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Introduction  

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). Number of vertices of a graph G is called the 

order of G and is denoted by n. The number of edges of G is called the size of G and is denoted by e. For a vertex ѵ 

of graph G, the number of edges of G incident to ѵ  is called the degree of ѵ in G and is denoted by dG(ѵ).  

For two subsets S, T Ξ V (G),  

leteG(S; T) represent the number of edges of G joining S to T.  

 

Let H be a function associating a subset of Z to each vertex of G.  

A spanning subgraph F of graph G is called an H-factor of G if  dF (x) Є H(x) for every vertex x Є V (G). F 

or spanning subgraph F of G and for a vertex ѵ of G,  

define d(H; F, ѵ) = min {|df(ѵ) - i|   i Є H ѵ}, and  

let d(H; F) = ∑x Є ѵ(G) d(H;F,x).  

Thus a spanning subgraph F is an H-factor if and only if d(H;F) = 0.  

Let  dH(G) =min { |(H;F) | F are spanning of G }   

a spanning subgraph F is called H-optional if d(H;F) = dH(G).  

The H-factor problem is to determine the value dH(G).  

An integer h is called a gap of H(ѵ) if h≠ H(ѵ) 

but H(ѵ) contains an element less than h and an element greater than h. Lov´asz [11] gave a structural description on 

the H-factor problem in the case where H(v) has no two consecutive gaps for all v ≠ V (G) and showed that the 

problem is NP-complete without this restriction. Moreover, he also conjectured that the decision problem of 

determining whether a graph has an H-factor is polynomial in the case where H(v) has no two consecutive gaps for 

all ѵ Є V(G). Cornu´ejols [2] proved the conjecture. 

 

Let therefore g,f : V → Z
+ 

such that g(ѵ) ≤ f(ѵ) and g(ѵ) Ξ f(ѵ) for every ѵ ЄV. Then a spanning sub-graph F of G 

is called a (g,f) parity factor, if g(ѵ) ≤ df(ѵ) ≤ f(ѵ) and  

http://www.journalijar.com/


ISSN 2320-5407                         International Journal of Advanced Research (2014), Volume 2, Issue 10, 1087-1090 
 

1088 

 

df(ѵ) Ξ f(ѵ) for all ѵ Є V. A (g,f) parity factor is a special kind of H-factor and it has been shown that the decision 

problem of determining whether a graph has a (g,f) parity factor is polynomial. 

 

Let a,b be two integers such that 1≤a≤b and a Ξ b. if g(ѵ) =a and f(ѵ) = b for all  

ѵ Є V(G) , then a (g,f) parity factor is called an (a,b) parity factor. Let n ≥ 1 be odd. If a=1 and b=n, then an (a,b) 

parity factor is called an (1,n) odd factor. There is also a special case of the (g,f) factor problem which is called the 

even factor problem. The problem with g(ѵ) = 2, f(ѵ) ≥ |V (G)| and f(ѵ) Ξ g(ѵ) for all ѵ Є V(G). 

Fleischner suggested a sufficient criteria for a graph to have an even factor in terms of edge connectivtiy. 

 

Theorem 1.(Cui and Kano, [3]). Let h : V (G) → N be odd value function. A graph G has a (1; h)-odd factor if and 

only if    o(G - S) ≤ h(S) for all subsets S C V (G). 

Now there are many results on consecutive factors (i.e. (g; f)-factor). In non-consecutive factor problems, (g; f)-

parity factors have many similar properties with k-factors. So it is believed that results on k-factors can be extended 

to (g, f)-factor. In this paper, we will extend a result on k-factors of regular graphs to the (g, f)-parity-factors. 

 

Theorem 2 (Fleischner,[8]; Lov´asz, [1]). If G is a bridgeless graph with d(G)≥ 3, then G has an even factor. 

For a general graph G and an integer k, a spanning subgraph F such thatdF(x) = k for all x Є V(G) is called a k-

factor. Which is also a (k,k) parity factor. 

 

Theorem 3 (Gallai [4). Let r and k be integers such that 1 ≤ k < r, and G an m-edge -connected r-regular graph, 

where m ≥ 1. If one of the following conditions is valid, G has a k-factor. 

(i) r is even, k is odd, |G| is even, and r/m ≤ k ≤ r(1-1/m) 

(ii) r is odd, k is even and 2 ≤ k≤ r(1-1/m) 

(iii) r and k are both odd and r/m ≤k. 

 

Theorem 4. (Bollob´as, Saito andWormald ). Let r and k be integers such that 1 ≤ k < r, and G be an m-edge-

connected r-regular graph, where m ≥ 1 is a positive integer. Let m* Є {m,m+1} such that m Ξ 1. If one of the 

following conditions is valid, G has a k-factor. 

(i) r is odd, k is even and 2 ≤ k ≤ r(1-1/m) 

(ii) r and k are both odd and  r/m ≤ k 

 

Theorem 5.(Lov´asz [7]). G has a (g, f)-parity factor if and only if for all disjoint subsets S and T of V (G), 

 

D(S,T) = f(S) + ∑ dG(x) – g(T) - eG (S,T) –t ≥ 0. 

