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This paper presents stability analysis and time response evaluation of 

nonlinear control based on the hierarchy Dynamic Inversion (DI) and 

the block strict-feedback form, assuming the application to a winged 

rocket vehicle. Such vehicles have a wide range of flight conditions, 

and the associated change in aerodynamic characteristics during the 

flight leads to highly nonlinear dynamics. Whereas DI theory can 

cancel the nonlinear dynamics and linearize the input and output 

maps, it becomes troublesome to construct the control law when a 

system has high relative degree between the input and output maps. DI 

theory combined with time-scale separation, on the other hand, can 

provide a simple control law at the expense of strict linearization, and 

it has been one of the effective control methods for nonlinear system. 

However, there is a difficulty in evaluating the stability of such a 

control law. In order to solve these problems, the hierarchical DI 

method in the block strict-feedback form is investigated in this paper. 

This methodology is advantageous in that the control law is simple 

and its stability can be analyzed via classical eigenvalue analysis. The 

developed technique is applied to an experimental winged rocket 

vehicle whose dynamics consist of hierarchical structures of vehicle 

dynamics and actuator dynamics, and its validity is demonstrated via 

numerical simulations. 

 
 Copy Right, IJAR, 2017,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
In recent years, reusable launch vehicles have been researched and developed around the world in order to reduce 

the space transportation cost and to facilitate the space development. Among possible concepts of future space 

transportation system, s winged-type vehicle is advantageous from its reusability, operability, and abort capability. 

The dynamics of such a vehicle is highly nonlinear, because the aerodynamic characteristics dynamically change 

along its flight profile. For example, in suborbital flight, flight sequence contains powered-ascent, coasting, apogee 

flight, reentry, gliding, and landing, where dynamic pressure and Mach number undergo drastic changes. Therefore, 

there is an increasing demand in developing nonlinear control methodologies for future space transportation system. 

 

This paper focuses on the development of dynamic inversion (DI) theory for nonlinear control. DI theory is a control 

technique that cancels nonlinear dynamics of the system and realizes desirable dynamics via algebraic 

transformation
1-3)． Using DI theory, however, it becomes troublesome to construct and implement the control law 
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when the system has high relative degree between the input and output maps, because the lengthy derivative 

calculation is required. In order to overcome this difficulty, studies on flight control based on DI theory combined 

with time-scale separation were initially conducted by Menon et al.
4-7)

, and these works are referred by many 

succeeding researches
8-14)

. Time-scale separation is a concept that stems from the singular perturbation theory, and it 

enables to construct the hierarchical dynamics when the vehicle dynamics can be divided into subsystems with 

explicitly different time scales
15)

. Different time constants inside a system can exist corresponding to, for example, 

translational vehicle motions, rotational vehicle motions, and actuator dynamics. When the control law is properly 

designed and applied to each subsystem, and the resulting time-scale is sufficiently separated, the hierarchical 

structure can greatly simplify the design of the control law and its analysis. Outer loop of the time-scale separated 

system has relatively large time constant, and it is called “slow-scale”. On the other hand, inner loop has small time 

constant, and it is called "fast-scale". As a rule of thumb, it is generally considered that the ratio of these time 

constants has to be more than three for the sufficient separation
9)

. 

 

However, the control law of slow-scale subsystem using the time-scale separation approach is designed with the 

assumption that the dynamic variable with fast-scale is always on an equilibrium state. This means that, dynamics 

interference between the subsystems is neglected, and it is stated by Abe, et al. that it is difficult to guarantee the 

stability of such a closed-loop system
16)

. In addition, design procedures of the controller are somewhat empirical, 

and they require experience. 

 

Abe et al. developed an adaptive control law that guarantees Lyapunov stability using backstepping method
16-17)

. 

Generally, the derivative of intermediate controlled variable must be prepared, when the control law is constructed 

using backstepping method
18)

. This makes the analysis even more difficult, and the control law becomes 

complicated. Abe et al.
16-17)

 circumvented this problem by estimating the derivative of intermediate controlled 

variable via an adaptive algorithm instead of calculating it exactly. This can prevent the control system being too 

complicated. The validity of the method was demonstrated via carrying out numerical simulation using ALFLEX 

(Automatic Landing Flight Experimental) vehicle as a model, and the result indicated that the method can improve 

the robustness against disturbances in the lateral direction. However, the methodology for determining control gains 

such that realize Lyapunov stability is not completely established. 

