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The objective of the present work is to study the MHD mixed 

convection flow of an unsteady two-dimensional, laminar, viscous, 

incompressible fluid along a semi-infinite porous plate embedded in a 

porous medium with the presence of pressure gradient, thermal 

radiation field and uniform vertical magnetic field. The governing 

equations are obtained for the above physical configuration using 

conservation of mass, momentum and energy. The natures of these 

equations are non-linear and coupled with each other. Approximate 

solutions for nonlinear partial differential equations are solved using an 

analytical approach by double regular perturbation technique. During 

simplification it is assumed that the free stream consists of a mean 

velocity and temperature over which are superimposed an 

exponentially varying with time.  The behavior of the velocity and 

temperature are discussed in detail for various non-dimensional 

parameters present in the problem. The values are found to be in good 

agreement with known results. 
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Introduction:- 
The study of heat and mass transfer of a fluid flow has considerable number of applications especially the science 

and engineering, biomechanical problems like the flow of blood in a tube, wind power, geo-thermal reservoirs, 

thermal insulation, drying of porous bed, many catalytic reactors, nuclear reactor cooling and the transport of energy 

in the underground etc. The study of oscillatory flow is very important from the technological viewpoint and such 

physical phenomenon was first studied by Lighthill (1954) for some two dimensional fluid flow. He was the one 

who first considered a two – dimensional flow of an incompressible viscous fluid by assuming that a regular 

fluctuating flow is superimposed on the mean steady boundary layer flow, which is completely solved by 

momentum method. 
 

A comprehensive review of literature regarding the subject mentioned was well documented in a book written by  

Ingham and Pop (2005), Nield and Bejan (2006). The study of boundary-layer phenomena is of great importance in 

recent times owing to their wide applications in several engineering fields. The boundary-layer zone can be 

considered to be an interface region where fluid flow and heat transfer characteristics of two different, porous media 

and a fluid or of porous and impermeable media are adjusted to one another. To give a specific example, one can 

consider flow from petroleum reservoirs, wherein the oil flow encounters different layers of sand, rock, shale, lime 

stone, etc. Vafai and Thiyagaraja (1987) analyzed the flow and heat transfer at the interface region of porous 

medium. The analysis of natural convection about a vertical plate embedded in a porous medium was examined by 
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Kim and Vafai (1989). Vafai and Kim (1990) obtained an exact solution for the interface region between a porous 

medium and a fluid layer.  

 

Studies on the response of a laminar boundary-layer flow due to free-stream oscillations are of prime importance in 

many industrial and aerodynamic flow problems. Typical problems arise in the study of aircraft response to 

atmospheric gusts, aerofoil lift hysteresis at the stall, flutter phenomena involving wing, panel, and stalling flutter, as 

well as the prediction of flow over helicopter rotor blades and through turbo-machinery blade cascades. Stuart 

(1955) extended this idea to study a two-dimensional flow past an infinite porous plate when the free stream 

oscillates in time about a constant mean. Along with the unsteady velocity field, Stuart also studied the unsteady 

temperature field by assuming that there is no heat transfer between the plate and the fluid. The physical situation 

discussed by Stuart by one of the possible cases. Another physical phenomenon will be that if the difference 

between the plate temperature 
'

wT , (temperature of the plate) and the free stream temperature  
'

T , (temperature of 

the fluid in the free stream) namely  “
'

wT - 
'

T ”  is appreciably large causing the free convection currents to flow in 

the boundary layer and the free stream velocity is also oscillating in time about a constant mean in the direction of 

flow, then how is the flow field near a porous infinite vertical plate with constant suction affected by the free 

convective currents?  An attempt in this direction was made by Soundalgekar (1973), who assumed that: (i) The 

plate temperature oscillates in time about a constant mean, (ii) the free convective currents are present in the 

boundary layer and (iii) the flow is very slow and hence viscous dissipative effects are negligible. This problem, 

governed by coupled linear differential equations was solved by Soundalgekar (1973), and it was observed by the 

author that the temperature field was not at all affected by the free convective currents. This is not always true. In 

subsonic flow of an incompressible fluid, the heat due to viscous dissipation is present in a number of physical 

phenomenon. Also, in the case of fluids with high Prandtl number, viscous dissipative heat is always present even in 

slow motions. Hence it is interesting and also important from the practical point of view to study the effects of the 

free convection currents on the oscillatory type of boundary layer flow.  Now, in Stuart’s case, it was observed that 

the mean flow was not affected by the frequency of the oncoming oscillatory flow.   

