

Journal homepage: http://www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

THE INTRINSIC PARITY PHASE FACTORS OF REGULAR GRAPHS

Geetha N. K.

Department of Mathematics, Saveetha School of Engineering, Saveetha University, Chennai, Tamilnadu, India-602 105

Manuscript Info	Abstract
<i>Manuscript History:</i> Received: 25 August 2014 Final Accepted: 26 September 2014 Published Online: October 2014	Let r and k be integers such that $1 \le k < r$, and G an m-edge-connected, r- regular graph with v-vertices where m ≥ 1 . Again it is sharp for infinitely many v and we characterize when equality holds in the bound.
Key words:	
Spanning sub graph, Regular graph, Parity factor,	
*Corresponding Author	
Geetha.N.K	Copy Right, IJAR, 2014,. All rights reserved

.....

Introduction

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). Number of vertices of a graph G is called the order of G and is denoted by n. The number of edges of G is called the size of G and is denoted by e. For a vertex v of graph G, the number of edges of G incident to v is called the degree of v in G and is denoted by $d_G(v)$. For two subsets S, T \equiv V (G),

 $lete_G(S; T)$ represent the number of edges of G joining S to T.

Let H be a function associating a subset of Z to each vertex of G. A spanning subgraph F of graph G is called an H-factor of G if $d_F(x) \in H(x)$ for every vertex $x \in V(G)$. F or spanning subgraph F of G and for a vertex v of G, define $d(H; F, v) = \min \{|d_f(v) - i| i \in H_v\}$, and let $d(H; F) = \sum_{x \in v(G)} d(H;F,x)$. Thus a spanning subgraph F is an H-factor if and only if d(H;F) = 0. Let $d_H(G) = \min \{ |(H;F)| F$ are spanning of G $\}$ a spanning subgraph F is called H-optional if $d(H;F) = d_H(G)$. The H-factor problem is to determine the value $d_H(G)$. An integer h is called a gap of H(v) if $h \neq H_{(v)}$ but $H_{(v)}$ contains an element less than h and an element greater than h. Lov'asz [11] gave a structural description on the H-factor problem in the case where $H_{(v)}$ has no two consecutive gaps for all $v \neq V(G)$ and showed that the

the H-factor problem in the case where $H_{(v)}$ has no two consecutive gaps for all $v \neq V$ (G) and showed that the problem is NP-complete without this restriction. Moreover, he also conjectured that the decision problem of determining whether a graph has an H-factor is polynomial in the case where H(v) has no two consecutive gaps for all $v \in V(G)$. Cornu ejols [2] proved the conjecture.

Let therefore $g, f: V \to Z^+$ such that $g(v) \le f(v)$ and $g(v) \ge f(v)$ for every $v \in V$. Then a spanning sub-graph F of G is called a (g, f) parity factor, if $g(v) \le d_f(v) \le f(v)$ and

 $d_f(v) \equiv f(v)$ for all $v \in V$. A (g,f) parity factor is a special kind of H-factor and it has been shown that the decision problem of determining whether a graph has a (g,f) parity factor is polynomial.

Let a,b be two integers such that $1 \le a \le b$ and a $\exists b$. if g(v) = a and f(v) = b for all $v \in V(G)$, then a (g,f) parity factor is called an (a,b) parity factor. Let $n \ge 1$ be odd. If a=1 and b=n, then an (a,b) parity factor is called an (1,n) odd factor. There is also a special case of the (g,f) factor problem which is called the even factor problem. The problem with g(v) = 2, $f(v) \ge |V(G)|$ and $f(v) \equiv g(v)$ for all $v \in V(G)$. Fleischner suggested a sufficient criteria for a graph to have an even factor in terms of edge connectivity.

Theorem 1.(Cui and Kano, [3]). Let $h : V(G) \to N$ be odd value function. A graph G has a (1; h)-odd factor if and only if $o(G - S) \le h(S)$ for all subsets S C V (G).

Now there are many results on consecutive factors (i.e. (g; f)-factor). In non-consecutive factor problems, (g; f)-parity factors have many similar properties with k-factors. So it is believed that results on k-factors can be extended to (g, f)-factor. In this paper, we will extend a result on k-factors of regular graphs to the (g, f)-parity-factors.

