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We resor to the covariant quantization treatment and investigate the 

long-distance, low-energy, leading quantum corrections to gravitational 

potential for scalarized neutron star (NS) binary systems, by treating 

general relativity as an effective field theory. We neglect the extended 

scales of two scalarized components and treat them as point particles, 

which gravitationally interact with each other via the exchanges of both 

gravitons and scalar particles, because of the settled scalar fields inside 

the stars. Accordingly, the gravitational potential includes both 

Newtonian potential and scalar-modified Newtonian-like part. We, in 

the non-relativistic limit, calculate the non-analytic corrections to the 

modified gravitational potential directly from the sum of all exchanges 

of both gravitons and scalar particles to one-loop order. The appropriate 

vertex rules are extracted from the effective Lagrangian. Our 

calculations demonstrate that either the graviton exchanges or the 

exchanges of scalar particles contribute to both classical relativistic 

corrections and quantum corrections to the gravitational potential of the 

scalarized NS binaries. We also discuss the results in relation to future 

cosmological observations. 
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Introduction:- 
According to classical gravitational theory, the Newtonian potential 

       
     

 
     

is approximately valid for the gravitational interactions in compact binary, such as neutron star (NS) binary (  is the 

Newtonian gravitational constant.    and    are the masses of two components in the binary system.). With a 

definition of bound state potential in the framework of general relativity, the relativistic corrections, arising from 

higher order effects in 
  

  
 and nonlinear terms in the field equations of order 

  

   
 (       ), in a Hamiltonian 

treatment were completed [1], which was obtained in the form of 

       

     

 

        

   
                  

where     is a numerical constant which would depend on the precise definition of the potential. The classical 

relativistic corrections to the Newtonian potential of two bodies also were discussed [2, 3], with general agreement 

with the above result, although in unavoidably ambiguously defining the potential. 

Corresponding Author:-Jing Wang. 

Address:-School of Physical science and Technology, Guangxi Normal University, Guilin, 541004, 

P. R. China. 

 

http://www.journalijar.com/


ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 7(5), 510-522 

511 

 

The theory of general relativity has been widely accepted in describing the gravitationally bound systems consisting 

of two compact extended objects. The post-Newtonian approximation to general relativity [4, 5], i.e. systematically 

solving the Einstein equations with nonrelativistic sources, is employed as the conventional approach to calculating 

the initial inspiral of the system as it slowly loses energy to gravitational radiation [6]. In order to investigate the 

gravitational radiation power spectra emitted by nonrelativistic bound systems, the dynamics of two components, 

which are treated as point particles, in a binary system coupled to gravity was described in an effective field theory 

framework [7], in which the observables appearing in long-wavelength physics are consistent with general 

coordinate invariance of general relativity. 

 

General relativity, with low energy degree of freedoms and gravitational interactions, is a consistent effective field 

theory [8], which allows, in principle, its quantization to be carried out without knowledge of microphysics details. 

By using the effective field theory approach with background field quantization [9, 10], the leading long-distance 

quantum corrections to the one-particle-irreducible potential were calculated [8, 11], which result in a finite 

correction, 

       

     

 

  

    
               

where     is a numerical constant. However, many works dedicated to the choices between various definitions of 

the potential depending on the physical situation and the way of defining the total energy. By using the Arnowitt-

Deser-Misner formula for the total energy of the gravitational system, the Wilson loop description for the 

gravitational potential has been done [12, 13]. The quantum corrections to Newtonian potential for an arbitrary 

gravitational field that includes the back-reaction produced by a quantum scalar field of mass was considered by 

deriving an in-in effective equations [14]. For the simplicity and intuitiveness, a number of authors employed the 

scattering amplitude itself to define the potential [2, 15-18]. The obtained particular effect, from summing one-loop 

Feynman diagrams with off-shell gravitons, applies to point particle masses [18]. The quantum gravitational effects 

of a pair of localized polarizable objects, associated with two-graviton exchange from the induced gravitational 

quadrupole moments due to quantum fluctuations in the metric, was computed [19]. 