 

In many practical problems, porous media have been used to provide an effective cooling device and it has been 

demonstrated using potential nature of Darcy equation. Rudraiah (1984), Kim and Vafai (1989) by considering non-

Darcy equation with boundary and inertia effects that the heated vertical plate embedded in a porous medium 

significantly influences the flow and heat transfer characteristics. The works mentioned above are concerned with 

the study of steady convection when an impermeable vertical plate is embedded in a porous medium. It has been 

observed that a suction or injection at the plate controls heating by controlling the boundary layer. Later, this 

problem has been extended by Rudraiah to convective flow through a porous medium bounded by an infinite 

vertical porous plate with uniform free stream velocity away from the plate. Goma and Taweel (2005) examined the 

effects of oscillatory motion on heat transfer at vertical surfaces and developed a model that predicted both transient 

and time average heat-transfer rates. Effects of unsteady mixed convection boundary-layer flow along a symmetric 

wedge with variable surface temperature were investigated by Hossain et al. (2006). 

 

Patil (2008) studied effects of free convection on the oscillatory flow of a polar fluid through a porous medium in 

the presence of variable wall heat flux. Girinath Reddy et al. (2017) investigated the combined effects of Soret and 

Dufour and variable fluid properties like viscosity and porosity on mixed double diffusive convective flow over an 

accelerating surface. Basavaraj et al. (2018) examined the effects of thermal radiation on casson fluid flow over a 

stretched surface of variable thickness in the presence of magnetic field. Recently Basavaraj (2019) investigated 

stability of the flow through porous media by considering uniform vertical magnetic field and  the  similar effect is 

considered in this problem also.However, for an effective convective cooling, heat pipes, direct contact heat 

exchangers and so on, it is advantageous to study the unsteady mixed convection on a heated permeable vertical 

plate embedded in a high porosity porous medium with fluctuating free stream and suction velocities without 

disturbing the uniform temperature maintained at the vertical plate. In spite of its importance this problem has not 

been given any attention to our knowledge. 

 

Nomenclature: 

a Width of the rectangular channel U Dimensional free stream velocity 
 

 Thermal expansion coefficient  Ra Thermal Rayleigh number 
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Cp Specific heat at constant pressure t time 
g  acceleration due to gravity T Dimensional temperature 

 

Gr Grashof number   Tw Temperature at the plate 
 

Pr Prandtl number 
T  Fluid temperature far away from the plate 

 

N Frequency u0 Mean velocity 
 

h Height of the rectangular channel u1 Fluctuating part of the velocity 
 

 Thermal diffusivity v0      Suction velocity 
 

k Permeability of the porous medium 

K Thermal conductivity 

U0  constant velocity 
 

Q   Rate of heat flux 
 

E Eckert number  1 Fluctuating part of the temperature 
 

p pressure  Dimensionless temperature 
 

u, v velocity components along x and y direction 0 Mean temperature 
 

0   Co-efficient of thermal expansion   perturbation parameter 

M   Hartmann number     Coefficient of viscosity 
 

(x, y )  space co-ordinates 0   reference density 
 

    kinematic viscosity   stream function 
  

   density of the fluid  

 

Mathematical formulation 
We consider a two-dimensional, unsteady Boussinesq viscous fluid through a porous medium bounded by a vertical 

infinite porous plate. We assume an oscillatory suction velocity and the free stream velocity away from the porous 

plate oscillates about a mean constant value in a direction parallel to the x-axis. The x-axis is taken along the porous 

plate with direction opposite to the direction of gravity and the y-axis is the direction normal to the porous plate. The 

temperature of the vertical porous plate is maintained at a constant temperature. Since, the flow extends to infinity in 

the x-direction, the flow variables except the pressure p are functions of y and t only (see Fig. 1). Under these 

approximations, the basic equations of motion are: 
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Fig.1:- Physical Configuration. 