 

So as to solve the foregoing problems, a novel kind of hierarchical dynamic inversion based on the block-strict 

feedback form of backstepping method is investigated in this paper. Its basic idea is to construct a transfer function 

between the state and pseudo input for each hierarchy and to ignore its nonlinear term. Since the dynamic 

characteristics of lower hierarchy subsystem affect the higher hierarchy subsystem in reality, the nonlinear dynamic 

characteristics of higher hierarchy cannot be cancelled completely using the proposed approach. On the contrary, 

when the response of the lower subsystem is sufficiently faster than that of the higher subsystem, the error resulting 

from this linear approximation becomes small. As a consequence, linear dynamic characteristics of the higher 

subsystem that is not affected by the nonlinear dynamic characteristics of lower subsystem can be evaluated. This 

idea is similar to that of the forced singular perturbation theory
13)

. There are mainly two advantages in the developed 

methodology. First, the process to design the control gains from the characteristics of the closed-loop dynamics is 

further simplified. Second, the effectiveness of the gain design methodology can be verified via performing 

eigenvalue-based stability analysis. In order to assess the influence of the linear approximation, the instantaneous 

linearization of the nonlinear dynamics is constructed as well, and the difference between their eigenvalues is 

examined in this paper. 

 

Vehicle model utilized in this paper is that of WIRES#015 (WInged REusable Sounding rocket), which is an 

experimental winged rocket developed in Kyushu Institute of Technology
19-23)

. Figure 1 and Table 1 show the 

overview and specifications of WIRES#015, respectively. Among the flight phases of WIRES#015, stability 

analysis during the gliding phase is conducted. 
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Table 1:- Specifications of WIRES#015 

Vehicle dry mass [kg] 672 

Body Length [m] 4 

Wing area [m
2
] 2.68 

Wing span [m] 2.88 

Mean aerodynamic 

chord 

[m] 1.08 

Moment of inertia [kg m
2
] 1138 

Center of gravity [%] 66 
 

Figure 1:- Overview of WIRES#015  

 

Hierarchal Dynamic Inversion Methodology:- 

Dynamic Inversion Theory 

Dynamic inversion theory is a methodology for linearizing nonlinear dynamics between input and output maps. In 

this section, the DI methodology is described briefly
1)

. For the sake of simplicity, a nonlinear affine system with 

single input and single output expressed as eqs. (1) and (2) is considered. 

    ugf xxx   ( 1 ) 

  xhy   ( 2 ) 

where 

  nxxx ,,, 21 x  ( 3 ) 

is the n-dimension state variable of system, y  is the controlled variable, and u  is the manipulated variable.  xf , 

 xg , and  xh  are the functions of x . These mappings are represented in the form of n -dimensional vectors of 

real-valued functions of the real variable x , namely 
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    xx 1hh   ( 6 ) 

Let fL  be the Lie derivative whose definition is presented in the following eq. ( 7 ).  

 
 


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n
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f f
x

h
f

dx

dh
hL

1

 ( 7 ) 

In addition, the (i + 1) th order Lie derivative hL f
i 1 is defined as 

   ,2,1,1  ihLLhL f
i

ff
i  ( 8 ) 

The value of r such that satisfies eq. ( 9 ) is referred to as the relative degree of the system.  
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When the relative degree of the system is r , the r th order derivative of controlled variable y is expressed by eq. ( 

10 ) below. 

    uhLLhLy f
r

gf
rr 1  ( 10 ) 

From eq. ( 10 ), an manipulated variable u can be calculated from the r th order derivative of controlled variable by 

     hLyhLLu f
rr

f
r

g 
 11

 ( 11 ) 

which expresses inverse dynamics of manipulated variable u. Then, by introducing the pseudo input  defined by 
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   ry  ( 12 ) 

control command can be generated using eq. ( 13 ) below. 

    hLhLLu f
r

f
r

g 
 

11

com
 ( 13 ) 

Since  can be designed in an arbitrary manner, the linear feedback law shown in eq. ( 14 ) is utilized for realizing 

linear response in this paper. 

      com00
2

2
1

1 yayayaya r
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r
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   ( 14 ) 

Using eq. ( 13 ) and eq. ( 14 ), the transfer function of the nonlinear system based on DI is obtained as follows. 
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Hierarchal Dynamic Inversion:- 

Using DI, a nonlinear system can be handled like a linear system. However, as the relative degree of a nonlinear 

system increases, the higher-order Lie derivatives appeared in eq. ( 10 ) contain the increasing number of terms, and 

the control law becomes more complicated. In this paper, in order to mitigate this problem, the nonlinear system is 

expressed by block-strict-feedback form consisting of hierarchal m subsystems as follows instead of affine system 

used in previous researches. 
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In the ith subsystem, the state and output belong to in
i x and iy , respectively, and the iF and iG are functions 

with the dimension of in . 