 

Several observations of binary pulsar systems, i.e. Hulse-Taylor system, PSR 1913+16 [20, 21], and PSR 

J1738+0333 [22] indicated an excess orbital decay, which directly translates to a dipole radiation constraint on the 

deviations from the quadruple formula. It was relived by considering that a nontrivial scalar configuration comes 

about in strong-field regime [23]. In analogy with the spontaneous magnetization of ferromagnets below the Curie 

temperature, an NS, with compactness above a certain critical value, will occur spontaneous scalarization [24]. NSs, 

with a mass of 1.4   , in binary system would develop strong scalar charges even in absence of external scalar 

solicitation for strong couplings [25], which enhances the gravitational interactions with the companion star and 

induces its scalarzation [26]. The iterative interplay between two scalarized components generates a gravitational 

scalar counterpart, besides the gravitational tensor radiation, which was assigned to a dynamical scalarization of the 

system [27]. As a consequence, the gravitational interactions of two scalarized components in a scalarized NS binary 

include exchanges of both gravitons and scalar particles. In this work, we investigate the NS binary systems with 

orbital separations of about     m, which is expected to coalesce and merge in the Hubble time. Consequently, the 

relative momentum between two star components can be neglected, and we just consider the velocity-free 

gravitational potential, which depends on only the orbital separation of the system.  Accordingly, the Newtonian 

gravitational interaction is modified by the gravitational scalar interactions, which reads [24] 

       
     

 
 

     

 
           

where    and    denote the scalar charges developed inside the two scalarized components [28]. 

 

The exchanges of both gravitons and scalar particles involve scattering process, i.e. the gravitational scattering of 

two scalar particles, the gravitational scattering of gravitons by scalar particles, and graviton-graviton scattering. In 

this paper, we shall, treating the components as massive scalar point sources, employing the background field 

method [9, 10], and using the scattering amplitude to define the gravitational potential, investigate the quantum 

corrections to the modified Newtonian potential Eq. (4) in scalarized NS binaries. The paper is organized as follows. 

Firstly, we will review the effective field theory quantization for gravitation and describe the gravitationally 

scalarized NS binaries in the effective field theory framework. Then we will give the definition of potential, extract 

the Feynman rules from the effective action, and look at the calculations of Feymann diagrams. Finally, we 

summarize our findings and discuss the results. 
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Effective Field Theory Description For Gravitational Scalarized NS Binary  
Neglecting the extended scales, we treat the star components in scalarized NS binary systems as massive scalar point 

particles. We ignore the dynamics, which causes orbital decay and thus gravitational radiation from the system, and 

just consider the velocity-free and separation-dependent gravitational interaction between two stars, which is 

referred to be the ``static" system. The action that describes the statics scalarized binary reads 

  ∫                

 ∫   √  (
 

  
  

 

 
          

 

 
     

 

 
    

   )                                                         

Here, the quantities                      denote the scalar fields, masses, and scalar charges carried by the 

components in the system, respectively, and    is the gravitational scalar counterpart developed during the 

dynamical scalarization [27].    and          represent the effective covariant Lagrangian of the gravitational tensor 

terms and the terms of massive scalar configurations settled in the scalarized star components, respectively.   

√     is the gravitational coupling.       (   ) denotes the determinant of the gravitational tensor metric    . 

         is the Ricci scalar, and the curvature tensor reads, 

         
       

     
    

     
    

      

   
  

   

 
(                 )                   

 

In order to treat action (5) as an effective field theory, one must include all possible higher derivative couplings of 

the fields in the gravitational Lagrangian [8]. We consequently write an effective Lagrangian for gravitational tensor 

terms and scalar configurations in describing the gravitationally scalarized binary as 

  
    

  

  
    

     
            

        
     

 

 
          

 

 
(       

 )    ̅  
          ̅          ̅  (       

 )  

       
 

Here, the coefficients         are dimensionless constants that determine the scale of the energy expansion of pure 

gravity [29], and  ̅   ̅   ̅    are energy-scale dependent coupling constants determined currently by binary 

observational measurements. In our calculations we choose the metric convention in flat space-time     

                . 