 

We assume the following assumptions to find an approximate analytical solution for the above governing equations.     

(i) x varies between  to , all the physical quantities are independent of x except  for pressure, (ii) the 

Boussinesq approximation i.e., density is constant throughout the momentum equation except for body force, 

(iii)Incompressible fluid, density is constant. (iv) 
00 HB  , (v)From the equation of the state we consider  density 

(ρ) is a function of temperature only, hence  0 1 ( )T T      , (vi) We assume the fluctuating free-stream 

and suction velocities respectively as,  

 int
0( ) 1 ,U t U A e                                                                                                                                          (5) 

 int

0( ) 1v t v B e   .                                                                                                                             (6) 

 

where the negative sign indicates that the suction is directed towards porous plate. All the physical quantities are 

defined in the nomenclature.  Based on the physical configuration which is as shown in Fig.1, the boundary 

conditions for the system takes the form: 

0 : 0, .
w

y u T T    

: ( ), .y u U t T T


                                                                                                                            (7) 

 

These boundary conditions are derived on the assumption that the free stream velocity is fluctuating with time and 

maintaining uniform temperature away from the plate as well as at the plate. 

 The governing free stream velocity equation is,  

 
2

0

0 0

1 B UdU p
U

dt x k



 


   


.                                                                                                                             (8)  

 

We solve the above governing non-linear partial differential equations by eliminating the pressure gradient between 

(2) and (8), we get 

)TT(g)Uu(
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Making these equations dimensionless using, 
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and for simplicity neglecting the asterisks (*), we get 


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The corresponding boundary conditions in dimensionless form are, 

1,0:0  uy .   

0),1(: int   Aeuy .                                                                                                                         (13) 

 

Method of Solution:- 
In order to solve the non-linear coupled  partial differential equations (11) and (12) we will make use of the double 

regular perturbation method(one for   and another for E), the solutions of the form 
int 2

0 1( , ) ( ) ( ) ( ),u y t u y u y e O                                                                                                                       (14)     

int 2
0 1( , ) ( ) ( ) ( ).y t y y e O                                                                                                                    (15) 

Where    is the perturbation parameter, which is a very small quantity. 

Substituting equations (14) and (15) into equations (11) and (12) and equating the like powers of    on both sides, 

we get the following system of equations. 
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0  

)()()()(')( 1
00

1
0

''
0

k
MGryu

k
Myuyu





  ,                                                                                                  (16)               


















 )('Pr)('Pr)( 0

2
0

1
0

''
0 yuuM

k
Eyy


 .                                                                                                     (17) 

The corresponding boundary conditions are,  

0 0
0 : 0, 1,y u     

0 0
: 1, 0.y u                                                                                                                               (18)   

The first order unsteady equations in  
1   are, 
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The corresponding boundary conditions are, 

1 1
0 : 0, 1,y u     

1 1
: , 0.y u A                                                                                                                  (21)  

where the primes denote the differentiation with respect to y. 

Equations (16), (17), (19) and (20) are coupled equations in 0u , 0 , 1u  and 1 .To solve these equations, we assume 

that heat due to viscous dissipation is superimposed on the motion. Mathematically this can be done by expanding 
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the velocity and temperature in powers of E, because in the case of incompressible fluids, E is very small. Therefore 

we assume, 

)()()()( 2
02010 EoyuEyuyu  ,                                                                                                (22)                     
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Substituting equations (22) and (23) in (16) and (19), and equating the co-efficients of the like powers of E, we get  
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and the corresponding boundary conditions are, 
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Similarly, substituting equations (24) and (25) in (17) and (20), we get the following system of unsteady equations: 