 

 
(a) Diagram of overall system (b) Diagram of each subsystem 

Figure 2. Block diagrams of a system in block-strict feedback form with controller 

And also, equations of each subsystem of block-strict feedback form are eqs. ( 18 ), and ( 19 ).  iiF xx ,,1   and 

 iiG xx ,,1   denote the values at a specific point ixx ,,1  .  These mappings are represented in the form of in  

dimensional vectors of real-valued functions of the real variables ixx ,,1  , namely 
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The relative degree of the ith hierarchy ir  is defined as follows. 
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It is noted that the relation of ii nr   holds. From eqs.( 16 ), ( 17 ), and ( 20 ) and the DI method explained in the 

previous section, command in each hierarchy is obtained by the following equation. 
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where,  mii ,,2,1   is pseudo input in each hierarchy, and it is expressed by the following linear feedback law in 

order to realize linear response. 
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Here,  jjri rjmia
i

,,1,,,1,  
 are the design parameters of the control law. By substituting eq. ( 22 ) into eq. ( 

21 ), and eq. ( 21 ) into the mr th order derivatives of the controlled variable ( eq.( 17 ) ) in the mth hierarchy  is 

obtained as eq. ( 23 )-( 25 ). 
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Therefore, the transfer function of controlled variable in the mth hierarchy is expressed as follows. 
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In addition, the 1mr th order derivative of the controlled variable in the (m-1)th hierarchy is rewritten as follows 

utilizing eq. ( 21 ). 
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The most right hand side of eq. ( 29 ) can be divided into a nonlinear term and a linear term in the following manner. 
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are the nonlinear term and the linear term, respectively. When the response of the controlled variable in the mth 

hierarchy is sufficiently fast, ( com/ mm yy ) can be approximated to one, and the effect of the nonlinear term 

disappears. When the nonlinear term is ignored, eq. ( 27 ) turns out to be eq. ( 32 ). 
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By substituting eq. ( 22 ) and eq. ( 26 ) into eq. ( 32 ), the transfer function in the (m-1)th hierarchy is described as 

follows. 
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Transfer functions in higher hierarchies can be derived by repeating the procedures from eq. ( 27 ) to eq. ( 33 ),  

which gives 
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Hereafter, transfer functions presented in eq. ( 34 ) are called “Linearized Approximation Transfer Functions 

(LATF)”. 

 

Application to Experimental Winged Rocket:- 

In order to evaluate the validity of LATF, the flight dynamics of WIRES#015, an experimental winged rocket 

developed in Kyushu Institute of Technology, is utilized as a test case. The longitudinal dynamics during the 

unpowered gliding phase is considered. Dynamics of WIRES contains aerodynamic terms that are nonlinear with 

respect to flight conditions (e.g. velocity and aerodynamic attitudes). In addition to the translational and rotational 

vehicle dynamics, dynamics of the actuators for the aerodynamic control surfaces is considered. 

 

Plant Dynamics Model:- 

It is possible to construct several hierarchical dynamics models based on block-strict feedback form, because there is 

no rigorous criterion to determine the number of hierarchical subsystems and to divide the whole system into them. 

In this paper, the following two-level hierarchical structure is employed in order to assess the characteristics of the 

proposed method as simple as possible. The first hierarchy is the longitudinal vehicle dynamics, and the second 

hierarchy is the actuator dynamics expressed as the second-order delay model. 
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where 
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cV [m/s],  [rad], Q [rad/s],  [rad], and e [rad] are the velocity of center of gravity, angle of attack, pitch angular 

velocity, pitch angle, and elevator angle, respectively. m [kg], S [m
2
], c [m], and yyI [kg•m

2
] are the mass of the 

vehicle, wing area, mean aerodynamic chord, and moment of inertia around Y axis, respectively. g [m/s
2
] and 

[kg/m
3
] are gravitational acceleration and air density, respectively. As for the aerodynamic coefficients, DC [-], LC [-

], and mC [-] denote the coefficients of drag, lift, and pitching moment, respectively. emC  [1/deg.], mqC [s/deg.], and 

mC [s/deg.] are the derivatives of pitching moment coefficient with respect to elevator angle, pitch angular velocity, 

and the angular velocity of angle of attack, respectively. As for the parameters of the elevator actuator, e  [rad/s], 

e  [-] are natural frequency and damping coefficient of its dynamics, respectively. In this paper, eLC   and eDC   

are assumed to be zero, and DC , LC , and mC  are expressed as linear or quadratic functions of angle of attack. 