  We expand the metric as a background part  ̅   and a quantum contribution     , 

     ̅             ̅            
 
      √   √  ̅ (  

 

 
    )       

where      ̅   ̅      and    ̅     . For the simplicity of graviton propagator, a gauge fixing term [30, 31], 

with the form of [32] 
 

  
   √  ̅           

should be introduced, which then gives the bare graviton propagator 

         
      

  
 

                       

   
      

where   is the momentum. In calculating quantum corrections at one loop, we need to consider the Lagrangian to 

quadratic order. Consequently, the expansion of Lagrangian up to the necessary order can be written as follows, 

       
 

 
(                

   )      

       
 

 
                                                     

       
 

 
[          

 

 
   (                

   )]       
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[  (           

 

 
                      

 

 
          )                            

                                                                        

             ]       

         
  

 
[             

 

 
            

 (
 

 
       

 

 
      ) (                

   )]       

where       
    

   
. 

 

In some given NS binaries, the gravitational scalar counterparts can become massive [27], with a mass of   . 

Accordingly, the gravitational scalar interactions in these systems between two scalarized components realize by the 

exchange of massive scalar fields with the massive scalar propagator 
 

     
    

, which results in analytic 

contributions to the gravitational potential. Owing to an exponential Yukawa suppression, the propagations of 

massive mode, with obvious representation as 
 

     
   

 

  
    

  

  
     in momentum  , are screened in the 

range of binary orbit [27]. So the analytical contributions are local effects. The non-analytic effects, arising from the 

propagations of massless modes of both gravitons and scalar fields, dominate in magnitude over the analytic 

corrections in the low energy limit of the effective field theory on large distance. In order to compute the leading 

long range, low energy quantum corrections to the potential (4), we just consider the non-local, non-analytic 

contributions to the potential. 

 

Results Form The Feynman Diagrams 
According to the discussion in section I and dimensional analysis, we can figure out the modifications to the 

potential (4) of the form 

      
     

 
 

     

 
    

   

   
    

  

    
        

where    contains both gravitational masses (     ) and the masses of scalar contributions (         ). What 

we shall do in this section is to calculate the numerical coefficients     and     for an appropriate definition of 

potential. 

 

In our calculations, we only consider the non-analytic contributions from the one-loop diagrams, which contain two 

or more massless propagating particles. The general form for diagrams contributing to the scattering matrix in the 

momentum ( ) space representation is 

              
  

  
    

            
 

 

√   
    

 
 

√   
        

Here,  ,  ,  , in the terms with power series of momentum  , correspond to analytic pieces, which only dominate 

in high-energy regime of the effective field theory and are of no interest to our calculations. The 

coefficients            associate with the long range, non-analytic interactions, where          associated terms 

yield the leading post-Newtonian and quantum corrections to the gravitational potential. The resulting amplitudes 

are transformed to produce the scattering potential, by performing Fourier transformation and using the following 

integrals, 

∫
   

     
   ⃗⃗   ⃗ 

 

  ⃗   
 

 

   
   

∫
   

     
   ⃗⃗   ⃗ 

 

  ⃗  
 

 

     
   

∫
   

     
   ⃗⃗   ⃗      ⃗      

 

    
      

 

Definition of bound-state potential 
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Because the NS binaries are gravitational bound systems, we consider the expectation value for the matrix    and 

use the scattering amplitude itself to define the gravitational potential. The full scattering amplitude are calculated in 

order to represent the non-relativistic potential generated by the non-analytic pieces [15, 18],  
⟨      ⟩               

       
  [    ⃗  ]       ⃗                 

Here,       and   
    

  are the incoming and outgoing momentum, respectively.      is the energy difference 

between the incoming and outgoing states.    ⃗   is the non-analytical part of the amplitude in momentum space 

representation.    ⃗    
 

   

 

   
   ⃗  . Taking the non-relativistic limit and Fourier transformation, we can get the 

corresponding coordinate space representation, 

      
 

   

 

   

∫
   

     
   ⃗⃗   ⃗    ⃗        

 

Vertex rules 

From the effective Lagrangian (13)-(17), our calculations for the Feynman diagrams involve in two scalar-one 

graviton vertex (   ), two scalar-two graviton vertex (    ), and three-graviton vertex (  ). The two scalar-one 

graviton vertex is given by  

  
            

  

 
[  

 
  
    

   
 
              ]      

where       denote the four-momentum of the incoming and outgoing scalar particles, respectively. The two scalar-

two graviton vertex can be written as 

  
                 {[       

   
 

 

 
(    

         
    )]  (             )  

 

 
(      

 

 
      )

 [          ]}       

where       
 

 
                and the pairs of indices (  ) and (  ) are associated with two graviton lines. 