The zeroth order unsteady equations in E
0
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A)
k

M()y(Gr)y(Bu)y(u)
k

Min()y(u)y(u '''' 1
110111

1
1111





 ,                                              (32)   

)()(Pr)(Pr)( '
0111

'
11

''
11 yByinyy   .                                                                                                                   (33) 

and the corresponding boundary conditions are,  
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and the corresponding boundary conditions are, 

12 120: 0, 0,y u     

12 12: 0, 0.y u                                                                                                                        (37) 

  

Solving the differential equations (26) to (36) using the corresponding boundary conditions and with suitable 

simplification, we get       
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where  
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The constants Ai (i=1 to 27)  and Bi (i=1 to 20) are the functions of non-dimensional parameters involved in the 

problem. For the want of space the expressions for them are omitted here but given in appendix. However, they are 

numerically computed and used in computing u and . 

 

Results And Discussion:- 
The analytical solutions for the velocity and temperature are found using double perturbation technique. The 

numerical computation is performed for velocity and temperature for different values of non-dimensionalised 

parameters that are involved in the solution. The graphical representation for velocity and temperature are depicted 

in Fig.2 to Fig. 21.  Fig.2 to Fig.7 shows the variation of velocity and temperature for positive and negative values of 

Grashof number Gr and also for Eckert number E = 0.01 and E = 0.03. Fig.2 and Fig.4 shows the mean velocity for 

air increases due to more cooling of the vertical permeable wall by the free convection currents when E is constant. 

Physically this can be explained as follows: 

 

In the process of cooling the plate by free convection currents are carried away from the plate to the free stream and 

as the free stream is in the upward direction, the free convection currents induce the mean velocity to increase. In 

order that these results may be useful for experimental verification similarly when the value of E at 0.03 the same 

behavior can be seen which is depicted in Fig. 4.  Fig.6 shows that variation of velocity for different negative values 

of Grashof number Gr. This means the mean velocity for air is negative and decrease due to more heating of the 

plate and increases due to more addition of viscous dissipation of heat. Physically this is possible because the flow 

of air moving in the upward direction both near and away from the vertical permeable wall, is now being opposed by 

the free convection currents traveling towards the vertical permeable wall and hence the mean velocity decreases. 

Thus the mean flow of air is of reversed type when the vertical permeable wall is being heated by the free 

convection currents.  
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Fig.3 & Fig.5 represents the plot of temperature versus y for different positive values of Grashof number Gr and 

Eckert number E = 0.01 & E = 0.03 which shows the increasing due to more cooling of the vertical permeable wall 

decreases the temperature from the plate and away from the plate. Similarly an opposite behavior can be seen for 

temperature versus y for different negative values of Grashof number Gr and for the Eckert number E = 0.03 which 

is depicted in the Fig.7. Physically this represents for more heating of the vertical permeable wall.  To understand 

the mean velocity and temperature variation for different fluids, which represents the increase in the Prandtl number 

Pr which is depicted in the Fig.8 to Fig. 11. 

 

Fig. 8 and Fig. 10 represents the velocity variation for different fluids from air to mercury. For small Prandtl number 

(0.71 to 3) the variation of velocity are large for cooling of the vertical permeable wall. For higher or large values of 

Prandtl number (Pr>3), the variation of velocity are very less because due to viscous dissipation. Fig.9 and Fig.11 

represents the behavior of temperature for different fluids (Pr=0.71 to 7) due to more cooling of the vertical 

permeable wall (Gr>0) for different values of Eckert number  E=0.01 and E=0.03.  From Fig.9 the temperature 

decreases near the vertical permeable wall for higher values of Prandtl number for the constant value E=0.01 and the 

same behavior can be seen for the Eckert number E=0.03 in Fig.11. 