 

Design of Control Law Using Hierarchal Dynamic Inversion:- 

The transfer function of the actuator dynamics in the second hierarchy can be expressed as below. 
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The relative degree of the first hierarchy is two, and the second derivative of the angle of attack is written as eq. ( 47 

) using the relation in eq. ( 27 ). 
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where the command of the first hierarchy dynamics is given by eq. ( 48 ) based on eq. ( 21 ). 
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Equation ( 46 ) utilizing eq. ( 45 ) and eq. ( 48 ) gives eq. ( 49 ).  
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The most right hand side of eq. ( 51 ) is divided into the nonlinear term and the linear term. If the effect of the 

nonlinear term is smaller than that of the linear term, the nonlinear term can be omitted in the following manner. 

  
e

P  ( 52 ) 

where pseudo input is created by specifying the desired values of frequency   and damping coefficient   as 

presented in eq. ( 53 ). 
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Subsequently, the Laplace transform of eq. ( 52 ) utilizing eq. ( 53 ) leads to eq. ( 54 ).  
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which gives LATF of the first hierarchy. This transfer function is constructed only by the actuator dynamics and the 

pseudo input, and the characteristics of LATF do not depend on the vehicle dynamics. 

 

In addition, when the response speed of the output of the second hierarchy (elevator angle) is sufficiently higher than 

that of the first hierarchy (angle of attack), eq. ( 54 ) can be approximately reduced to the following equation.  
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Transfer function of eq. ( 55 ) expresses ideal response of angle of attack, and it can be realized using the ideal 

eigenvalue specified by the user. 

 

Instantaneous Linearization of Hierarchical Dynamic Inversion:- 

In the previous section, the LATF was derived by ignoring the nonlinear term in eq. ( 49 ). In this section, in order to 

verify the accuracy of this approximation, a longitudinal dynamics model linearized around the equilibrium point 

(i.e., a trimmed state) is derived, and the result is compared with the LATF. Since the current values of the state is 

required for the hierarchical DI method to generate control command, the stability around the current state is 

evaluated via observing whether unstable eigenvalue exists or not. Each instantaneous state can be expressed by the 

summation of an equilibrium state and a small perturbation as follows.  
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( 56 ) 

where each state vector and manipulated variable are 
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Linearized equation for generating the command of control input is obtained from eq. ( 48 ) as follows. 
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Equation ( 62 ) is a Taylor‟s expansion of eq. ( 60 ). Here, when 
0com2y  is equipment state, the following equation 

will be established. 
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In addition, if eq. ( 62 ) is able to approximate linearization, second order terms of the 1x  and 
com1y  can be 

ignored. Small perturbation of 
com2y  is able to transfer to the eq. ( 65 ). 
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Therefore, equilibrium of elevator command and small perturbation of one are the as following eq. ( 66 ), and eq. ( 

67 ) by replacing 
com2y  with 

come . And equilibrium of angle of attack command and small perturbation of one are 

replacing 
com1y with 

com
 . 
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The transfer function of the second hierarchy is expressed as follows. 
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Using eqs. ( 46 ), ( 66 ), ( 67 ), and ( 68 ), linearized dynamics for angle of attack is obtained as follows.  
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Taylor‟s expansion is performed for eq. ( 71 ), and eqs. ( 72 ) and ( 73 ) are derived with the assumptions of 

equilibrium states of   and ignorance of perturbation larger than the second order. 
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Substituting eq. ( 73 ) into eq. ( 67 ) results in eq. ( 74 ). 
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By using the pseudo input defined in eq. ( 53 ), eq. ( 74 ) is rewritten as follows. 
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As for the other states,  
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Whereas the derivative of pitch angular velocity is complex due to the influence by the second hierarchy, some 

terms in eq. ( 85 ) can be simplified using the following relations:  
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0011 13,12311 xx gJhLL FG   ( 86 ) 
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2

01
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where jiJ is the (i, j)th component of the Jacobian matrix of  11 xF  shown below. 
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Then, eq. ( 85 ) can be reduced to 
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Since 123 J , eq. ( 85 ) is further simplified to  
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By rearranging eqs. ( 76 ), ( 77 ), ( 78 ), ( 79 ), and ( 94 ), the following relation is finally obtained. 
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Because this system has rank 4, and the second-order derivative of angle of attack is independent, it can be omitted 

as follows. 

