must include all possible higher derivative couplings 

of the fields in the gravitational Lagrangian [70]. We consequently write an effective Lagrangian for gravitational 

tensor terms and scalar particles in describing the gravitationally scalarized binary as 

  
    

  

  
    

     
        (   ) 

        
     

 

 
          

 

 
(       

 )    ̅  
          ̅          ̅  (       

 )  

   (   ) 
Here, the coefficients         are dimensionless constants that determine the scale of the energy expansion of pure 

gravity [80], and  ̅   ̅   ̅    are energy-scale dependent coupling constants determined currently by binary 

observational measurements. 

 

We expand the metric as a background part  ̅   and a quantum contribution     , 

     ̅             ̅            
 
      √   √  ̅ (  

 

 
    )  (   ) 
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where      ̅   ̅      and    ̅     . For the simplicity of graviton propagator, a gauge fixing term [81, 82], 

with the form of [83] 
 

  
(  √  ̅   )  (   ) 

should be introduced, which then gives the bare graviton propagator 

     ( )  
      

  
 

 (                    )

   
 (   ) 

where   is the momentum. In calculating quantum corrections at one loop, we need to consider the Lagrangian to 

quadratic order. Consequently, the expansion of Lagrangian for gravitons and scalar fields, as well as the mixed 

ones, can be written as follows, 

 (  )   
 

 
(                

   ) (    ) 

 (  )   
 

 
(                                             ) (    ) 

 (   )  
 

 
[          

 

 
   (                

   )]  (    ) 

 (  )  
 

 
[  (           

 

 
                      

 

 
          )     (                      

                                                                        

            )]  (    ) 

 (    )   
  

 
[             

 

 
            

 (
 

 
       

 

 
      ) (                

   )]  (    ) 

 

In some given NS binaries, the gravitational scalar counterparts can become massive [50], with a mass of   . 

Accordingly, the gravitational scalar interactions in these systems between two scalarized components realize by the 

exchange of massive scalar fields with the massive scalar propagator 
 

     
    

, which results in analytic 

contributions to the gravitational potential. Owing to an exponential Yukawa suppression, the propagations of 

massive mode, with obvious representation as 
 

     
   

 

  
 (  

  

  
   ) in momentum  , are screened in the 

range of binary orbit [50]. So the analytical contributions are local effects. On the scale lager than the binary orbit, 

non-analytic effects, arising from the propagations of massless gravitons and scalar fields, dominate in magnitude 

over the analytic corrections in the low energy limit of the effective field theory. 

 

2. Calculations and Results 
According to dimensional analysis, we can figure out the modifications to the potential (2.12) of the form 

 ( )   
       

 
 

       

 
    

   

   
    

  

    
   (    ) 

where    contains both gravitational mass (       ) and the scalar contributions (           ). What we shall do 

in this section is to calculate the numerical coefficients     and     for an appropriate definition of potential. 

  In our calculations, we only consider the non-analytic contributions from the one-loop diagrams, which contain two 

or more massless propagating particles. The general form for diagrams contributing to the scattering matrix in the 

momentum ( ) space representation is 

 ( )          
  

  
    

   (   )     
 

 

√   
    

 
 

√   
   (    ) 

Here,  ,  ,  , in the terms with power series of momentum  , correspond to analytic pieces, which only dominate 

in high-energy regime of the effective field theory and are of no interest to our calculations. The 

coefficients            associate with the long range, non-analytic interactions, where          involve terms 

yield the leading post-Newtonian and quantum corrections to the gravitational potential. The resulting amplitudes 

are transformed to produce the scattering potential, by performing Fourier transformation and using the following 

integrals, 
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∫
   

(  ) 
   ⃗⃗⃗  ⃗⃗

 

  ⃗⃗  
 

 

   
   

∫
   

(  ) 
   ⃗⃗⃗  ⃗⃗

 

  ⃗⃗ 
 

 

     
   

∫
   

(  ) 
   ⃗⃗⃗  ⃗⃗   (  ⃗⃗  )   

 

    
 (    ) 

 

Definition of potential 

Because the NS binaries are gravitational bound systems, we consider the expectation value for the matrix    and 

use the scattering amplitude itself to define the gravitational potential. The full scattering amplitude are calculated in 

order to represent the non-relativistic potential generated by the non-analytic pieces [75, 78],  
⟨      ⟩  (  )   (     

       
 )[  ( ⃗⃗)]     ( ⃗⃗)   (    ) (    ) 

Here,       and   
    

  are the incoming and outgoing momentum, respectively.      is the energy difference 

between the incoming and outgoing states.  ( ⃗⃗) is the non-analytical part of the amplitude in momentum space 

representation.  ( ⃗⃗)   
 

    

 

    
 ( ⃗⃗). Taking the non-relativistic limit and Fourier transformation, we can get 

the corresponding coordinate space representation, 
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Vertex rules 

From the effective Lagrangian (3.10)-(3.14), our calculations for the Feynman diagrams involve in two scalar-one 

graviton vertex (   ), two scalar-two graviton vertex (    ), and three-graviton vertex (  ). The two scalar-one 

graviton vertex is given by  
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where       denote the four-momentum of the incoming and outgoing scalar particles, respectively. The two scalar-

two graviton vertex can be written as 
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where       
 

 
(             ) and the pairs of indices (  ) and (  ) are associated with two graviton lines. 

