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Fresh water demand is increasing globally and numerous research is 

being carried out to develop efficient technology for harvesting water 

from atmospheric air. This paper highlights water harvesting 

experiments from atmospheric air by using CaCl2 desiccants and as 

well as heat pump method. Experimental studies showed that water 

vapor attraction capacity of LiBr, LiCl and CaCl2 desiccants were 

relatively higher than of Silica Gel, Molecular sieve or Activated 

Carbon. Experiment with 35% solution of CaCl2, using solar heat for 

desorption of water vapor, yielded 15 ml of water in 24 hrs at an 

average humidity of 65%. When auxiliary heat from electrical source 

was applied for desorption of water vapor from CaCl2 solution, 10 ml 

of water was harvested in 4 hrs at an average humidity of 65%. 

Experiment using gas compression method to condense water vapor 

from air generated 300ml of water in 6 hrs at an average humidity of 

63%. 
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Introduction:- 
Water is unique of all renewable resources as it is essential for sustaining all forms of life. It is required in domestic 

life, agriculture, and industry and energy production. Water affects the livelihood of billions and is important for 

economic development, environmental protection and ecosystem [1]. And although there are abundant water 

resources, only 3% of water on earth is fresh water. Furthermore most of the fresh water is out of reach for human 

use and only less than 1% of total water is accessible in the form of lakes, rivers, soil moisture and ground water [2]. 

In addition, their unequal distribution has led to the situation of scarcity and need for fresh water. About 1.6 billion 

people, live in countries with physical water scarcity. Particularly, in the regions of Northern Africa, Middle East, 

and Central and Southern Asia shortage of drinking water is severe [3]. 

 

Besides less amount of fresh water availability, rapid industrial growth, population growth and urbanization have 

escalated the demand for fresh water and water resources are being consumed at unsustainable rate.  Fresh water 

demand globally would increase by 55% by 2050 due to the forecasted urban population growth of the world to 9.1 

billion people [1].  

 

Demand for freshwater will lead to increasingly global water deficit, and so in realization of this critical situation, it 

is requisite to look for alternative source of fresh water other than available on earth. One such alternative resource 

is water vapor, gaseous from of water, contained in atmospheric air. Atmospheric air contains 0-4%, by volume, 

variable water vapor and is renewable reservoir of water. Atmospheric air contains around 12900 km
3
 of fresh water, 
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wherein 98% is water vapor and 2% clouds [4]. One square kilometer of atmospheric air contains, in most regions 

around the globe, 10,000 to 30,000 m
3
 of pure water [5].  

 

Therefore, significant efforts are being made worldwide to produce fresh water from atmospheric air by different 

means and techniques. Numerous research are inspired from nature,  particularly Namib desert beetle in South 

Africa [6-7], Cotula fallax plant native to south Africa [8], green tree frogs in tropical northern Australia [9] and 

Australian desert lizards [10]. All of these nature species tend to collect water by condensing water vapor from air 

through some mechanisms. Hence, biomimetic research is being carried out to perceive solutions to harvest water 

from atmospheric air and tackle global problem of water scarcity [11]. Some research work reported are related to 

recovering water from dew, which forms on cold surfaces by condensing water vapors in the air [12-17]. A number 

of efforts for harvesting water from atmospheric air are also being reported by surface mimicking Namib desert 

beetle, whereby these surfaces having distinct properties of wettablity and hydrophobic and hydrophilic features are 

able to condense water from air [18-24].  Water collection by capturing water drops from fog, by using suitable nets 

and materials, is also a viable solution to water scarcity problems and several studies have been carried out [25-32]. 

Quite a few materials like CaCl2, LiCl, Silica Gel etc have the properties of collecting water via 

absorption/adsorption from atmospheric air humidity and various research work are being reported of water 

harvesting based on this method [33-40]. An alternative technique to produce water from atmospheric air is by 

condensing water vapor in air by using heat pumps, whereby intensive energy is used for directly condensing water 

vapor [41-44].  