 BuA  xx  ( 97 ) 

 xCy   ( 98 ) 

where, each matrix is expressed by 
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Finally, the transfer function of linearized hierarchal dynamic inversion is expressed as follows. 

   BAsICG
1

lon


  ( 102 ) 
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Hereafter, this transfer function is called “linearization”. 

 

Linearized Analysis and Simulations:- 

When the control performance is evaluated, the pseudo-input generated by eq. ( 53 ) must be used. By utilizing PD 

control gains in eq. ( 53 ) instead of  and  , pseudo-input is expressed as follows. 

    
KK 

com
 ( 103 ) 

where proportional gain is 
2

 K , and derivative gain is  2K . 

In this section,   = 1 Hz,  = 2/1 are constant, and the natural frequency of actuator, e  is varied from 1 Hz to 

10 Hz with the increment of 0.5 Hz. Damping coefficient of actuator is fixed as e = 2/1 . Figure 3 shows the 

eigenvalues of the transfer functions of eq. ( 54 ) and eq. ( 55 ). 

 
Figure 3. Eigenvalue of LATF and its designed value 

Based on the eigenvalue of LATF, when damping coefficients are 2/1e  and 2/1 , the natural frequency 

of the actuator have to be more than twice the designed frequency of angle of attack, that is, 2e  Hz. In addition, 

when the natural frequency of the actuator is more than four times the designed frequency of angle of attack, the 

damping coefficient becomes the same as the designed value of 2/1 . Finally, the eigenvalues of LATF approaches 

to the designed frequency of angle of attack as increasing the natural frequency of the actuator.  

The numerical simulation was carried out in order to compare the time response of LATF and that of the original 

plant dynamics. The altitude is fixed at 5,000 m, and initial value of angle of attack   is 5˚. The other status was 

derived according to the following steps.  

Step 1) It is assumed that the status is equilibrium, and eq. ( 36 ) is satisfied. As a consequence, the following 

equations result from 0cV 0 , and 0Q . 
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Step 2) From     013,113,1  egfQ xx , initial elevator angle is expressed as follows. 
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Simulations were carried out with the five values of 10,4,3,2,1
e

 Hz. Each of them corresponds to the following 

situation. 

 When 1e Hz, LATF is not stable.  

 When 2e Hz, LATF is at the stability limit.  

 When 3e  Hz, the natural frequency of the actuator is less than 4 times the designed frequency of angle of 

attack, and the damping coefficient of LATF differs from that of the designed value.  
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 When 4e  Hz, the natural frequency of the actuator is just 4 times the designed frequency of angle of attack, 

and all the eigenvalues of LATF have the identical value. 

 When 10e  Hz, the natural frequency of the actuator is more than 4 times the designed frequency of angle of 

attack. 

 
 

Figure 4:- Time response when 1
e

 Hz Figure 5:- Time response when 2
e

 Hz 

  

Figure 6:- Time response when 3
e

 Hz Figure 7:- Time response when 4
e

 Hz 
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Figure 8:- Time response when 10
e

 Hz  

 

Eigenvalue analysis of LATF in the case of e = 1 Hz shown in Fig.3 is consistent with the diverging response 

observed in Fig.4. The case of e = 2 Hz is at the stability limit based on the eigenvalue analysis of LATF, and the 

simulation result indicates that the plant has asymptotically converging characteristics. The reason of this difference 

can be attributed to the dynamic stability of nonlinear terms ignored in LATF. In the remaining cases, the eigenvalue 

analysis means that LATF are stable. The simulation results when e = 3, 4, and 10 Hz are presented in Figs. 7, 8, 

and 9, respectively, and they show that the angle of attack converges from initial value to command value. In 

addition, since there is no significant difference between the time response of LATF and that of the plant, the 

influence of nonlinear terms in eq. ( 49 ) is small. 