The three-graviton vertex is derived via the background field method, which has the form [70] 
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Tree diagram 

The set of tree diagrams, coming from the exchanges of both gravitons and scalar particles in Fig. 1, are the well-

known lowest order potential in the non-relativistic limit. Because the scalar configuration couples to the star 

matters inside each component, the exchanges of gravitons actually blend with that of scalar particles. We put them 

into one single Feynman diagram in Fig. 1.  However, the gravitational interactions between star matters realize via 

the exchanges of gravitons, while the scalar configurations settled in the star components gravitationally interact 

with each other by the exchanges of scalar particles [46], we separate the exchanges of gravitons from that of scalar 
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particles when calculating the contributions to the potential. By using the Feynman rules and choosing a 

parameterization of the momentum, the piece of graviton exchanges, with a momentum  , can be defined as 

   
 
   

  (         )
      

  
  
  (         ) (    ) 

where              . The component with mass     and scalar charges     has incoming momentum    

and outgoing momentum   , and the other component with mass     and scalar charges     has incoming 

momentum    and outgoing momentum   , respectively. 

 

 
Fig 1:-The tree diagram contributes to the scalar-modified Newtonian potential. The graviton-graviton scattering 

yields the Newtonian potential, while the gravitational scalar interaction results from the exchanges of scalar 

particles, which accompanies the graviton exchanges. The triple solid lines represent the exchanges of gravitons and 

accompanied exchanges of scalar particles in a scalarized binary system, in which the central thick line denotes the 

gravitons, and the thin lines on two sides are the scalar particles. The dash lines are the scalar fields. 

 

By contracting all indices for the tree level and performing Fourier transforms, we obtain the scattering potential 

  
 ( )   

       

 
 (    ) 

which gives the Newtonian law. 

 

The settled scalar configuration inside the star affects star's masses [45] and thus enhances the gravitational 

attraction between the binary's components, which make the scalarized system act as a source of the gravitational 

scalar field [50]. Therefore, the vertex associated with the propagations of scalar fields between two stars involves 

scalar mass dimensional quantities, i.e.      and     . Accordingly, we define the diagram for the exchanges of 

scalar particles with a propagating momentum   as 

   
    

  (        )
 

  
  
  (        ) (    ) 

where    is the incoming momentum for components with scalar charge     and    is the incoming momentum 

with external line for components with scalar charge    . In non-relativistic limit, we perform Fourier 

transformation 

 ( ⃗)  
 

    

 

    

∫
   

(  ) 
   ⃗⃗⃗  ⃗⃗ ( ⃗⃗) (    ) 

and find the result 

  
 ( )   

       

 
 (    ) 

which arises from the classically gravitational scalar interaction between two scalarized stars. Therefore, the 

combined result of FIG.1 yields the modified Newtonian potential (2.12). 

 

 

Box and crossed-box diagrams 
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The box (FIG. 2(a)) and crossed-box (FIG. 2(b)) diagrams just involve 1-graviton-two scalar particle (   ).  

  The contributions from Box diagram FIG. 2(a) can be written as 
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Fig 2:-The set of box (a) and crossed-box (b) diagrams contribute to the non-analytic components of the potential. 

for the gravitational tensor interactions, and as 
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  (           ) (    ) 
for gravitational scalar interactions in FIG. 2(a). The star with mass and scalar charge (       ) has incoming 

momentum    and outgoing momentum   , and the other component with (       ) has incoming momentum    

and outgoing momentum   , respectively. 

  The non-analytic contributions to the potential from the crossed-box diagram FIG. 2(b) are defined as 
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for pieces of graviton exchanges and as 
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for that of exchanges of scalar particles. 

  For the calculations of diagrams, we employ the algebraic program and the contraction rules, which are discussed 

in references [78, 84] in order to reduce the integrals, and we also use the integrals listed in the appendix in these 

two references. The results from graviton exchanges are in agreement with that of [78], i.e. 
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The contributions from scalar particles exchanges give 

  ( )  ( )( )   
       

 
0
  (       )

  
 

  

  

 

  
1  (    ) 

 

Triangle diagrams 

The triangle diagrams contributing to the non-analytic pieces arise from graviton exchanges involving in the 

effective Lagrangian  (   ) and  (    ) (see FIG. 3). The expressions are same as [78], 
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Fig 3:-The set of triangle diagrams contribute to the non-analytic pieces of the potential. 

 

Taking the non-relativistic limit, we produce the results 
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  The pieces from the exchange of scalar particles have the following expressions, 
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The non-analytic contributions to the potential arising from gravitational scalar interactions are obtained as 
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Circular diagram 

By taking the symmetry into account, we write down the expressions of circular diagram (FUG. 4) involving in both 

gravitons exchanges and the exchanges of scalar particles as follows, respectively, 
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Fig 4:-The set of circular diagram contribute to the non-analytic components of the potential. 
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Performing the same contractions and integrals as reference [78], we obtain the corrections to the potential, 
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One-particle reducible diagrams 

 
Fig 5:-Two classes of the set of one-particle reducible diagrams yield non-analytic corrections to the potential. The 

solid lines denote the gravitons. 