 

The objective of work reported in this manuscript is to perform experimental trials for studying the feasibility   of 

harvesting water from air using different techniques. The manuscript examines the water absorption/adsorption 

capabilities of different desiccant materials from atmospheric air. Furthermore, possibility of harvesting water from 

air by desiccant route and by gas compression method is highlighted in this report. 

 

Theoretical Background 

Water vapor absorption/adsorption by desiccants 

Desiccants, like CaCl2, LiCl, LiBr, silica gel, etc are substances that attract water-vapor molecules from the air via 

an adsorptive or absorptive process. Water vapor transfer is enabled by the difference in vapor pressures at the 

desiccant surface versus the air passing over it. Due to low surface vapor pressure of desiccants water vapor from air 

is attracted to desiccants. Furthermore, hydrogen bond formation with water molecule, trapping of water molecule in 

voids, capillary condensation of water vapor in pores and thermodynamic favorability for reaction of water with 

desiccants are some of the mechanisms which   makes  the desiccants harvest water from air. The performance of 

any desiccant varies with temperature and relative humidity. Since relative humidity is a function of vapor pressure, 

when the relative humidity of the process air is high, the desiccant can absorb more water vapor from that air stream. 

Desiccant efficiency is measured by the ratio of water storable in the desiccant relative to the mass of desiccant. 

Investigations and experiments reveal that calcium chloride is the cheapest and most readily available desiccant. 

Calcium chloride has hygroscopic and deliquescence properties. The reaction of Calcium chloride with water and 

thereby absorption water is exothermic and hence it is thermodynamically favorable. Calcium chloride forms the 

hydrate CaCl2.6H2O, which remains stable up to 29.8°C; at high temperatures, crystalline hydrates are precipitated 

from the saturated solution with four, two, and one molecules of H2O. 

 

Compared to solid desiccants, liquid desiccants, such as solution of CaCl2, LiCl and LiBr, have many advantages. 

Their capacity to absorb moisture is generally greater due to the fact that dissociation of ions of the desiccants 

occurs in solution state and thereby larger number of ions is available for bonding with the H2O molecule in air. 

Moreover regenerative temperatures of liquid desiccants are lower than of solid desiccants. Regeneration of 

desiccant and thereby desorption of water vapor from desiccant is very important process.  Low regeneration 

temperature of desiccant results in easy desorption of water vapor from the desiccant. 

 

Water vapor condensation using gas compression method 

In gas compression method, heat adsorbed during expansion of cooling gas is utilized for cooling the atmospheric 

air below its dew point. This principle is used to cool a surface such as copper pipes and condense water vapor from 

atmospheric air on these surfaces. 
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Experimental trials & results 

Water vapor intake capacity of desiccants. 

The desiccant materials selected to study water vapor absorption/adsorption capabilities from atmospheric air were 

Lithium Chloride anhydrous, Lithium Bromide Anhydrous, Calcium Chloride fused, self indicating coarse Silica 

Gel and activated Carbon powders. Two sets of experiments were carried out, one in open atmosphere condition and 

another inside closing glass casings with higher humidity. 10g each of the above desiccant materials were kept for 

192 hrs in glass beakers; one set in open atmospheric condition and another set inside closed glass casings with disc 

containing water as shown in figure 1. 

  

 
Figure 1:-Image showing experimental setup for obtaining water vapor absorption/adsorption capacities of 

desiccants. 

 

The outside air temperature and humidity were recorded to vary between 21°C to 26°C and 50% to 70% respectively 

during the duration of experiment. In case of closed casing experiments, humidity was observed to be 100% due to 

the water contained in the disc. Mass gained by the desiccants, due to absorption/adsorption of water vapor, in both 

the sets of experiments was recorded at various intervals of time during the experiment. Percentage of water vapor 

collected from atmospheric air, relative to the mass of desiccant, was obtained for all the desiccants in both sets of 

experiments. Percentage of water vapor collected from atmospheric air by the desiccants kept in open air condition 

and in closed casings are shown in figure 2 and figure 3 respectively.  

 
Figure 2. Graph showing percentage of water vapor collected relative to the mass of the desiccants in open 

atmosphere condition. 

