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Guide trees construction is an essential step in progressive Multiple 

Sequence Alignment (MSA). The most widely used MSA methods apply 

Neighbour Joining (NJ) algorithm.NJ requires intensive computationsand 

exhausts huge storage space proportional to number of sequences. The 

growing of biological sequences forms a significant barrier and necessitates 

fast and optimized computation method. Some algorithms that reduce time 

and space requirements were produced, but at the expense of alignment 

accuracy. This paper introduces a new massively parallel optimized 

algorithm based on converting used matrices in NJ into vectors and 

eliminating redundant computations, while preserving the accuracy. 

Complexity analysis indicates significant reductions in both time and space. 

Proposed algorithm have been implemented on a 2.0 GHz core i7 Intel CPU 

in C++ and tested on various real protein sequences. Results show how the 

proposed vectorization approach greatly improves the performance and 

achieves more than 2.5-fold speedup when aligning 8000 sequences 

compared to ClustalW- MPI. 
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I. INTRODUCTION 
Multiple Sequence Alignment (MSA) is an important tool in bioinformatics. It can identify patterns or motifs to 

characterize protein families, and is therefore utilized to detect homology between sequences as well as to perform 

phylogenetic analysis. Many MSA tools have been proposed, such as MSA [1], ClustalW [2], T-Coffee [3], MAFFT 

[4], DIALIGN [5]and PRALINE [6]. Most of them are progressive alignment-based methods. They typically consist 

of three stages as clarified at Fig.(1) [7]. Stage 1 computes a Distance Matrix (D) comprised of the distance value 

between each pair of input sequences. Stage 2 computes a guide tree from D using some phylogeny reconstruction 

method. Stage 3 aligns first closely related sequences at the guide tree, and then aligns the most divergent sequences 

to get the final MSA. 

 

The task of phylogeny is to derive the previous tree based on observations of the existing organisms [8]. It 

indicates relations between sequences, since organisms in whole world have a common predecessor. The Neighbour 

Joining (NJ) method [9] is widely used among the greedy approaches for constructing the guide tree because it is 

applicable to any type of evolutionary distance data. Its main task is to compute the branch lengths of the guide tree 

from D. Leaf nodes in such trees correspond to observable taxa while internal nodes represent hypothetical ancestors 

of the sequences. It works perfectly with small taxa sets.  

However, the exponential growth of biological data demands a higher throughput. Real databases now contain 

enough representatives of larger protein families that exceed the capacity of most current programs. Thus, there has 

been a plethora of new solutions that attempt to solve this problem using caching [10,11] and parallel processing 

[12,13]. Also, easily accessible accelerator technologies have been used including FPGAs [14], GPUs [15] and 
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CUDA [16]. These heuristic approaches generally reduce the search space and make the comparison of large 

genomic banks faster, but at the expense of a non-negligible reduction of algorithmic accuracy. 

In this work, authors face the challenge of handling huge data by using two main approaches. The first is the 

vectorization, where all matrices are compensated by vectors, which in turn reduces the memory requirement and 

speedup execution without affecting the accuracy. The second approach is parallelism, the widespread programming 

method nowadays that allows multiple independent processes which share the same resources, to be executed 

concurrently at less time. The multi-core was the candidate platform for implementation due to its availability, 

commonly use and almost has no communication overhead [18].  

This paper proposes an accelerated algorithm for the guide tree construction. It mathematically proves that the 

used matrices can be converted into vectors. It also demonstrates that there are some unnecessary calculations and 

produces new formulas skipping repetitions. Then it introduces how computations are parallelised for multi-core 

use. Finally, it verifies experimentally that the proposed method is superlative over existing ones in both space and 

execution time without losing the accuracy.  

Implementations were conducted on 2.0 GHz core i7 Intel using OpenMP that supports shared memory multi-

processing programming in C++. It uses fork-join model. All OpenMP programs begin the master thread. It executes 

sequentially until the first parallel region construct is encountered. Then a team of parallel threads are created. The 

statements in the program are then executed in parallel among the various team threads. When the team complete, 

they synchronize and terminate, leaving the master thread [18]. 