 

In order to evaluate the effects of nonlinear dynamics in the frequency domain, the transfer function derived from 

eq. ( 97 ) is employed. As a comparison, the desired eigenvalue from the transfer function of eq. ( 55 ), the 

eigenvalue of LATF from eq. ( 54 ), and the eigenvalue from the instantaneous linearization of the vehicle status are 

prepared. Note that the result of longitudinal motion simulation is utilized as the vehicle status. 

  
Figure 9. Comparison of eigenvalues when 1

e
  Hz Figure 10. Comparison of eigenvalues when 2

e
  Hz 
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Figure 11. Comparison of eigenvalues when 3

e
  Hz Figure 12. Comparison of eigenvalues when 4

e
  Hz 

 

 

Figure 13. Comparison of eigenvalues when 10
e

  Hz  

 

Discussions:- 
Figure 9-Figure 13 show the eigenvalues with different natural frequencies of the actuator. The eigenvalue obtained 

in the time scale separation means the designed value, since it is assumed that the actuator response does not have 

delay in the time scale separation. In addition, the eigenvalue obtained in LATF is constant in each case, since it 

does not depend on the nonlinear vehicle dynamics. On the other hand, the eigenvalue of the plant without control 

and that of linearization are not constant, since they are influenced by nonlinear dynamics. The following four 

observations can be found from this analysis. 

1. Linearization tends to be similar to LATF, which is especially apparent when e  = 2 and 3 Hz. 

2. When the natural frequency of the actuator becomes higher than the above value, the eigenvalues of linearization 

tend to asymptotically converge the desired eigenvalue. 

3. When LATF is at the stability limit, namely e = 2 Hz, all the eigenvalues resulting from linearization are 

negative values, and the angle of attack response of the plant model shown in Fig. 5 converged asymptotically. 

4. As the natural frequency of the actuator increases, the influence of nonlinear dynamics tends to decrease, and the 

fluctuation range of linearization eigenvalue gets smaller. 

 

The LATF in the hierarchal dynamic inversion method is constructed based on the assumption that the influence of 

the nonlinear term is small. This can be confirmed by the fact that the difference between the eigenvalues of 

linearization and LATF are smaller than those of linearization and time scale separation. Since LATF can be built 

independently from the plant model as shown in eq. ( 54 ), LATF can be conveniently utilized as an initial design 

guideline of the control law. In the practical application where the influence of plant model dependency must be 

evaluated, the eigenvalue analysis based on the time series data obtained from the flight trajectory ( eq.( 97 ), ( 98 ) ) 
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is useful. Although it is difficult to prevent instability completely using this method, it is possible to evaluate the 

instability in finite states using such eigenvalue analysis. 

 

Based on these discussions, two notable findings are obtained. First, LATF has the response characteristics that 

resembles the plant, especially when the response of the actuator becomes faster than the designed frequency. 

Second, the exact input-output linearization cannot be performed using the control law designed by the hierarchal 

dynamic inversion methodology in contrast to pure dynamic inversion theory. Therefore, the response of the 

designed feedback system is influenced by dynamic characteristic of the plant. Therefore, linearized eigenvalue 

analysis should be conducted utilizing the simulated flight trajectory. 

 

Conclusions:- 
This paper presented the methodology for the stability analysis of a control law based on hierarchical dynamic 

inversion considering the application to a winged rocket. A novel concept named Linearized Approximation 

Transfer Function (LATF) is derived by omitting nonlinear term caused by the lower hierarchy (a second-order 

delay element of the actuator for aerodynamic control surfaces). LATF is determined only by the actuator 

characteristics and pseudo input, and it does not depend on the vehicle dynamics. Therefore, the preliminary 

performance of the designed control law can be evaluated conveniently using LATF. On the other hand, since LATF 

ignores the influence of nonlinear term exactly, the evaluation including the nonlinear term is indispensable. In this 

paper, eigenvalues of an instantaneous linearization based on the time series data are analyzed. As a result, the effect 

of nonlinear term in controlled variable is smaller than that of linear term, and the influence of nonlinear dynamics 

tends to decrease as the natural frequency of the actuator increases. The above eigenvalue analysis also clarifies the 

natural frequency difference between the vehicle and actuator required for the stabilization, which has been 

impossible using previous dynamic inversion techniques. In addition, the time response of plant is found to be 

almost same as that of LATF. 
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