-5

5

15

25

35

45

55

0 50 100 150 200

%
 o

f W
at

er
 V

ap
ou

r C
ol

le
ct

ed

Time, Hrs

LiCl LiBr CaCl2 Silica Mol Sieve carbon



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 7(7), 566-575 

569 

 

 
Figure 3:-Graph showing percentage of water vapor collected relative to the mass of the desiccants in closed 

casing conditions. 

 

In both sets of experiments, desiccants were observed to increasingly absorbed/adsorb more moisture with time. 

LiBr, LiCl and CaCl2 desiccants were observed to absorb higher water vapor content than other desiccants in open 

atmosphere condition and in closed casings as well. And relatively LiBr desiccant was found to be superior 

desiccant as it absorbed highest percentage of water vapor, 44.95% in open atmosphere and 59.53% in closed 

casing. Furthermore, all the desiccants, except Molecular sieve, were found to attract more water vapor from 

atmospheric air in closed casing condition than in open atmosphere due to availability of higher humidity in closed 

casing. Molecular sieve did not show much effect of humidity variation in water vapor adsorption, as the trend of 

water vapor adsorption was more or less similar in both the case of open atmosphere and in closed chamber. 

Whereas Silica gel absorbed 32.26% water vapor in closed casing and 13.78% in open atmosphere, showing the 

higher adsorption capacity in higher humidity condition. As far as activated carbon was concerned, it was found to 

be the poorest desiccant with negligible quantity water vapor adsorption. 

 

Water harvesting trials from atmospheric air using solid CaCl2 desiccant. 

In order to practically realize water harvesting possibility from atmospheric air using solid desiccant, experimental 

trials were carried out using fused CaCl2 desiccant. 6 Kg of CaCl2 was distributed along the racks of the stainless 

steel tray as shown in figure 4. 
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Figure 4:-Photograph showing stainless tray containing solid CaCl2 desiccant for absorption of water vapor from 

air. 

 

The tray was kept open during the night time for water vapor absorption and covered by glass during the day for 

regeneration of CaCl2 and release water vapor. The experiment was continued for 4 days and humidity recorded 

varied from 50 to 70%.  During the period of experiment water solution containing CaCl2, formed by absorbing 

water vapor from atmosphere by CaCl2 and thereafter desorption of water vapor during regeneration process and 

condensation on the glass cover, was collected periodically as shown in figure 5. Total water, containing CaCl2 

solution, collected in 4 days was 8.13 liters. The system was observed to be inefficient for desorption of water vapor 

collected by desiccant during day time and furthermore, high amount of CaCl2 in solution form dispensed into the 

collection tray without regenerating.   

 

 
Figure 5:-Photograph showing water solution collection from atmospheric air from tray containing solid CaCl2 

desiccant. 

 

Water harvesting trials from atmospheric air using CaCl2 as liquid desiccant. 

Another experiment was conducted based on 35% solution of CaCl2 instead of solid CaCl2 desiccant. 3 Kg of CaCl2 

was used for making the solution. Solution of CaCl2 was placed in a stainless steel tray and kept for water vapor 

Solid CaCl2 desiccant 
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absorption during the night. During the day time, a metallic container was kept within the tray containing the CaCl2 

solution and the tray was covered with pyramid shape glass cover as shown in figure 6. 

 

 
Figure 6:-Photograph showing experimental setup for harvesting water from atmospheric based on 35% solution of 

CaCl2. 

 

Idea behind the design of the set up was to collect water vapor from atmospheric air during night time by the 

solution and regenerate back water vapor during day time due to solar heat. Due to heat, the desorbed water vapor 

was found to ascend from the solution and come in contact with the glass cover, which resulted in condensation of 

vapor into water. Eventually, the condensed water dropped back into the metallic container due to the inclined slope 

design of glass cover.  The whole process of absorption and desorption of water vapor resulted in collection of water 

in metallic container.  The experiment conducted yielded 15ml of water in 24 hours at an average humidity of 65%.  

 

Water harvesting trials from atmospheric air using CaCl2 as liquid desiccant and auxiliary heat for 

desorption of water vapor. 