Theorem 2 (Fleischner,[8]; Lov'asz, [1]). If G is a bridgeless graph with $d(G) \ge 3$, then G has an even factor. For a general graph G and an integer k, a spanning subgraph F such that $d_F(x) = k$ for all $x \in V(G)$ is called a k-factor. Which is also a (k,k) parity factor.

Theorem 3 (Gallai [4). Let r and k be integers such that $1 \le k < r$, and G an m-edge -connected r-regular graph, where $m \ge 1$. If one of the following conditions is valid, G has a k-factor.

(i) r is even, k is odd, |G| is even, and $r/m \le k \le r(1-1/m)$

(ii) r is odd, k is even and $2 \le k \le r(1-1/m)$

(iii) r and k are both odd and $r/m \leq k$.

Theorem 4. (Bollob'as, Saito andWormald). Let r and k be integers such that $1 \le k < r$, and G be an m-edge-connected r-regular graph, where $m \ge 1$ is a positive integer. Let $m^* \in \{m, m+1\}$ such that $m \equiv 1$. If one of the following conditions is valid, G has a k-factor.

(i) r is odd, k is even and $2 \le k \le r(1-1/m)$ (ii) r and k are both odd and $r/m \le k$

Theorem 5.(Lov'asz [7]). G has a (g, f)-parity factor if and only if for all disjoint subsets S and T of V (G),

 $D(S,T) = f(S) + \sum d_G(x) - g(T) - e_G(S,T) - t \ge 0.$

Where t denotes the number of components C, called f- odd components of G - (SUT) such that $e_G(V(C), T) + f(V(C)) \equiv 1$. Moreover $d(S,T) \equiv f(V(G))$.

Theorem: let a, b and r be integers such that $1 \le a \le b < r$ and a Ξ b. Let G be an m-edge-connected r-regular graph with n vertices. Let $m^* \in \{m, m+1\}$ such that $m^* \Xi 1$. If one of the following conditions holds, then G has an (a,b) parity factor.

- (i) R is even, a, b, are odd, |G| is even, $r/m \le b$ and $a \le r(1-1/m)$
- (ii) R is odd, a,b are even and $a \le r(1-1/m^*)$
- (iii) R,a,b are odd and $r/m^* \le b$.

Now we prove (i)

Let $\phi_1 = a/r$ and $\phi_2 = b/r$. then $0 \le \phi_1 \le \phi_2 < 1$. Suppose that G contains no (a,b) parity factors, there exists two disjoint subsets S and T of V(G) such that S U T $\ne \phi$, and

$$\text{-}2 \geq d(S,T) = b|S| + \sum d_G(x) \text{ - }a|T| \text{ -}e_G(S,T) \text{ -}t$$

Where t is the number of a-odd components C of G – (SUT). Let C_1 , C_t denote a-odd components of G –S-T and D= $C_1 U \dots U C_t$.

Note that

$$\begin{aligned} -2 \geq d(S,T) &= b|S| + \sum d_G(x) - a|T| - e_G(S,T) - t \\ &= b|S| + (r-a) |T| - e_G(S,T) - t \\ &= \phi_2 r|S| + (1 - \phi_1)r |T| - e_G(S,T) - t \\ &= \phi_2 \sum d_G(x) + (1 - \phi_1) \sum d_G(x) - e_G(S,T) - t \\ &\geq \phi_2 (e_G(S,T) + \sum_{i=1}^{T} e_G(S,C_i)) + (1 - \phi_1) (e_G(S,T) + \sum_{i=1}^{T} e_G(T,C_i)) - e_G(S,T) - t \\ &= \sum_{i=1}^{T} \phi_2 e_G(S,C_i) + (1 - \phi_1) (e_G(T,C_i) - 1) + (\phi_2 - \phi_1) e_G(S,T) \\ &\geq \sum_{i=1}^{T} \phi_2 e_G(S,C_i) + (1 - \phi_1) (e_G(T,C_i) - 1). \end{aligned}$$

Since G is connected and $0 < \phi_1 \le \phi_2 < 1$, so $\phi_2 e_G (S, C_i) + (1 - \phi_1) e_G (T, C_i) > 0$ for each C_i . Hence we obtain a contradiction by showing that for every $C=C_i$, $1 \le I \le t$, we have