The rest of this paper is organized as follows. First, related work is surveyed in section 2. Section 3 explains the 

sequential neighbour joining algorithm NJ. Section 4 introduces the proposed vectorized fine-grain parallel 

algorithm, and studies the deduction of new proposed formulas. Experimentalresults and discusses are shown in 

section 5. Finally, the conclusion is given. 

 

II. RELATED WORK 
The neighbour joining method is the widely used method for phylogenetic reconstruction in most popular MSA 

tools such as ClustalW and T-Coffee. It initially introduced by Saitou and Nei [9], and achieves computations 

efficiently combined with reasonable accuracy. Studier and Kepler [25] incorporated improvements that reduce its 

temporal complexity from O(N
5
) to O(N

3
), where N is the number of OTUs (Operational Taxonomic Units). Some 

attempts have been presented to improve the performance, such as QuickTree [19] and Relaxed Neighbor-Joining 

(RNJ) [20], but they can’t reduce complexity.  

Because handling large datasets could take days, and occupies more than 30% of the alignment runtime, different 

parallel algorithms have been developed. Du and Feng [21] proposed pNJTree parallel method for the NJ tree 

reconstruction using MPI running on a workstation cluster. Bullard [22] and Li [12] used the coarse-grained 

parallelism. They parallelized the searching of sequences having the highest divergence using MPI implementation.  

Liu et al. [16] introduced a parallel algorithm that computes the two innermost loops of NJ in parallel using 

threads on GPU. In [23], they developed an efficient mapping onto the GPU architecture and parallelized NJ tree 

reconstruction using CUDA. Sahoo et al. [24] proposed an algorithm for shared memory that parallelizes 

computation using multiple threads.  

 

 

 

III. NEIGHBOUR JOINING ALGORITHM  
In this section, we explain in details the NJ algorithm of Studier and Kepler [25], as a base to our work. Consider 

aligning a dataset {S1, S2,..., SN} of size N. MSA first stage produces a symmetric diagonal matrix D of dimension 

NxN, where the value D(i,j)denotes the similarity distance between SiandSj. NJ takes D as input and produces the 

guide tree by applying the following steps: 

1. First, it begins with a star graph, then iteratively finds the closest neighboring pair, 

2. Second, it constructs a tree by clustering the closest neighboring pair to each other and connecting them through 

an internal node, 

3. Then, it connects all the remaining sequences to nodein a star-like structure and computes the distances of them 

to the internal node, 

4. Finally, it terminates when all internal nodes are inserted into the tree constituting the final binary tree. 

The main task of NJ method is to compute the branch lengths of the guide tree from the pairwise distances. This 

task is accomplished using the following estimated formulas. 

- The sum of the least-squares estimates of branch lengths (Qij), for i=1…N; j=i+1… N; k,l  i,j;is given by:  
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............................................................... (1) 

- The neighbours to be joined in the treeimin and jmin of OTUs satisfying: 

imin= i , jmin= j  that have the smallest sum of branch lengths 

 

- The distance between combined OUTs (U1) and another OTU k, for all k = 1…N; k i, j,is given by: 

 ............................................................................................................................. (2) 

 

- The branch lengths LiU
1
 and LjU

1
 of OTUs neighbors, indexed by i and j, is estimated by [26]: 

 ......................................................................................................................... (3) 

andz represents all the OTUs except 

i and  j.  

The detailed algorithm of the sequential NJ algorithm is as follows [27]: 

 

 

Input : N (the number of OTUs) and D (Distance Matrix) 

Output : NJ tree 

1.    forh in 1 to N - 2 do  

1.1  fori=0 to N-1 do  

1.2        forj=i+1 to N do  

1.2.1      Compute Qij according to formula (l).  

1.2.2     end for  

1.2.3 end for  

1.3  Search the minimum Qij to get neighboursi and j.  

1.4  OTUs i and j are joined as a new OTU Uh.  

1.5  Compute DUhk according to formula (2).  

1.6  Compute branch lengths LiUh and LjUh according to formula (3).  

1.7  Delete OTUs i and j, and add Uh to current OTU lists.  

1.9  end for  

2      Join the last two OTUs. 

 

Fig. (2)illustrates the constructed NJ tree for a given 6 OTUs, labeled A, B, C, D, E and F, which indicates 

their evolutionary relationships. The numbers above the lines are the computed branch lengths of each two 

neighbours. It starts with connecting the pair (A, B) by an internal node, because they are the closest, generating a 

new combined OUT (U1). Thus, the branch lengths of the U1 to A and B are 2 and 5, respectively. This leads to 

connecting C to the new OUT as ((A, B), C). The same action happens with ((D, E), F). Finally, it produces the 

resulted binary tree by linking the only remaining two OTUs. 