The three-graviton vertex is derived via the background field method, which has the form [8] 

      
        

  

 
 (     [                       

 

 
     ]

      (   
     

  
    

     
  

    
  

   
      

  
   
  )

 *   
 (      

         
  )     

 (      
  

       
  )    (      

  
       

  
)

        (      
         

  )+

 ,   *   
      

           
      

           
      

       
      

 
  +    (    

 
   
      

      
 

)

        (   
  

    
  

    
 )-

 {[         ] [   
  

    
     

  
    
  

 

 
        ]  *   

  
    

     
  

         +})       

 

Tree diagram 

The set of tree diagrams, coming from the exchanges of both gravitons and scalar particles in Fig. 1, are the well-

known lowest order potential in the non-relativistic limit. Because the scalar configuration couples to the star 

matters inside each component, the exchanges of gravitons actually blend with that of scalar particles. We put them 

into one single Feynman diagram in Fig. 1.  However, the gravitational interactions between star matters realize via 

the exchanges of gravitons, while the scalar configurations settled in the star components gravitationally interact 

with each other by the exchanges of scalar particles [26], we separate the exchanges of gravitons from that of scalar 

particles when calculating the contributions to the potential. By using the Feynman rules and choosing a 

parameterization of the momentum, the piece of graviton exchanges, with a momentum  , can be defined as 

   
 
   

            
      

  
  
                  

where              . The component with mass    and scalar charges    has incoming momentum    

and outgoing momentum   , and the other component with mass    and scalar charges    has incoming 

momentum    and outgoing momentum   , respectively. 
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Fig 1:-The tree diagram contributes to the scalar-modified Newtonian potential. 

 

The graviton-graviton scattering yields the Newtonian potential, while the gravitational scalar interaction results 

from the exchanges of scalar particles, which accompanies the graviton exchanges. The triple solid lines represent 

the exchanges of gravitons and accompanied exchanges of scalar particles in a scalarized binary system, in which 

the central thick line denotes the gravitons, and the thin lines on two sides are the scalar particles. The dash lines are 

the scalar fields. 

 

By contracting all indices for the tree level and performing Fourier transforms, we obtain the scattering potential 

  
      

     

 
      

which gives the Newtonian law. 

 

The settled scalar configurations inside the components enhance stars' masses [25] and subsequently the 

gravitational attraction, which makes the scalarized system act as a source of emission of the gravitational scalar 

counterpart [27]. Therefore, the vertex associated with the propagations of scalar fields between two stars involves 

scalar mass dimensional quantities      and     , depending on the strength of gravitational scalar counterpart 

  . The scalar configuration, i.e. the spontaneous scalarization of NS, is the byproduct for a more compact NS, with 

compactness above a certain value. As a consequence, the exchanges of scalar particles between two scalarized star 

components must accompany the exchanges of gravitons, which is given express to the vertex. The appearance of 

the gravitational scalar counterpart in the scalar mass of the star components just affect the strength of the scalar 

charges, by means of the coupling strength with the star material, and indirectly change the star masses, which 

doesn't play the direct role in the exchanges of the scalar particles in scattering process. Accordingly, we define the 

scattering of scalar particles with a propagating momentum   as 

   
    

           
 

  
  
                 

In non-relativistic limit, we perform Fourier transformation 

      
 

   

 

   

∫
   

     
   ⃗⃗   ⃗    ⃗        

and find the results 

  
      

     

 
      



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 7(5), 510-522 

516 

 

which arises from the scalar-modified classical Newtonian gravitational interaction between two scalarized stars. 

The combined result of Fig.1 yields the modified Newtonian potential (4). 

 

Box and crossed-box diagrams 

The box (Fig. 2(a)) and crossed-box (Fig. 2(b)) diagrams just involve vertex (   ). Each diagram contains the 

exchanges both of gravitons and of scalar particles. 

  In the box diagram Fig. 2(a), the contributions are written as 

      
 

 ∫
   

     
 

          
 

      

  
      

      
 

          
 

   
                

                
                

                     
for gravitational tensor interactions realized by the exchanges of gravitons, and as 

      
  ∫

   

     
 

          
 

 

          
 

 

  
 

      

   
             

               
             

                    
for the gravitational scalar interactions via the exchanges of scalar particles, which must associate with the 

exchanges of gravitons. 