Desorption of water vapor from CaCl2 solution containing absorbed water from atmospheric air is enhanced when 

external heat is applied. In this regard, a system was designed and fabricated as shown in figure 7.  

 

 
 

Figure 7:-Photograph showing experimental setup for harvesting water from atmospheric air based on liquid CaCl2 

desiccant and auxiliary heat for desorption of water vapor. 

Stainless tray 

Glass cover Metallic container 
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The system consists of absorption tank containing 35% solution of CaCl2, having 2 Kg of CaCl2, in lower section. 

The solution is circulated, by a 0.25 hp water pump, from lower section to top section of the tank, then through 

several PVC threaded discs and finally back to lower section of tank. PVC threaded discs helps in better distribution 

of CaCl2 solution and mixing of solution with atmospheric air, thereby improved water vapor absorption. And during 

this continuous cycle of desiccant circulation, atmospheric air at is being blown across the PVC threaded discs 

inside the tank by air fan. This whole process of solution circulation and water vapor absorption is continued for 

3hrs and average humidity and temperature were recorded as 65% and 28°C respectively. After 3 hrs of absorption 

process by CaCl2 solution, it is made to enter regeneration tank for desorption of water vapor from the solution. The 

CaCl2 solution containing absorbed water is then heated in desorption tank by 2kW heating element for 1 hour and 

temperature is maintained at 70°C using thermostat. During this process of desorption and regeneration 12V air fan 

is switched on for suction of desorbed water vapor released from desiccant solution due to heat. The suction due to 

air fan moves water vapor through copper pipe into the condensation tank which is being cooled by running tap 

water as shown in figure 8. 

 

 
Figure 8:-Photograph showing water vapor condensation tank containing water-cooled copper tube. 

 

Due to the cooling effect, water vapor inside the copper tube is condensed into water and finally collected in water 

collection tank. The water collected in single cycle of 3 hours absorption and 1 hour of desorption was 10ml. It was 

observed that the system needs further improvement in design, related to cooling of desorbed water vapor, for 

condensation to occur efficiently. 

 

Water harvesting from atmospheric air using gas compression method for condensation of water vapor. 

Use of electrical energy is one of the methods to harvest water from air. In this regard, a system was designed 

comprising of  1/6 HP compressor, air cooled wire  condenser and evaporator coil made of ¼ inch diameter copper 

pipe, as shown in figure 9. The refrigerant, R134A, was used as the cooling fluid to condense water vapor from 

atmospheric air. The design of the system was such that the upper stainless box served as condensation unit and 

lower stainless box housed the compressor system.  
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Figure 9:-Photograph showing experimental setup for harvesting water from atmospheric air based on gas 

compression method for condensation of water vapor. 

 

Experimental trial is started by switching on the compressor which generates high pressure R134A refrigerant to 

pass through condenser which transforms the refrigerant into sub-cooled liquid. This sub-cooled refrigerant enters 

the condensation unit containing evaporator coils. The condensation unit, as shown in figure 10, contains copper 

coils inside which the refrigerant flows, thermostat for controlling the temperature and air fan carrying the outside 

air into the condensation unit for water vapor condensation. The refrigerant thereby extracts heat from the copper 

coils making it cool enough to condense water vapor from the atmosphere. The experiment was conducted at an 

average humidity of 63% and was able to produce 300ml of water in 6 hours time. 

 

 
Figure 10:-Photograph showing condensation of water vapor along the copper coils in the condensation unit. 

 

Conclusion:- 
Water harvesting from atmospheric air is feasible using either desiccant method or by heat pump. Applying gas 

compression method for condensation of water vapor requires high amount of electrical energy while by desiccant 

route consumption of electrical is either nil or very less. As far as desiccant route is concerned, desorption of water 

vapor or regeneration of CaCl2 and further condensation into water is a complex process and requires sophisticated 

design and engineering for successful collection of water from air.  Using gas compression technology for 

condensation, though consumption of electrical energy is higher, is relatively less complex and yield of water more. 

Use of solar heat technology in desiccant method for regeneration of desiccant and desorption of water vapor from 

desiccant can provide a wider scope for harvesting water from air.  
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