 

IV. PROPOSED ALGORITHM  

According to the above formulas, the most time consuming step is Eq.(1). Thus, the key point of optimizing NJ 

algorithm is to optimize the computation of Q. In fact, we observe that there are many repeated computations on the 

same data. For example, D13 is added when computing Q12 and Q14. Also, D34is added when computing Q12 and Q15. 

In other words, there are common calculations between the computations of Qij.On the other hand, nested loops are 

very good candidate for parallelism. Therefore, these observations motivate us to design an optimized fast parallel 

algorithm of NJ. In the following, a detailed explanation of how we eliminate repeated computations and vectorize 

unnecessary used matrices is presented. In addition, our proposed parallel algorithm is introduced. 
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A. Optimization  Approach 

To eliminate redundant calculations during computing Q elements, we have reformulated Eq.(1) by the 

following derivation. 

Let R(N) and total be two buffers, the former is a vector used to store the sum of every row of Dij and the latter is 

a variable to store the sum of the whole distance matrix. They are evaluated by these equations: 

 .................................................................................................................................................. (4) 

 ..................................................................................................................................................... (5) 

Since Dij is a symmetric square matrix and Qij is a triangular matrix, then the first and third part of Eq. (1) that 

computes Qij can be reformulated as follows: 

 
 

By adding we get: 

 
Hence,  

 ............................................................... (6) 

 

 On the other hand, (Ri + Rj) denotes the sums of rows and columns of i and j respectively and (total - 2(Ri + 

Rj) + 2Dij) denotes the sums of the remaining elements of (Dij) except those elements related to i and j. This leads to: 

 
 

Thus, Eq. (1) can be reformulated as: 

 ............................................................................................................ (7) 

  

Furthermore, it seems that total and N are constants for every Qij at each iteration, so they can be excluded 

from the search for the minimum of Qij. This would lead to a more simplified form of Eq. (7). So, we can search for 

minimum Qij using Qij evaluates as: 
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 .......................................................................................................... (8) 

 

By this derivation, we conclude that there is no need to compute total any more. And the sum of Ri needs to 

be computed just once. This deduced conclusion leads to more optimization for distance matrix computations. 

Suppose that Qimin,jmin is the smallest value which indicates that imin and jmin are the neighbours to be joined in the 

tree. Then according to NJ the two rows and columns of imin and jmin will be deleted from D, and a new row and 

column (denoted by U1) are added. And DU1k is computed according to formula (2). But in fact, Ri doesn’t need to 

be computed again, because most values of the remaining Ri are unchanged between every two successive iteration 

step. Just RU1 have to be computed. While for the remaining Risonly Diimin and Dijmin are deleted, and DiU1 is added. 

This leads to saving O(N) time for each iteration, and the formulas for Ri, Diz and Djz are compensated by: 

 ..................................................................................................... (9) 

 
 

Finally, we have applied the vectorization technique on R and Q as we do in our previous work with D. In 

[28], we computed the distance for all pairs and store it in a vector DV without affecting the performance. So, to 

compile the work in this paper with DV, we exchanged the matrix Q by a vector, and mapped the indices i and j onto 

an index h. The equations evaluating R andQ have been rewritten in terms of DV as follows: 

 , where i=1 ... N. ............................................... (10) 

 

, where i=1…N-1; j=i+1…N; h = ((i – 1) (2n – i) / 2) + j – i.. .................. (11) 

 

B. Parallelization Approach 

This section proposes a vectorized parallel algorithm, called NJVect, for computing the guide tree. It depends 

mainly on the espoused idea in this work of switching D and Q into vectors. Its main goal is to speedup 

computations and reduces storage, to be able to align huge datasets. 

First, we benefit from the independencies between (Ri) computations. Thus, computing the elements of (Ri) 

according to Eq.(10) can be parallelized. Each (i) iteration is performed in parallel by using multiple threads. Then, 

each core computes ⌈N/P⌉ permutations of i, where (P) is the number of cores. 