 
Fig 2:-The set of box (a) and crossed-box (b) diagrams contribute to the non-analytic components of the potential.  

 

The non-analytic contributions to the potential from the crossed-box in Fig. 2(b) are  

      
 

 ∫
   

     
 

          
 

      

  
      

      
 

          
 

   
                

                
                

                     
for graviton exchanges and 

      
  ∫

   

     
 

          
 

 

          
 

 

      
 

  

   
             

               
               

                  
for exchanges of scalar particles. The star with mass and scalar charge (     ) has incoming momentum    and 

outgoing momentum   , and the other component with (     ) has incoming momentum    and outgoing 

momentum   , respectively. 

 

For the calculations of diagrams, we employ the algebraic program and the contraction rules, which are discussed in 

references [18, 33] in order to reduce the integrals, and we also use the integrals listed in the appendix in these two 

references. The results from graviton exchanges are in agreement with that of [18], i.e. 
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The contributions from exchanges of scalar particles give 

          
      

     

 
[
         

  
 

  

  

 

  
]       

 

Triangle diagrams 

The triangle diagrams contributing to the non-analytic pieces arise from graviton exchanges involving in the 

effective Lagrangian        and         (see Fig. 3). The expressions are same as [18], 

      
 

 ∫
   

     
 

          
 

      

  
      

      
   

                
                

                    

      
 

 ∫
   

     
      

  
      

      
 

          
    

                
                

                    

The non-analytic contributions to the potential is obtained as 

          
      

     

 
[ 

        

 
 

  

 

 

  
]       

The pieces from the exchange of scalar particles have the following expressions, 

      
  ∫

   

     
 

          
 

 

  
 

      
   

             
             

                    

      
  ∫

   

     
 

  
 

      
 

          
    

                
              

                   

The non-analytic contributions to the potential are obtained as 

          
      

     

 
[ 

        

 
 

 

 

 

  
]       

 

 
Fig 3:-The set of triangle diagrams contribute to the non-analytic pieces of potential. 

 

Circular diagram 

By taking the symmetry into account, we write down the expressions of circular diagram (Fig. 4) involving in both 

gravitons exchange and the exchange of scalar particles as follows, respectively, 

   
 
 

 

  
∫

   

     
      

      
      

  
   

                
                    

   
  

 

  
∫
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Fig 4:-The circular diagram contributes to the non-analytic components of the potential. 

 

Performing the same contractions and integrals as reference [18], we obtain the corrections to the potential,  

  
      

  

 

     

 

 

  
      

  
     

 

 

     

 

 

  
      

 

One-particle reducible diagrams 

There are two classes of set of one particle reducible (1PR) diagrams (see Fig. 5). One class of set are the massive 

loop diagrams (Fig. 5(a) and Fig. 5(b)), whose expressions contributing to non-analytic corrections, can be written 

as, 

      
 

 ∫
   

     
      

  

      

  
      

      
 

          
 

   
              

                
                

                    

 
Fig 5:-Two classes of the set of one particle reducible diagrams yield non-analytic corrections to the potential. The 

solid lines denote the gravitons. 
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 ∫
   

     
 

          
 

      

  
      

      
      

  

   
                

                 
                

                  
which yield the contributions to the potential, 

          
      

     

 
[ 

        

 
 

 

  

 

  
]       

The other class of set contains diagrams involving both pure graviton exchanges and the incident mixed scalar-

graviton exchanges (Fig. 5(c) and Fig. 5(d)). It is represent in the loop, which denotes the exchanges of scalar 

particles, for the incident mixed scalar-graviton exchanges. By noting that a symmetry factor of 1/2!, the pure 

graviton exchanges can be defined as follows, 

      
 

 
 

  
∫

   

     
      

  

      

  
      

      
   

                
                

                    

      
 

 
 

  
∫

   

     
      

  
      

      
      

  
   

                
                

                  

and the contributions from the mixed scalar-graviton diagrams are defined as 

      
  

 

  
∫

   

     
 

  
 

      
      

  
   

              
            

                      

      
  

 

  
∫

   

     
      

  

 

  
 

      
   