 

Fig.12 to Fig.15 shows the velocity and temperature for different values of  permeable parameter k of the porous 

media, for the constant values of E=0.01 and E=0.03. If the permeability of the porous media increases there is 

increase in variation for the velocity of the fluid but much variation is not seen for the temperature of the fluids. In 

Fig. 16 and Fig.17 we observe the variation of velocity and temperature for different values of viscous ratio   due 

to more cooling of the vertical permeable wall (Gr>0), with the increase in the viscous ratio there is a decrease in the 

velocity of the fluid and increase in the temperature can be seen in Fig.16 and Fig.17 respectively. 

 

From the Fig.18 to Fig.21 gives the variation of velocity and temperature versus y for different values of Hartmann 

number M which is a measure of Laurent’s force to viscous force in a finitely conducting fluid. As the Hartmann 

number M increases due to more cooling of the vertical permeable wall (Gr>0) the velocity of the fluid decreases 

due to an increase of Laurent’s force to viscous force. An opposite behavior are been observed for the temperature 

of the fluid for the increase of Laurent’s force to viscous force for different constant values of Eckert number 

E=0.01 to E=0.03. Fig.22 and Fig.23 represents the variation of velocity and temperature versus y for different 

values of frequency parameter n. As the frequency of the suction velocity at the vertical permeable wall increases 

there is a decrease of velocity as well as temperature are been observed and the same is depicted in the figures. 

Similarly an opposite behavior is been observed for the velocity and temperature due to heating of the vertical 

permeable wall for different values of Pr,  , M and E.  

 

 
Fig. 2: Plot of velocity versus y for different values of Gr. 

( Pr=0.71; M=5; k=0.5; E =0.01;   = 0.1) 

 
Fig. 3: Plot of temperature versus y for 

different values of Gr. 

( Pr=0.71; M=5; k=0.5; E =0.01;   = 0.1) 
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Fig. 4: Plot of velocity versus y for different values of Gr. 

( Pr=0.71; M=5; k=0.5; E =0.03;   = 0.1) 

 
Fig. 5: Plot of temperature versus y for different 

values of Gr. 

( Pr=0.71; M=5; k=0.5; E =0.03;   = 0.1) 

 

 

 

 
Fig. 6: Plot of velocity versus y for 

different negative values of  Gr. 

( Pr=0.71; M=5; k=0.5; E =0.03;   = 0.1) 

 
Fig. 7: Plot of temperature versus y for 

different negative values of Gr. 

( Pr=0.71; M=5; k=0.5; E =0.03;   = 0.1) 

 

 

 
Fig. 8: Plot of velocity versus y for 

different values of  Pr. 

( Gr=5; M=5; k=0.5; E =0.01;   = 0.1) 

 
Fig. 9: Plot of temperature versus y 

for different values of Pr. 

(Gr=5; M=5; k=0.5; E =0.01;   = 0.1) 



ISSN: 2320-5407                                                                             Int. J. Adv. Res. 8(06), 308-321 

317 

 

 
Fig. 10: Plot of velocity versus y for 

different values of Pr. 

(Gr=5; M=5; k=0.5; E =0.03;   = 0.1) 

 
Fig. 11: Plot of temperature versus y 

for different values of Pr. 

(Gr=5; M=5; k=0.5; E =0.03;   = 0.1) 

 

 

 
Fig.12: Plot of velocity versus y for 

different values of k. 

(Pr=0.71; Gr=5; M=5; E =0.01;   = 0.1) 

 
Fig.13: Plot of temperature versus y 

for different values of k. 

(Pr=0.71; Gr=5; M=5; E =0.01;   = 0.1). 

 

 

 

 
Fig.14: Plot of velocity versus y for 

different values of k. 

(Pr=0.71; Gr=5; M=5; E =0.03;   = 0.1).  
Fig.15: Plot of temperature versus y 

for different values of  k 
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(Pr=0.71; Gr=5; M=5; E =0.03;   = 0.1) 

 
Fig.16: Plot of velocity versus y for 

different values of   . 