 

Where t denotes the number of components C, called f- odd components of G – (SUT) such that eG(V(C) ,T) + f(V( 

C)) Ξ 1. Moreover d(S,T) Ξ f(V(G)). 

 

Theorem: let a, b and r be integers such that 1 ≤ a≤ b < r and a Ξ b. Let G be an m-edge-connected r-regular graph 

with n vertices. Let m* Є {m, m+1} such that m* Ξ1. If one of the following conditions holds, then G has an (a,b) 

parity factor. 

 

(i) R is even , a, b, are odd, |G| is even, r/m ≤ b and a ≤ r(1-1/m) 

(ii) R is odd, a,b are even and a ≤ r(1-1/m*) 

(iii) R,a,b are odd and r/m* ≤ b. 

Now we prove (i) 

Let ϕ1 = a/r and ϕ2 =b/r .then 0≤ ϕ1 ≤  ϕ2 < 1. Suppose that G contains no (a,b) parity factors, there exists two disjoint 

subsets S and T of V(G) such that S U T ≠ ϕ, and 

-2 ≥ d(S,T) = b|S| + ∑ dG(x) - a|T| -eG (S,T) –t 
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Where t is the number of a-odd components C of G – (SUT). Let C1, ……..Ct denote a-odd components of G –S-T 

and D=C1 U …. U Ct. 

Note that 

-2 ≥ d(S,T) = b|S| + ∑ dG(x) - a|T| -eG (S,T) –t 

                        = b|S| + (r-a) |T| - eG (S,T) –t 

    = ϕ2r|S| + (1- ϕ1)r |T| - eG (S,T) –t 

    = ϕ2∑ dG(x) + (1- ϕ1) ∑ dG(x) - eG (S,T) –t 

   ≥ ϕ2 (eG (S,T) + ∑i=1
T
eG (S,Ci)) + (1- ϕ1) (eG (S,T) + ∑i=1

T
eG (T,Ci))- eG (S,T) -t 

 = ∑i=1
T
 ϕ2eG (S,Ci) + (1- ϕ1) (eG (T, Ci) – 1) + (ϕ2 - ϕ1) eG (S,T) 

 ≥ ∑i=1
T
 ϕ2eG (S,Ci) + (1- ϕ1) (eG (T, Ci) – 1). 

Since G is connected and 0 < ϕ1 ≤ ϕ2  < 1, so ϕ2eG (S,Ci) + (1- ϕ1) eG (T, Ci) > 0 for each Ci . Hence we obtain a 

contradiction by showing that for every C=Ci , 1 ≤ I ≤ t , we have  

ϕ2eG (S,C) + (1- ϕ1) eG (T, C) ≥ 1. 

 

These inequalities implies, 

-2 ≥ d(S,T) ≥ ∑i=1
T
 ϕ2eG (S,Ci) + (1- ϕ1) (eG (T, Ci) – 1) 

  > ∑i=1
T-2 

(ϕ2eG (S,Ci) + (1- ϕ1) (eG (T, Ci) – 1) – 2 ≥ -2 , Which is impossible 

Since C is an a-odd component of G – (SUT), we have  

a|C| + eG(T,C) Ξ 1 

moreover ,r|C| = ∑xЄV(C)dG(x) = eG(S UT, C) + 2|E( C)|, 

we have,  

r|C| = eG(S UT, C) 

It is obvious that the two inequalities eG(S , C) ≥ 1 and eG(T,C) ≥ 1 imply  

ϕ2eG (S,C) + (1- ϕ1) (eG (T, C) ≥ ϕ2 + 1 - ϕ1= 1 

hence we may assume eG (S,C) = 0 or eG (T,C) = 0 

ifeG (S,C) = 0, then eG (T,C) ≥ m. since a ≤ r(1-1/m), then ϕ1 ≤ 1-1/m and  

so 1 ≤ (1- ϕ1)m. By substituting  eG (T,C) ≥ m and eG (S,C) = 0, we have  

 

(1- ϕ1) eG (T, C) ≥ (1- ϕ1)m ≥ 1. 

If eG (T, C) = 0, then eG (S, C) ≥ m. since r/m ≤b, hence ϕ2m ≥ 1, and so we obtain 
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ϕ2eG (S, C) ≥ ϕ2m ≥ 1. 

The proof is completed. 

Let r ≥ 2 be an integer ,a,b ≥ 1 two odd integers and 2 ≤ m ≤ r – 2 an even integer such that b < r/m  < a. since G has 

an (a,b) parity factor if and only if G has an (r-b, r-a) parity factor, so we can assume b < r/m. Let J(r,m) be the 

complete graph Kr+1 from which a matching of size m/2 is deleted.Connect each of these vertices to a vertex of 

degree r-1 of J(r,m). This gives an m-edge – connected – r- regular graph denoted by G. Let S denote the set of m 

new vertices and T = ϕ. Let t denote the number of components C, which are called a- odd components of G – (S U 

T ) and eG (V( C) , T) + a|C| Ξ 1. 

Then we have, t = r , and 

δ (S,T) = b|S| + ∑xЄTdG – S(x) - a|T| -t( S, T ) = bm –r < 0. 

So G contains no (a,b) parity factors. 
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