 

There are two classes of set of one-particle reducible (1PR) diagrams (see FIG. 5), i.e. the massive loop diagrams 

(FIG. 5(a) and FIG. 5(b)) and the mixed scalar-graviton diagrams (FIG. 5(c) and FIG. 5(d)). For the massive loop 

diagrams contributing to non-analytic corrections, we have the expressions, 
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which yield the contributions to the potential, 
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By noting that a symmetry factor of 
 

  
, the pure graviton exchanges contributing to the mixed diagrams (FIG. 5(c) 

and FIG. 5(d)) can be defined as follows, 
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and the contributions from the mixed scalar-graviton diagrams are defined as 
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By performing the algebra analysis, we obtain the following corrections, respectively, 
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Vacuum polarization diagrams 

 

 
Fig 6:-The set of vacuum polarization diagrams contribute to the non-analytic corrections to the potential. The 

graviton loop diagram contains a ghost one, which is marked by the double line in (a). 

 

By considering the gauge choice Eq. (3.8), which yields a Faddeev-Popov ghost along with the graviton loop, a 

ghost loop exists in FIG. 6(a). Accordingly, the vacuum polarization FIG. 6(a) for graviton and ghost loop diagram 

has the expression 
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where the vacuum polarization tensor       [85, 86] satisfies the Slavnov-Taylor identity 
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It gives the contributions to the potential 
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While the corrections from the scalar loop diagram FIG. 6(b), which involves in a symmetry factor of 1/2!, can be 

written as 
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We find the results from scalar loop vacuum polarization diagram, 
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III. Results for the Gravitational Potential 

Adding up all the non-analytical contributions, we get the total gravitational potential, containing both classical 

relativistic corrections and quantum corrections [87], 
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It can be found that the gravitational interactions involving exchanges of either gravitons or scalar particles 

contribute to both classical relativistic post-Newtonian corrections and quantum corrections. The first two terms are 

modified Newtonian potential for a scalarized binary system, which represent the lowest order interactions of the 

two stars and dominate the potential at low energies. The next three terms denote the classical relativistic corrections 

to the gravitational potential, which are the leading post-Newtonian corrections in general relativity with the scalar 

charged stars. The classical relativistic corrections arise from just pure particle exchanges. The pure graviton 

exchanges contribute to the corrections to Newtonian piece, while the pure scalar exchanges produce the 

contributions to the scalar modified part of the potential. The last three terms represent the leading 1-loop 

corrections to gravitational potential of scalarized binaries from a quantum point of view. Looking at the quantum 

corrections, we notice that the contributions arising from graviton exchanges combine into one term, while that 

resulting from the exchanges involving scalar fields are split up into two terms. There is one term where the two 

scalar charges are multiplied together, which comes from the combined contributions of pure scalar exchanges. The 

last term originates from the mixed graviton-scalar field exchanges in 1PR diagrams FIG. 5(c) and FIG. 5(d), in 

which the two scalar charges are squared and separated, because of different compactness of two components, and 

the dependence of the scalar charges on the stars' compactness [47], even in DNS systems.   

 

Summary And Discussions:- 
The gravitational waves radiated from wide in-spiraling NS binaries, with orbital periods in units of days, locate in 

the typical low-frequency band of around 10
−4 

Hz. The amplitudes are of the order of 10
−24

. So it is very unlikely 

to be detected currently by LIGO. However, the first space-based gravitational-wave observatory, LISA, is expected 

to detect space-born low-frequency gravitational waves, whose sensitivity can be reduced to 10
−24

. Therefore, we 

would expect the gravitational waves and scalar counterparts from inspiraling scalarized DNS and NS-WD binaries 

to be detected and constrained potentially by LISA/eLISA in the near future. In addition, the masses of gravitational 

quanta from these systems depend on the binding energy of stars, which is the mission of NICER.  

 

By considering the dependence of scalar charges on the stars' masses, the scalar charges, which are parameterized by 

the “sensitivities” (        for NSs and          for white dwarfs), range from          [46]. Therefore, the 
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gravitational scalar effect of the potential is 
       

 
             

 

 
 in scalarized DNS systems, which is smaller 

in NS binaries with white dwarf or main sequence companion stars. In the SI units, we can estimate the effect of 

quantum corrections in Eq. (3.57), i.e. 
  

    
        . 

 

Accordingly, the quantum effects on the gravitational potential are indeed small and seemingly impossible to be 

detected by astronomical observations. However, the quantum effects are on long distance. By taking the rotational 

effects of compact NSs into consideration, which give rise to space-time ripples, we expect that the detections and 

constraints on stochastic gravitational waves from pulsar timing array can give us some indications. In addition, the 

rotation of compact NS may disturb the space-time in its vicinity and lead to some virtual processes in the view of 

quantum field theory, which can be a potential tool to investigate the nature of dark energy. So we expect the 

cosmological observations for dark energy can give verifications and constraints to such quantum corrections NS 

binaries. 
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