(Gr=5; M=5; k=0.5; E =0.03;   = 0.1) 

 
Fig.17:  Plot of temperature versus y 

for different values of   

(Pr=0.71; Gr=5; M=5; E =0.03;   = 0.1) 

 

 

 
Fig.18: Plot of velocity versus y for 

different values of M. 

(Pr=0.71; Gr=5; M=5; E =0.01;   = 0.1). 

 
Fig.19: Plot of temperature versus y for 

different values of M. 

( Pr=0.71; Gr=5; M=5; E =0.01;   = 0.1). 

 

 

 
Fig.20: Plot of velocity versus y for 

different values of M. 

(Pr=0.71; Gr=5; M=5; E =0.03;   = 0.1). 

 
Fig.21: Plot of temperature versus y for 

different values of M. 

(Pr=0.71; Gr=5; M=5; E =0.03;   = 0.1). 
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. 

Fig.22: Plot of velocity versus y for different values of “n”. 

(Pr=0.71; Gr=5; M=5; E =0.01;   = 0.1) 

 
Fig.23: Plot of temperature versus y 

for different values of “n”. 

(Pr=0.71; Gr=5; M=5; E =0.01;   = 0.1) 

 

Conclusions:- 
This study deals with  the effect of magnetic field and porosity of the porous media on the oscillatory flow of mixed 

convection in a semi-infinite vertical porous wall. Using the double regular perturbation technique, the governing 

equations are transformed into a set of coupled linear ordinary differential equations in the non-dimensional form 

and these equations are solved numerically. The results computed are good approximation with the existing results. 

The numerical results are presented to analyze the mass flow and heat transfer characteristics of the fluid under the 

influence of various physical parameters present in the problem. the following conclusions can be drawn from the 

study: 

1. An increase in the strength of the magnetic field is to decrease the velocity of the fluid flow and this may be due 

to increase of the Laurentz force on the fluid particles. 

2. When the values of the Prandtl number (0.71 to 3) the velocity variation is large but for the large values of 

Prandtl number (Pr >3), the velocity variation is very less.      

3. The flow velocity increases with an increase in the porosity of the porous media but the dependence of this 

parameter on temperature  is weak. 

4. Velocity is increasing function of Grashof number but the trend gets reversed in the case of temperature. 

5. It is observed that the velocity and the temperature are both decreasing functions of the the frequency of the 

suction velocity. 

 

Acknowledgements:- 
The authors are thankful to the research centre, Department of Mathematics, M. S. Ramaiah Institute of Technology, 

Bangalore affiliated to VTU for their valuable support to our research work. 

 

References:- 
1. D. B. Ingham and I. Pop. (2005) , Transport Phenomena in Porous Media, Pergamon, Oxford. 

2. D. A. Nield and A. Bejan (2006), Convection in Porous Media, Third Edition, Springer, New York.. 

3. K. Vafai and R. Thiyagaraja (1987), Analysis of flow and heat transfer at the interface region of  porous 

Medium, Int.J. Heat Mass Transfer, 30, No. 7, 1391–1405.                            

4. S. J. Kim and K. Vafai (1989), Analysis of natural convection about a vertical plate embedded in a porous  

Medium, Int. J. Heat Mass Transfer, 32, No. 4, 665–677.  

5. K. Vafai and J. Kim (1990), Fluid mechanics of the interface region between a porous medium and a fluid layer 

- An exact solution, Int. J. Heat Fluid Flow, 11, 254–256. 

6. Lightll M. J. (1954), The Response of laminar skin friction and heat transfer to fluctuations in the stream 

velocity, A224, 1-23. 

7. Soundalgekar V. M (1973), Free convection effects on the oscillatory flow past an infinite, vertical, porous  

plate with constant suction-I ,  A333,  25-36. 

 



ISSN: 2320-5407                                                                             Int. J. Adv. Res. 8(06), 308-321 

320 

 

8. Stuart (1955), A solution of the Navier-Stokes and energy equations illastrative the responce of skin friction and  

temperature of an infinite plate thermo meter to fluctuations in the stream velocity, Proc. Roy. Soc, 231A, 116-

130. 