                
             

                  

By performing the algebra analysis, we obtain the following corrections to the potential, respectively, 

          
     

  

  

     

 

 

  
      

          
      

 

   

    
   

    
   

  

    

 

  
      

 

Vacuum polarization diagrams 

By considering the gauge choice Eq. (11), which yields a Faddeev-Popov ghost along with the graviton loop, we 

more intuitively separate the graviton loop from scalar loop for the vacuum polarization diagrams. In the graviton 

loop diagram in Fig. 6(a), a ghost loop exists. Accordingly, the vacuum polarization Fig. 6(a) for graviton and ghost 

loop diagram has the expression 

                    
      

  
     

      

  
                   

where the vacuum polarization tensor       [34, 35] satisfies the Slavnov-Taylor identity 

                              . It gives the contributions to the potential 
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Fig 6:-The set of vacuum polarization diagrams contribute to the non-analytic corrections to the potential. The 

graviton loop diagram contains a ghost one, which is marked by the double line in (a). 

 

While the corrections from the scalar loop diagram Fig. 6(b), which involves in a symmetry factor of 1/2!, can be 

written as 

       
 

  
∫

   

     
      

  

      

  
      

      
      

  

   
              

            
             

                  
We find the results from scalar loop vacuum polarization diagram, 

          
 

   

     

 

 

  
      

 

Summary And Discussions:- 
Adding up all the non-analytical contributions, we get the final corrected gravitational potential 

      
     

 
[  

         

   
 

  

   

  

    
]

 
     

 
{  [

        

 
         ]

 

   
 (

  

  
 

  

  

  

  
 

  

  

  

  

   
)

  

    
}       

It can be found that the gravitational interactions involving exchanges of either gravitons or scalar particles 

contribute to both classical relativistic post-Newtonian corrections and quantum corrections. In order to look at the 

corrections clearly, we rewrite the corrected potential (61) as follows, 

      
     

 
 

     

 
 

              

    
 

              

     
 

              

    

 
  

   

     

 

  

    
 

  

  

     

 

  

    
 

    
   

    
   

  

        

  

    
      

We can see different types of terms in the rewritten expression (61). The first two terms are modified Newtonian 

potential for a scalarized binary system, which represent the lowest order interactions of the two stars and dominate 

the potential at low energies. The next three terms denote the classical relativistic corrections to the gravitational 

potential, which are the leading post-Newtonian corrections in general relativity with the scalar charged stars. The 

classical relativistic corrections arise from just pure particle exchanges. The pure graviton exchanges contribute to 

the corrections to Newtonian piece, while the pure scalar exchanges produce the contributions to the scalar modified 

part of the potential. The last three terms represent the leading 1-loop corrections to gravitational potential of 

scalarized binaries from a quantum point of view. Looking at the quantum corrections, we notice that the 

contributions arising from graviton exchanges combine into one term, while that resulting from the exchanges 

involving scalar particles are split up into two terms. There is one term where the two scalar charges are multiplied 

together, which comes from the combined contributions of pure scalar exchanges. The last term originates from the 

mixed graviton-scalar particle exchanges in 1PR diagrams, in which the exchanges of scalar particles in the loop 

always accompany that of gravitons, which are represent by triple lines in diagrams Fig. 5(c) and Fig. 5(d). The two 

scalar charges are squared and separated in the mixed graviton-scalar particle exchanges, because of the different 

binding energy of two star components, and the dependence of the scalar charges on the stars' density [28], even in 

double NS systems.   

 

By considering the dependence of scalar charges on the stars' masses, the scalar charges, which is parameterized by 

the sensitivities (        for NSs and          for white dwarfs), range from          [26]. Therefore, the 

gravitational scalar effect of the potential is 
     

 
             m/r in scalarized double NS systems, which is 

more smaller in NS binaries with white dwarf or main sequence companion stars. In the SI units, we can estimate 

the effect of quantum corrections, i.e. 
  

          , which is indeed small and seemingly impossible to be detected 

by astronomical observations. However, the quantum effects are on long distance. Taking the rotational effects of 

compact NSs, which give rise to space-time ripples and fluctuations of energy density, we expect that the constraints 

on stochastic gravitational waves and the observations of dark energy can give verifications and constraints to such 

quantum corrections. 
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