 $\phi_2 e_G (S,C) + (1 - \phi_1) e_G (T, C) \ge 1.$

These inequalities implies,

$$\begin{split} -2 \geq d(S,T) \geq \sum_{i=1}^{T} \phi_2 e_G \; (S,C_i) + (1-\phi_1) \; (e_G \; (T,\;C_i) - 1) \\ \\ > \sum_{i=1}^{T-2} (\phi_2 e_G \; (S,C_i) + (1-\phi_1) \; (e_G \; (T,\;C_i) - 1) - 2 \geq -2 \; , \; \text{Which is impossible} \end{split}$$

Since C is an a-odd component of G - (SUT), we have

 $a|C| + e_G(T,C) \equiv 1$

moreover $|\mathbf{r}| |\mathbf{C}| = \sum_{x \in V(\mathbf{C})} d_G(x) = e_G(S | \mathbf{UT}, \mathbf{C}) + 2|\mathbf{E}(|\mathbf{C})|,$

we have,

$$r|C| = e_G(S UT, C)$$

It is obvious that the two inequalities $e_G(S, C) \ge 1$ and $e_G(T, C) \ge 1$ imply

 $\phi_2 e_G (S,C) + (1 - \phi_1) (e_G (T, C) \ge \phi_2 + 1 - \phi_1 = 1$

hence we may assume $e_G(S,C) = 0$ or $e_G(T,C) = 0$

if $e_G(S,C) = 0$, then $e_G(T,C) \ge m$. since $a \le r(1-1/m)$, then $\phi_1 \le 1-1/m$ and

so $1 \le (1 - \phi_1)m$. By substituting $e_G(T,C) \ge m$ and $e_G(S,C) = 0$, we have

 $(1-\phi_1) e_G(T, C) \ge (1-\phi_1)m \ge 1.$

If $e_G(T, C) = 0$, then $e_G(S, C) \ge m$. since $r/m \le b$, hence $\phi_2 m \ge 1$, and so we obtain

 $\phi_2 e_G\left(S,\,C\right) \geq \phi_2 m \geq 1.$

The proof is completed.

Let $r \ge 2$ be an integer $a, b \ge 1$ two odd integers and $2 \le m \le r - 2$ an even integer such that b < r/m < a. since G has an (a,b) parity factor if and only if G has an (r-b, r-a) parity factor, so we can assume b < r/m. Let J(r,m) be the complete graph K_{r+1} from which a matching of size m/2 is deleted.Connect each of these vertices to a vertex of degree r-1 of J(r,m). This gives an m-edge – connected – r- regular graph denoted by G. Let S denote the set of m new vertices and $T = \phi$. Let t denote the number of components C, which are called a- odd components of $G - (S \cup T)$ and $e_G (V(C), T) + a|C| \equiv 1$.

Then we have, t = r, and

 $\delta(S,T) = b|S| + \sum_{x \in T} d_G - S(x) - a|T| - t(S,T) = bm - r < 0.$

So G contains no (a,b) parity factors.

References

Akiyama.J and M. Kano. (1985). Factors and factorizations of graphs-a survey, J. Graph Theory. 9: 1-42.

Amahashi.A. (1985).On factors with all degree odd, Graphs and Combin. 1:, 111–114.

Bollob'as.B, A. Satio, and N. C.Wormald. (1985). Regular factors of regular graphs, J. Graph Theory, 9: 97-103.

Collatz.L and U. Sinogowitz. (2009). SpektrenendlicherGrafen, Abh.Math. Sem. Univ. Hamburg, 99: 287-297.

Cornu'ejols.G.(1988). General factors of graphs, J. Combin. Theory Ser. B, 45: 185-198.

Cui.Y and M. Kano. (1988). Some results on odd factors of graphs, J. Graph Theory. 12: 327–333.

Fleischner.H. (1992). Spanning Euleriansubgraphs, the Splitting Lemma, and Petersen's Theorem, Discrete Math., 101: 33–37.

Gallai.T.(1950). The factorisation of graphs, Acta Math. Acad. Sci. Hung. 1: 133-153.

Godsil.C and G. Royle. (2001). Algebraic Graph Theory, Springer Verlag New York.

Kano.M.(1985) [a; b]-factorization of a graph. J. Graph Theory. 9: 129-146.

Lov'asz.L,(1979) Combinatorial Problems and Exercises, North-Holland, Amsterdam.

Petersen.J,(1891). Die Theorie der regul"arenGraphen, Acta Math. 15: 193-220.

Tutte.W.T,(1952). The factors of graphs, Canad. J. Math. 4: 314-328.