9. Rudraiah N.  (1984), Non-linear convection in a porous medium with convective acceleration and viscous force,  

Arab. J. Sci. Engg,  9, No.2, 153-167. 

10. H. Gomma and A. M. Al Taweel (2005) , Effect of oscillatory motion on heat transfer at vertical flat Surfaces, 

Int. J. Heat Mass Transfer, 48, 1494–1504. 

11. Md. Anwar Hossain, Siddartha Bhomick and Rama Subba Reddy Golra (2006),  Effects of unsteady mixed  

convection boundary-layer flow along a symmetric wedge with variable surface temperature ”, Int. J.  of  Engg.  

Sci., 44, 607-620. 

12. P. M. Patil (2008), Effects of free convection on the oscillatory flow of a polar fluid through a porous medium 

in the presence of variable wall heat flux,  J. of Engg. Phy. and Thermophys., 81, No.5. 

13. M. Girinath Reddy, P.A. Dinesh and N. Sandeep (2017), Effects of variable viscosity and porosity of fluid, 

Soret and Dufour mixed double diffusive convective flow over an accelerating surface”, IOP Conf. Series: 

Materials Science and Engineering, 263, 1-13. 

14. Basavaraj M.S, Vijayakumar, Dinesh P A and M. Girinath Reddy (2018), Effect of thermal radiation on MHD  

Casson fluid flow over a stretched ssurface of variable thickness, Advances in Physics Theories and  

Applications, 70, 14-25. 

15. Basavaraj M. S. (2019), Instability of MHD fluid flow through a horizontal porous media in the presence of 

transverse magnetic field –A linear stability analysis, The Journal of the Indian Mathematical Society, 86, Issue 

3-4, 241-258. 

 

Appendix: 

7216 gA  , 858117 ggA  , 6818 gA  , 7419 gA  , 836920 gygA  , 7021 gA  , 7322 gA  , 7623 gA  , 

7724 gA  , 7925 gA  , 7826 gA  , 8227 gA  , 141 gB  , 1102 gB  , yggB 13153  , 114 gB  , 125 gB  ,  

26 gB  , 27 gB  , 618 gB  , 609 gB  , 4610 gB  , 4311 gB  , 6712 gB  , yggB 565913  , 5914 gB  , 

6215 gB  , 6316 gB  , 6417 gB  , 6518 gB  , 6619 gB  , 4720 gB  ,
k

la
MK 1 ,

k

la
MinK 2 , 









 M

k

la
K Pr3 , Pr4  inK , 121 gL  , )11(22  gL , )2624232221(261 gggggg  , 

4

13Pr
301

K

gB
g  ,

1
2 PrPr

1
K

Gr
g




 ,

ni

B
g

Pr
2  ,  

 