Subsequently, computing the elements of (Qh), where (h=1..N(N-1)/2) using Eq.(11), and finding its minimum, 

can be accomplished in parallel. We use multithread fine-grain parallelism technique. Each thread calculates 

minimum (Qh) independently. Then ⌈n(n-1)/2P⌉ threads at each iteration works in parallel. Finally, the global 

minimum with iminand jmin are determined, and the rest of procedure goes on.   

The pseudo code of the proposed algorithm NJVect is given below. And, Fig.(3) clarifies how this proposed 

parallelization approach works.  

 

Input : N (the number of OTUs), P (number of cores), DV (Distance Vector) 

Output : NJ  tree 

1.       fori=1 to N/P do in parallel 

1.2          ComputeRi according to formula (l0). 

1.3   end for 

2. forn = N – 2 to 1 do  

2.1 forh=1to  n(n+1)/2P  doin parallel 

2.2.1      Compute Qh according to formula (l1).  

2.2.2      Find local minimum Qh 

2.3 end for  

2.4 Search the global minimum Qh from all local minimum to get neighboursimin and jmin 

2.5 Join OTUs i and j as a new OTU Uh.  
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2.6  Compute DVUhk according to Eq. (2).  

2.7  Compute branch lengths LiUh and LjUh according to Eq. (3).  

2.8  Delete OTUs imin and jmin, and add Uh to current OTU lists.  

2.9  end for  

3.      Join the last two OTUs. 

 

 

V. EXPERIMENTAL RESULTS  
The proposed NJVect algorithm has been implemented in C++, using OpenMP libraries and tested using a Core-

i7 processor 2.00GHz and 8 GB RAMS running on Ubuntu Linux, 64-bit. The resulted program takes the advantage 

of fine-grained parallelism on a loop level, in which each process spawns a team of threads to occupy the multi-core 

processors when encountering parallel sections of code using OpenMP. 

Comprehensive experiments have been conducted on the specified platform using different real protein datasets 

selected from the Human Immunodeficiency Virus (HIV) dataset downloaded from NCBI site. They evaluated the 

implementation of our proposed algorithm NVect versus MPI-NJ, the parallel NJ code of the popular aligner 

ClustalW-MPI, available at http://www.mybiosoftware.com/alignment/3052. 

Fig.(4) demonstrates the performance for seven variant sequence sets, using execution time (in seconds) and 

speedup measurements. Results show that the performance increases as the number of sequences increases. As seen, 

our program achieves significant speedup of almost 2.5-fold over MPI-NJ. Best speedup is achieves when the 

number of sequences is more than 6000 sequences. This is compatible with the recent massive work for the tree 

construction and indicates gaining higher throughput. 

 

 

  

 

VI. CONCLUSIONS 
In this paper, authors introduced and evaluated a parallel vectorized algorithm of NJ, for efficiently reconstructing 

guide trees using multi-core systems. Our implementation, using OpenMP with C++, has achieved remarkable time 

and space reductions. Results were encouraging, it shows that as the number of sequences increase, NJVect 

performance increase, regardless of the sequences length. The resulted program outperforms ClustalW-MPI with 

2.5-fold speedup. Thus, it suited well the very rapid growth of biological sequence databases. We believe that, the 

more provided cores, the better achieved performance will be. 

Our future work will include the upgrade of this work to be compatible with multi-core cluster systems. It will be 

interesting to combine the proposed NJVect with DistVect producing a new efficient MSA tool. 

 

 

 
 

Figure (1): three stages of progressive sequence alignment:  

(a) distance matrix; (b) guided tree and (c) progressive alignment along the guided tree. 

 

 

 

 

  

 



ISSN 2320-5407                                   International Journal of Advanced Research (2014), Volume 2, Issue 4, 14-22 
 

20 

 

 
Fig. 2 constructing a guide tree using the Neighbour Joining 

heuristic 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

(a) (b) 

 

 

Figure (3): NJVectprocessing 16 sequences using 4 cores  

(a) R (i) computations (b) minimumQ (h) computes  

 
Figure (4): Performance comparison between MPI-NJ and NJVect 
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