22
2

2

211
3

KRR

RgB
g




 ,

2PrPr

21Pr
4

2 K

GrggB
g




 , 

24
2

4

2
5

KRR

Grg
g


 ,

2

16
K

AK
g  , )6543(7 ggggg  ,  22

2
2

3 11Pr)11(701  gRgKg ,

 3
3

2 Pr18  Kgg , 

   11Pr1211129 2
2

3  gRgggKg ,
Pr24

701
10

2
2
2 


RR

g
g ,

2Pr

8
11

g
g  ,

Pr)Pr(Pr)(

9
12

2
2

2 


RR

g
g ,

Pr
13 1L

g


 ,
2

2
2

12

Pr
14

RR

L
g


 , )14121110(15 ggggg  , 1516 gGrg  , 1017 gGrg  , 1118 gGrg   

1219 gGrg  , 1320 gGrg  ,
1

2 PrPr

16
21

K

g
g


 ,

12
2

2 24

17
22

KRR

g
g


 ,

1
2 Pr2Pr4

18
23

K

g
g


 , 

12
2

2 Pr)(Pr)(

19
24

KRR

g
g


 ,

1
2 PrPr

20
25

K

g
g


 ,

 21
2 PrPr

1Pr2
26

K

g




 ,

4

2 15Pr
27

K

gB
g


 , 

42
2

2

2

Pr24

10Pr2
28

KRR

gRB
g




 ,

4
2

2

Pr2

11Pr2
29

K

gB
g




 ,

42
2

2

2

Pr)Pr(Pr)(

12Pr)(Pr
30

KRR

gRB
g




 , 13Pr31 2 gBg  ,

42
2

2

2

Pr

14Pr
32

KRR

gRB
g




 ,

462
2

62

3

)Pr()(

)11(72
33

KRRRR

ggK
g




 ,

42
2

2

3

Pr24

)11(32
34

KRR

ggK
g




 , 



ISSN: 2320-5407                                                                             Int. J. Adv. Res. 8(06), 308-321 

321 

 

42
2

2

3

Pr)Pr(Pr)(

)11(42
35

KRR

ggK
g




 ,

442
2

42

3

)Pr()(

)11(52
36

KRRRR

ggK
g




 ,

42
2

2

3

Pr

)11(62
37

KRR

ggK
g




 ,

46
2

6

3

Pr)Pr(Pr)(

712
38

KRR

ggK
g


 ,

42
2

2

3

Pr)Pr(Pr)(

312
39

KRR

ggK
g


 ,

4
2

3

Pr2

142
40

K

ggK
g


 ,

44
2

4

3

Pr)Pr(Pr)(

512
41

KRR

ggK
g


 ,

4

3 162
42

K

ggK
g  ,

46
2

6

3

Pr

72
43

KRR

Kg
g


 ,

42
2

2

3

Pr

32
44

KRR

Kg
g


 ,

4

342
45

K

Kg
g  ,

44
2

4

3

Pr

52
46

KRR

Kg
g


 ,

4

362
47

K

Kg
g  ,

462
2

62

62

)Pr()(

)11(7Pr2
48

KRRRR

ggRR
g




 , 

42
2

2

2
2

Pr24

)11(3Pr2
49

KRR

ggR
g




 ,

42
2

2

2
2

Pr)Pr(Pr)(

)11(4Pr2
50

KRR

ggR
g




 ,

442
2

42

42

)Pr()(

)11(5Pr2
51

KRRRR

ggRR
g




 , 

46
2

6

6
2

Pr)Pr(Pr)(

17Pr2
52

KRR

ggR
g




 ,

42
2

2

2

Pr)Pr(Pr)(

Pr31Pr2
53

KRR

gRg
g




 ,

4
2

3

Pr2

41Pr2
54

K

gg
g




 ,

44
2

4

4
2

Pr)Pr(Pr)(

15Pr2
55

KRR

gRg
g




 ,

4

31
56

K

g
g  ,

2
4

Pr31
57

K

g
g  , )30145423827(58 gggggg  ,

)544029(59 gggg  , )493428(60 gggg  , )443732(61 gggg  ,

)5350393530(62 gggggg  , )5541(66 ggg  , )4833(63 ggg  , )5136(64 ggg  ,

)5238(65 ggg  ,

28
2

8

8 261
68

KRR

gRB
g


  

)4743466665

64636261605958(67

ggggg

gggggggg




,,

2
2 PrPr

5825Pr21
69

K

gGrgBgB
g




 ,

2
2 Pr2Pr4

59Pr232
70

K

gGrgB
g




 ,

56Pr2571 gGrgBg  ,

22
2

2

2

24

60222
72

KRR

gGrRgB
g




 ,

210
2

10

67
74

KRR

Grg
g




 ,

22
2

2

2

Pr)(Pr)(

62Pr)(24
73

KRR

gGrRgB
g




 ,

22
2

2

61
75

KRR

Grg
g




 ,

262
2

62 )()(

63
76

KRRRR

gGr
g




 ,

242
2

42 )()(

64
77

KRRRR

gGr
g




 , 

26
2

6 Pr)(Pr)(

65
78

KRR

gGr
g




 . 


